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Lecture 18: Image Classification
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Image Classification

We next discuss image classification, where we pass a whole image into a
classifier and obtain a class label as output.
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What Makes Image Classification Hard"

Intra-class variation, viewpoint, illumination, clutter, and occlusion (among others!)

51 Figure source: Jianxiong Xiao. Original credit: ?



Image Classification

In addition to iImages containing single objects, the same techniques can be
applied to classify natural scenes (e.g. beach, forest, harbour, library).

Why might classifying scenes be useful”
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Image Classification

In addition to iImages containing single objects, the same techniques can be
applied to classify natural scenes (e.g. beach, forest, harbour, library).

Why might classifying scenes be useful”

Visual perception is influenced by expectation. Our expectations are often
conditioned on the context.
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What is This Object?

54 Figure source: Jianxiong Xiao



What is This Object?

55 Figure source: Jianxiong Xiao



What is This Object?

56 Figure source: Jianxiong Xiao



What is This Object?

57 Figure source: Jianxiong Xiao



What is This Object”

58 Figure source: Jianxiong Xiao



What is This Object?

N
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Walkman Look-Alikes by Joan Steiner
59 Figure source: Jianxiong Xiao



Visual Words

Many algorithms for image classification accumulate evidence on the basis of
visual words.

To classity a text document (e.g. as an article on sports, entertainment,
business, politics) we might find patterns in the occurrences of certain words.
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Vector Space Model

G. Salton. ‘Mathematics and Information Retrieval’ Journal of Documentation, 1979
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Vector Space Model

A document (datapoint) is a vector of counts over each word (feature
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What is the similarity between two documents”?
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Visual Words

INn Images, the equivalent of a word Is a local image patch. The local image
patch is described using a descriptor such as SIFT.

We construct a vocabulary or codebook of local descriptors, containing
representative local descriptors.
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What Objects do These Parts Belong To”

65 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Some local feature are
very Informative -

a collection of local features
(loag-of-features)

e deals well with occlusion
e gcale Invariant
e rotation invariant

66 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



(not so) Crazy Assumption

spatial information of local features
can be ignored for object recognition (i.e., verification)

67 Slide Credit: loannis (Yannis) Gkioulekas (CMU)
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Visual Words

INn Images, the equivalent of a word Is a local image patch. The local image
patch is described using a descriptor such as SIFT.

We construct a vocabulary or codebook of local descriptors, containing
representative local descriptors.

Question: How might we construct such a codebook? Given a large sample of
SIFT descriptors, say 1 million, how can we choose a small number of
‘representative’ SIFT codewords, say 10007
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Standard Bag-of-Words Pipeline (for image classification)

Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors
for each iImage

Classify:
Train and test data using BOWs

70 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



1. Dictionary Learning: Learn Visual Words using Clustering

1. extract features (e.g., SIFT) from images

71 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



1. Dictionary Learning: Learn Visual Words using Clustering

2. Learn visual dictionary (e.g., K-means clustering)

70 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



What Features Should We Extract?

— Regular grid
Vogel & Schiele, 2003
Fel-Fel & Perona, 2005

— Interest point detector

Csurka et al. 2004
Fel-Fel & Perona, 2005
Sivic et al. 2005

— Other methods

Random sampling (Vidal-Naguet & Uliman,
2002)

Segmentation-based patches (Barnard et
al. 2003)

73 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Extracting SIFT Patches

Compute SIFT  Normalize patch
descriptor

ILowe’ 99|

Detect patches
Mikojaczyk and Schmid '02]
Mata, Chum, Urban & Pajdla, '02]
Sivic & Zisserman, 03]

74 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Extracting SIFT Patches

N | |

75 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Creating Dictionary
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Clustering

Slide Credit: loannis (Yannis) Gkioulekas (CMU
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Visual vocabulary

Clustering

Slide Credit: loannis (Yannis) Gkioulekas (CMU



K-means clustering
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K-means Clustering

K-means is a clustering technique that iterates between

1. Assume the cluster centers are known. Assign each point to the
closest cluster center.

2. Assume the assignment of points to clusters is known. Compute
the best cluster center for each cluster (as the mean).

K-means clustering is initialization dependent and converges to a local minimum
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Example Visual Dictionary
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Example Visual Dictionary
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Example Visual Dictionary
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Source: B. Leibe
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Standard Bag-of-Words Pipeline (for image classification)

Dictionary Learning:
_earn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors
for each image

Classify:
Train and test data using BOWs

84 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



2. Encode: build Bag-of-Words (BOW) vectors for each image

T

1. Quantization: image features gets associated
to a visual word (nearest cluster center)

M
\

85 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



2. Encode: build Bag-of-Words (BOW) vectors for each image

2. Histogram: count the number of visual word occurrences
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36 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



2. Encode: build Bag-of-Words (BOW) vectors for each image

frequency

TLUNENL, e

codewords

q7 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Standard Bag-of-Words Pipeline (for image classification)

Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors
for each Image

Classify:
Train and test data using BOWs

a8 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



3. Classify: Train and text classifier using BOWSs

Support
K nearest Vector
neighbors Machine

89 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



