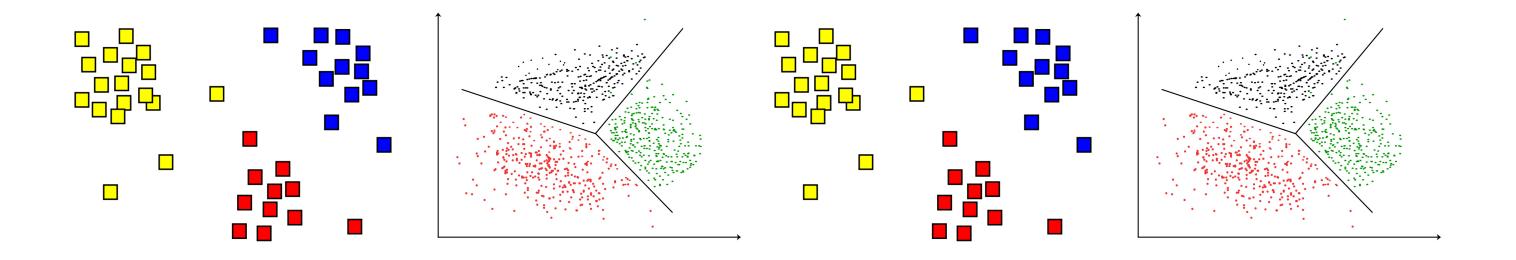


CPSC 425: Computer Vision



Lecture 18: Image Classification

Image Classification

We next discuss **image classification**, where we pass a whole image into a classifier and obtain a class label as output.

What Makes Image Classification Hard?

Intra-class variation, viewpoint, illumination, clutter, and occlusion (among others!)

Image Classification

In addition to images containing single **objects**, the same techniques can be applied to classify natural **scenes** (e.g. beach, forest, harbour, library).

Why might classifying scenes be useful?

Image Classification

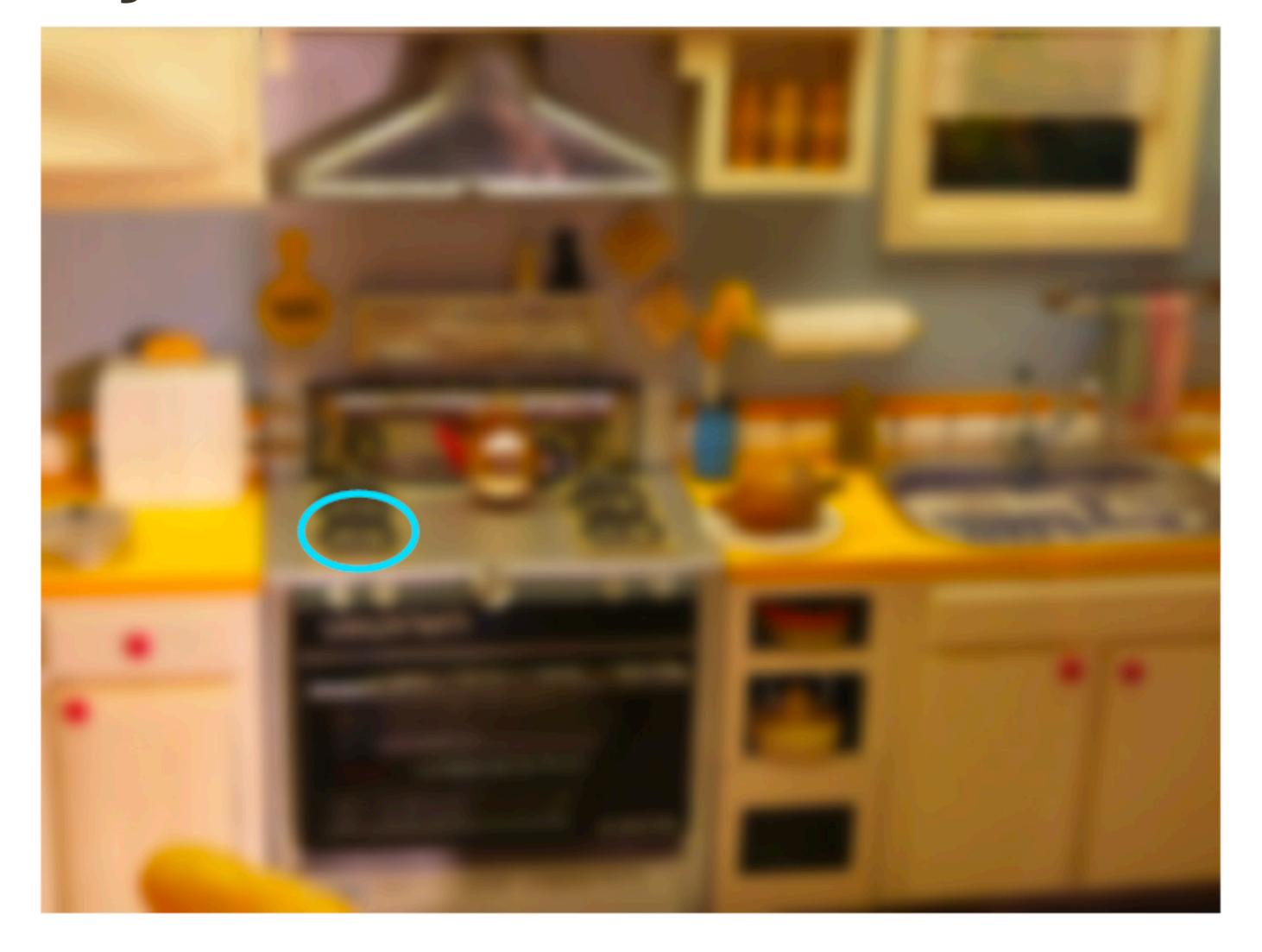
In addition to images containing single **objects**, the same techniques can be applied to classify natural **scenes** (e.g. beach, forest, harbour, library).

Why might classifying scenes be useful?

Visual perception is influenced by expectation. Our expectations are often conditioned on the **context**.

Figure source: Jianxiong Xiao

Figure source: Jianxiong Xiao



Walkman

Look-Alikes by Joan Steiner

Figure source: Jianxiong Xiao

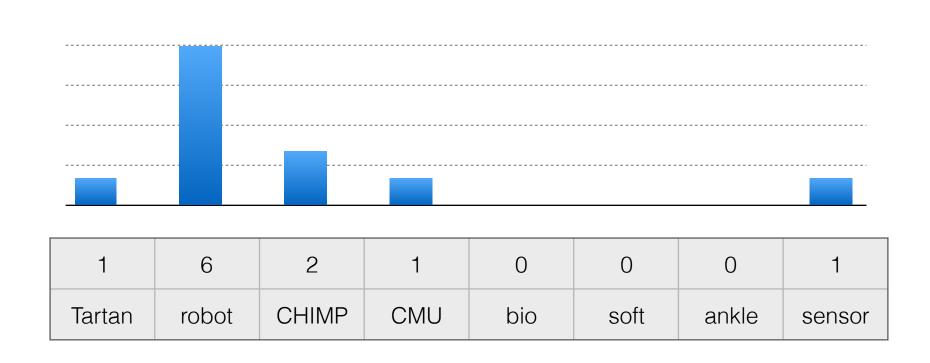
Visual Words

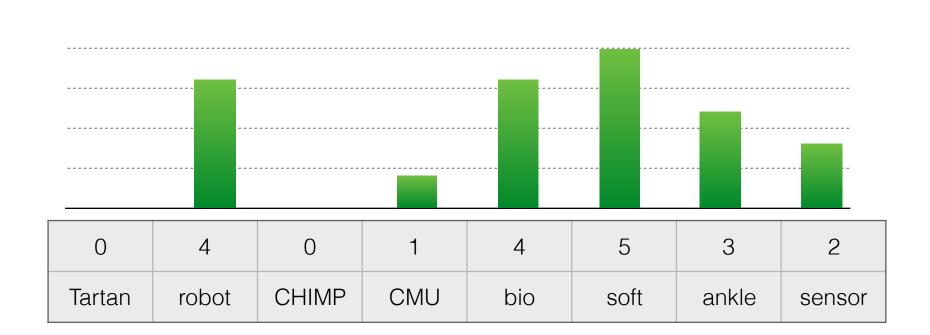
Many algorithms for image classification accumulate evidence on the basis of **visual words**.

To classify a text document (e.g. as an article on sports, entertainment, business, politics) we might find patterns in the occurrences of certain words.

Vector Space Model

G. Salton. 'Mathematics and Information Retrieval' Journal of Documentation, 1979





Vector Space Model

A document (datapoint) is a vector of counts over each word (feature)

$$\boldsymbol{v}_d = [n(w_{1,d}) \ n(w_{2,d}) \ \cdots \ n(w_{T,d})]$$

 $n(\cdot)$ counts the number of occurrences just a histogram

just a histogram over words

What is the similarity between two documents?

Vector Space Model

A document (datapoint) is a vector of counts over each word (feature)

$$\boldsymbol{v}_d = [n(w_{1,d}) \ n(w_{2,d}) \ \cdots \ n(w_{T,d})]$$

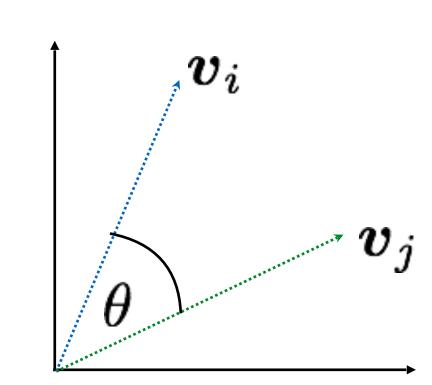
 $n(\cdot)$ counts the number of occurrences

just a histogram over words

What is the similarity between two documents?

Use any distance you want but the cosine distance is fast and well designed for high-dimensional vector spaces:

$$d(oldsymbol{v}_i, oldsymbol{v}_j) = \cos heta \ = rac{oldsymbol{v}_i \cdot oldsymbol{v}_j}{\|oldsymbol{v}_i\| \|oldsymbol{v}_j\|}$$

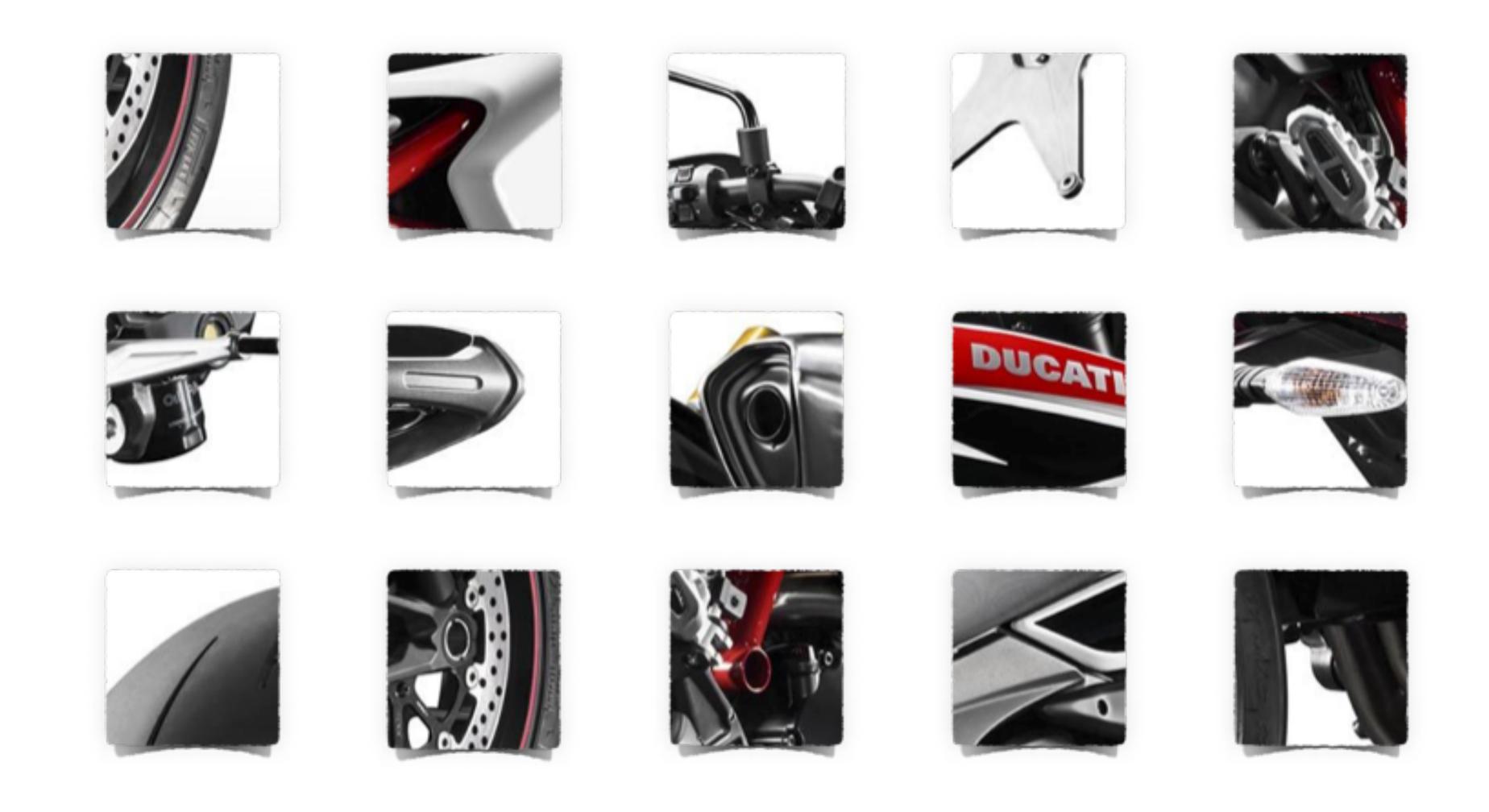


Visual Words

In images, the equivalent of a word is a local image patch. The local image patch is described using a descriptor such as SIFT.

We construct a **vocabulary** or **codebook** of local descriptors, containing representative local descriptors.

What **Objects** do These Parts Belong To?



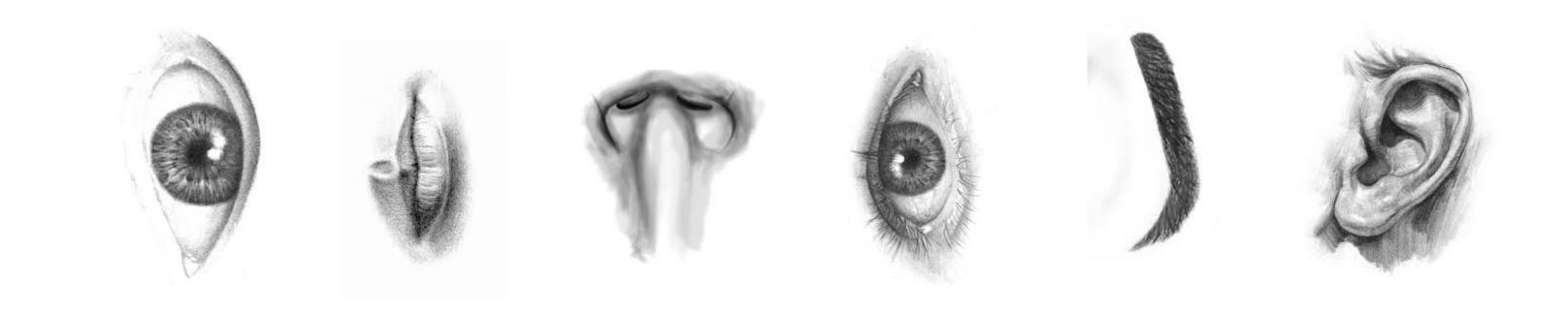
Some local feature are very informative

An object as

a collection of local features (bag-of-features)

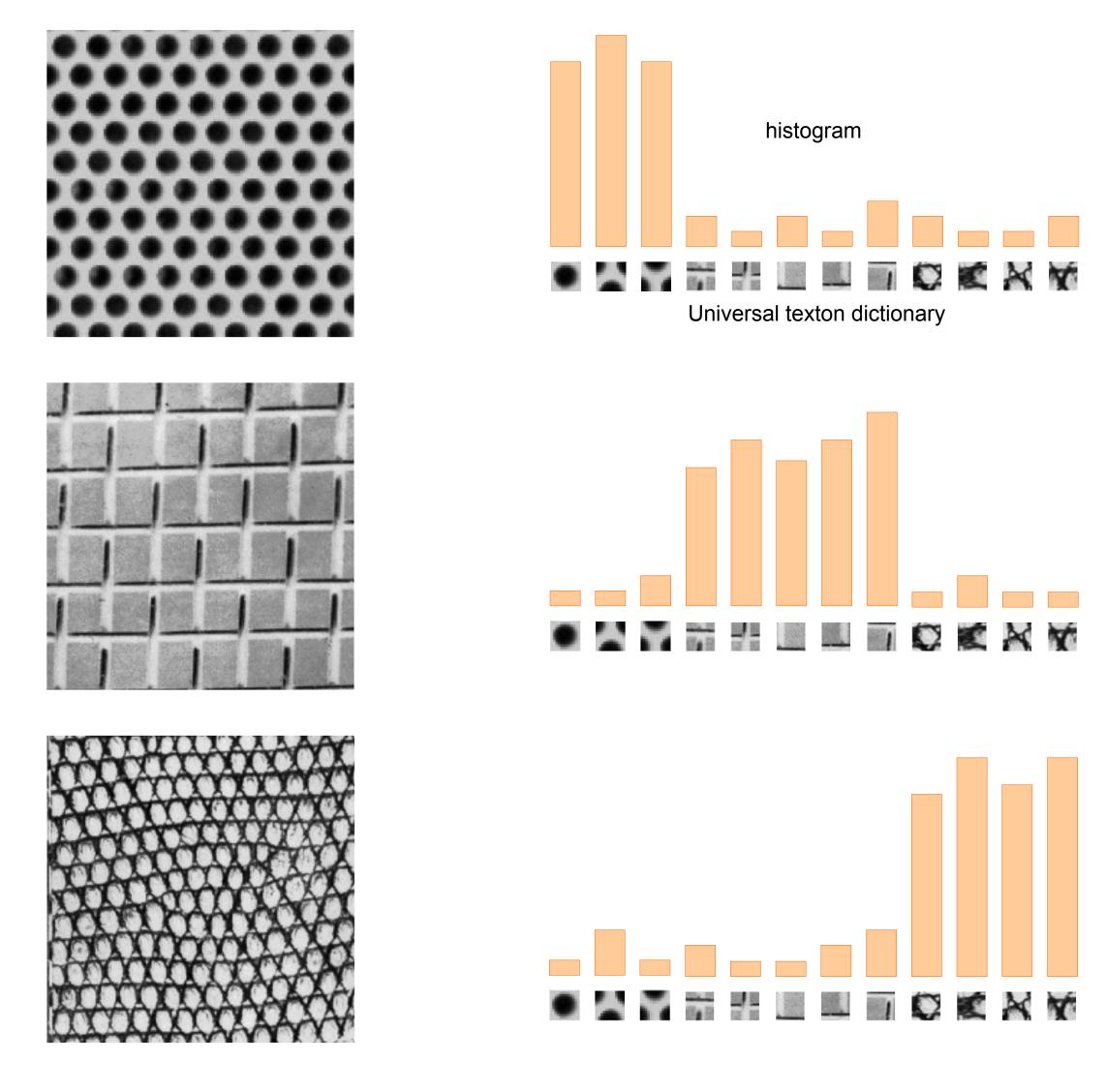
- deals well with occlusion
- scale invariant
- rotation invariant

(not so) Crazy Assumption



spatial information of local features can be ignored for object recognition (i.e., verification)

Recall: Texture Representation



Visual Words

In images, the equivalent of a word is a local image patch. The local image patch is described using a descriptor such as SIFT.

We construct a **vocabulary** or **codebook** of local descriptors, containing representative local descriptors.

Question: How might we construct such a codebook? Given a large sample of SIFT descriptors, say 1 million, how can we choose a small number of 'representative' SIFT codewords, say 1000?

Standard Bag-of-Words Pipeline (for image classification)

Dictionary Learning:

Learn Visual Words using clustering

Encode:

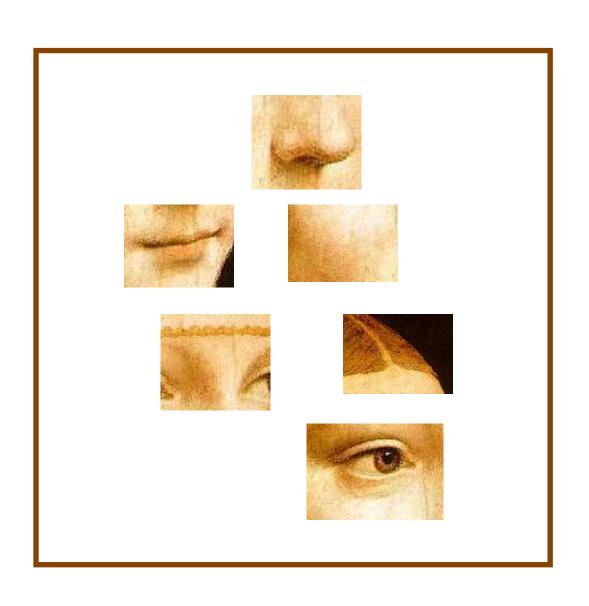
build Bags-of-Words (BOW) vectors for each image

Classify:

Train and test data using BOWs

1. Dictionary Learning: Learn Visual Words using Clustering

1. extract features (e.g., SIFT) from images



1. Dictionary Learning: Learn Visual Words using Clustering

2. Learn visual dictionary (e.g., K-means clustering)

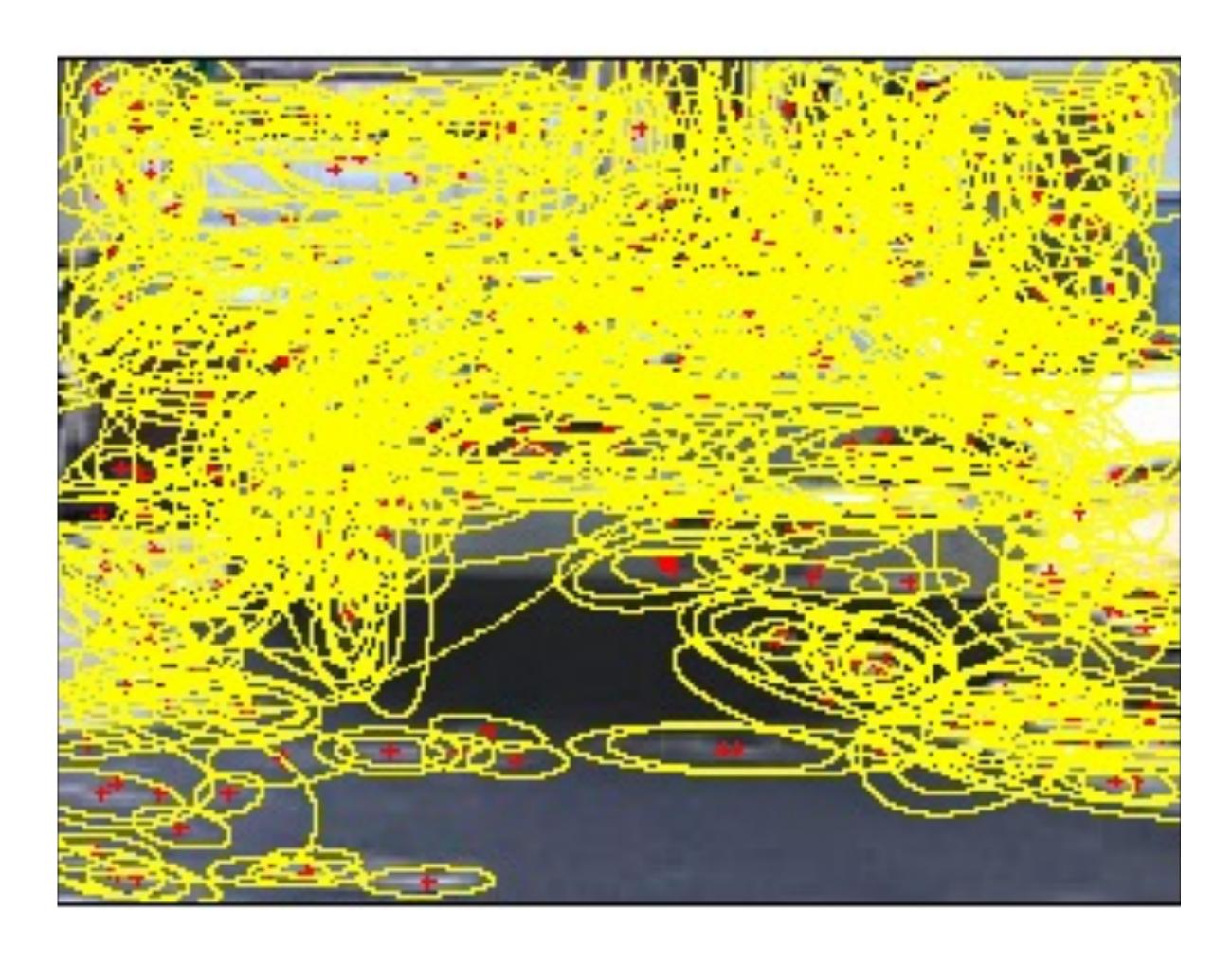
What Features Should We Extract?

- Regular grid
 Vogel & Schiele, 2003
 Fei-Fei & Perona, 2005
- Interest point detector
 Csurka et al. 2004
 Fei-Fei & Perona, 2005
 Sivic et al. 2005

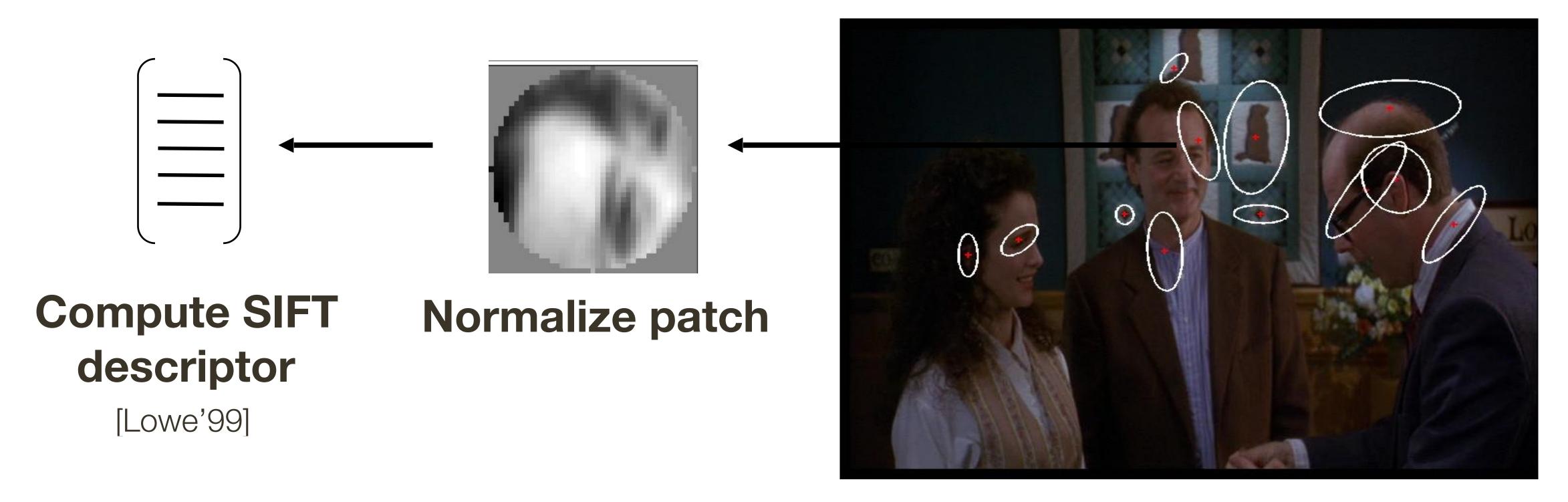
Other methods

Random sampling (Vidal-Naquet & Ullman, 2002)

Segmentation-based patches (Barnard et al. 2003)



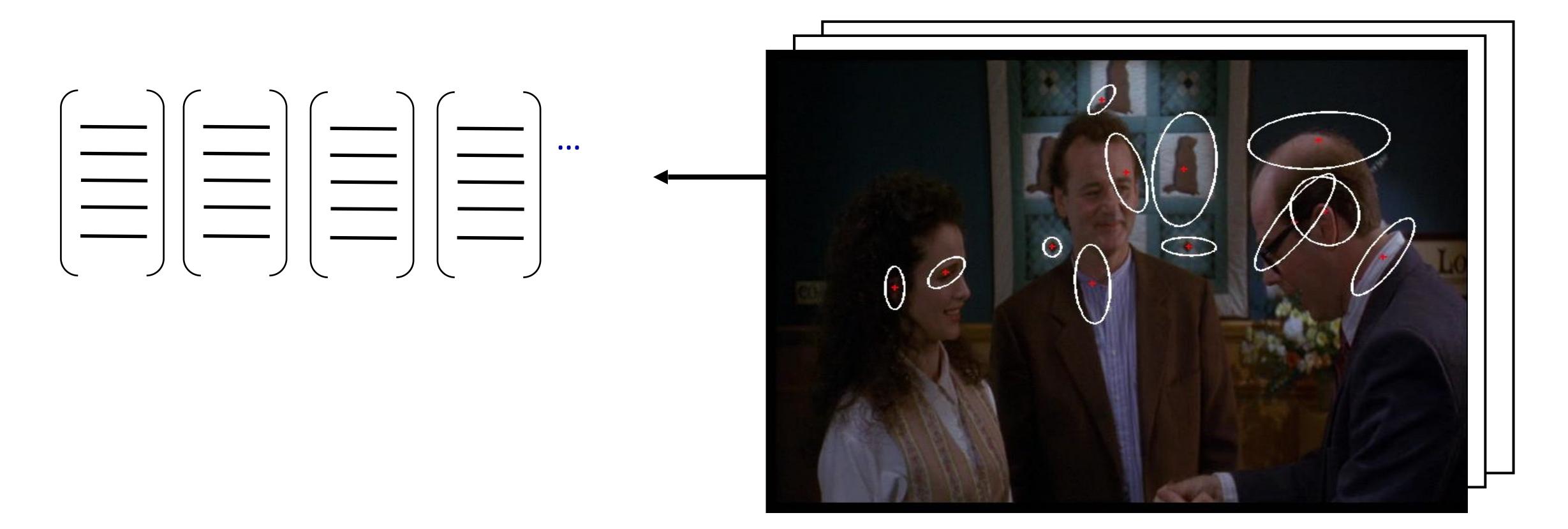
Extracting SIFT Patches



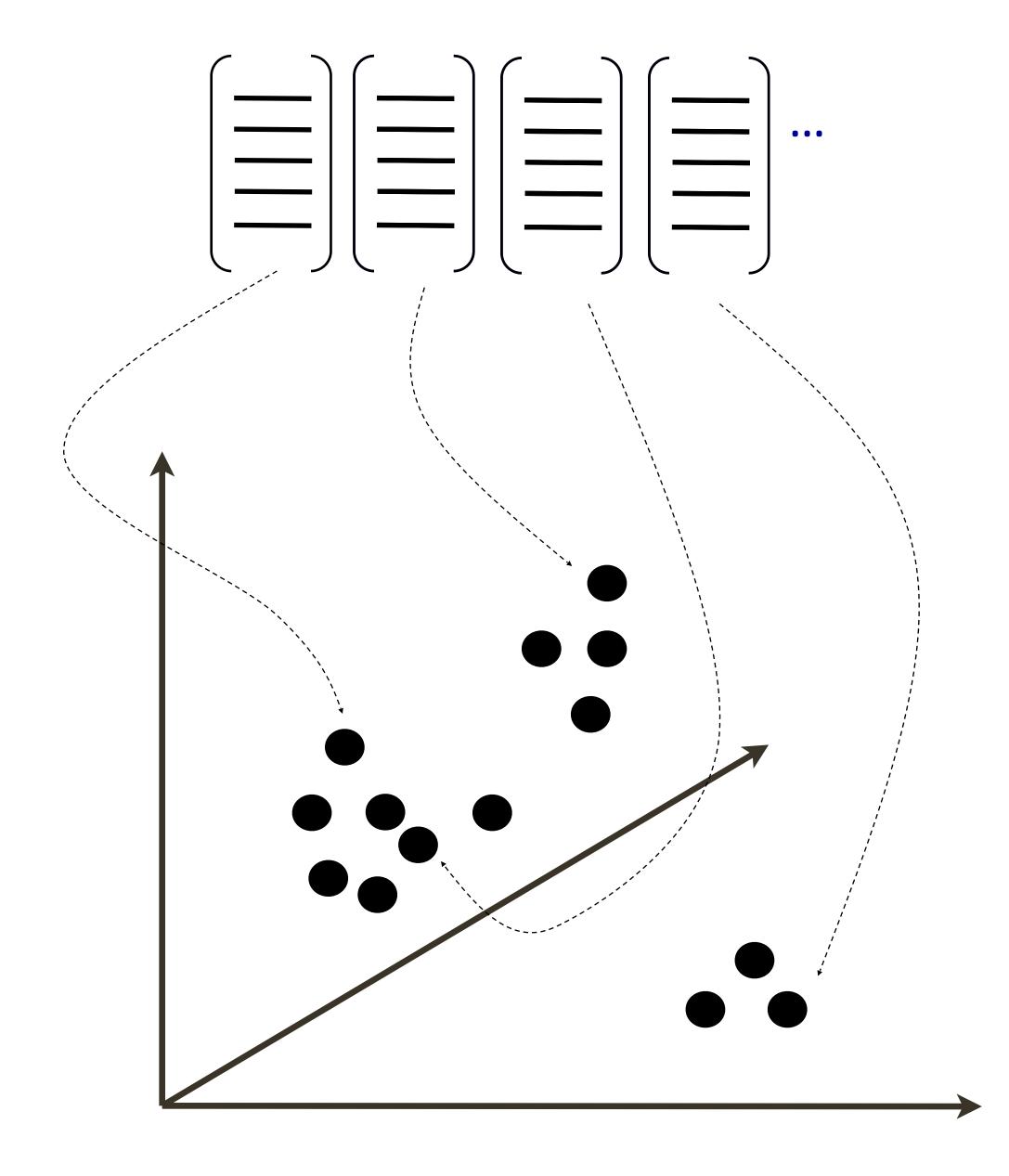
Detect patches

[Mikojaczyk and Schmid '02] [Mata, Chum, Urban & Pajdla, '02] [Sivic & Zisserman, '03]

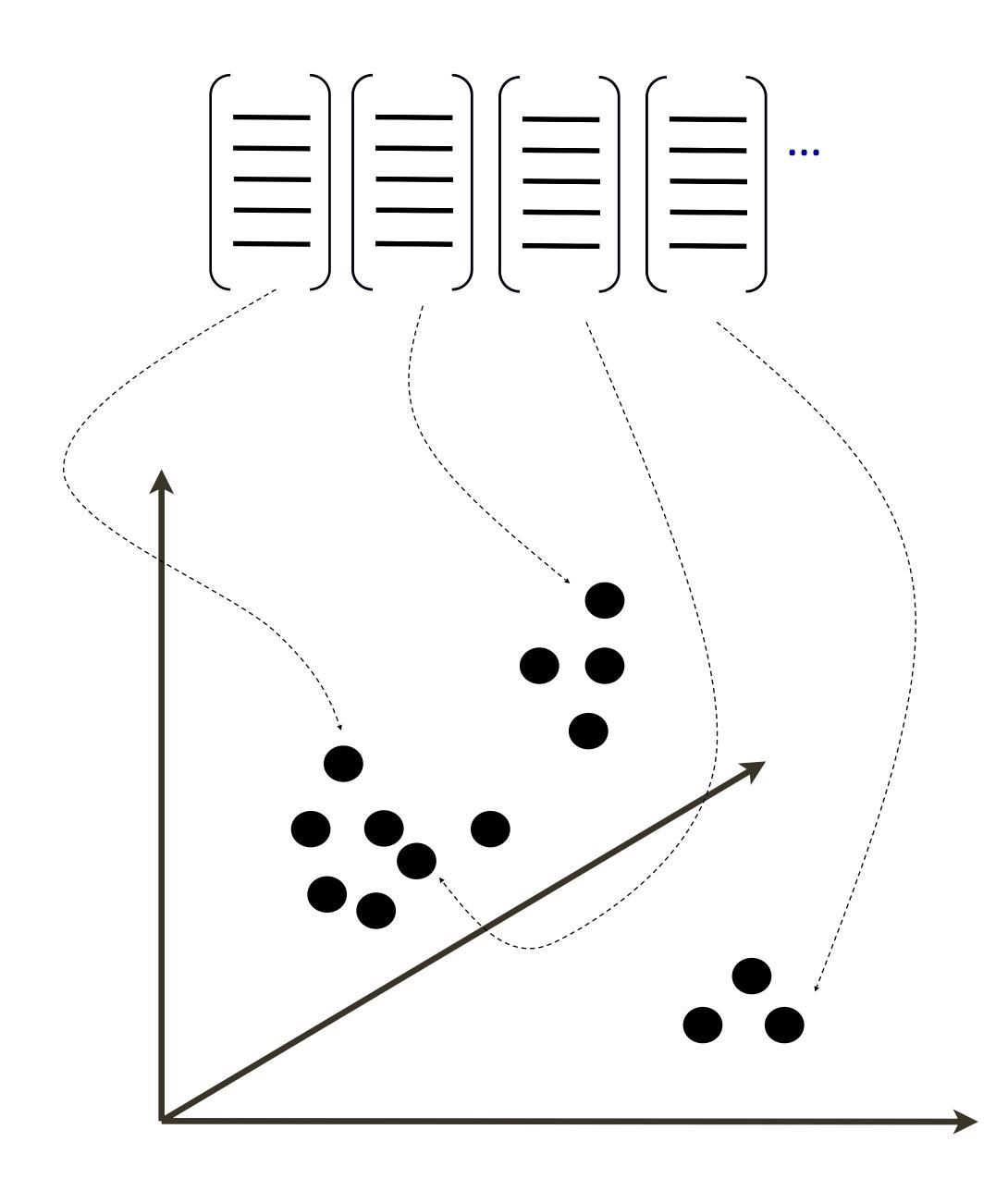
Extracting SIFT Patches

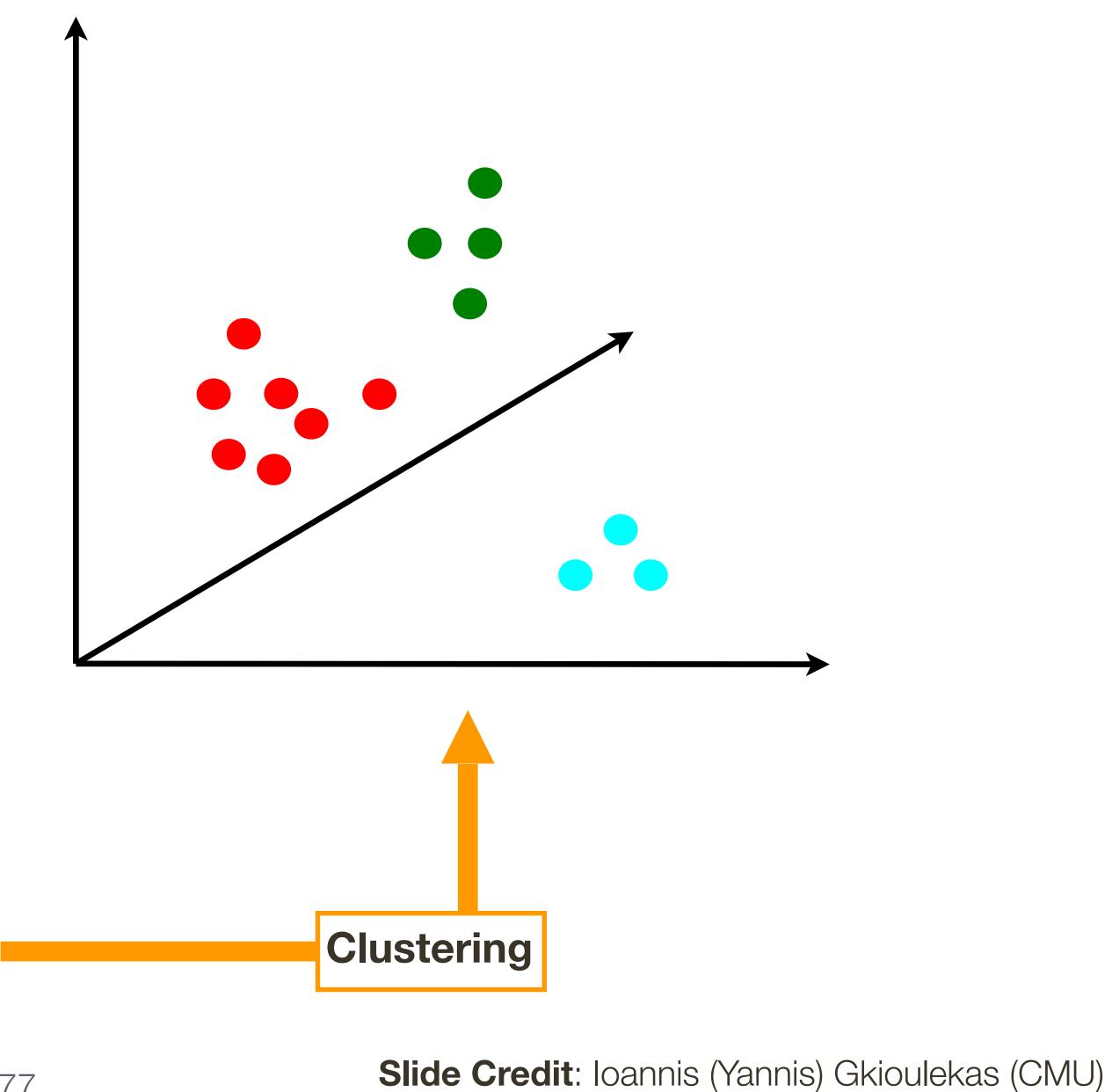


Creating Dictionary

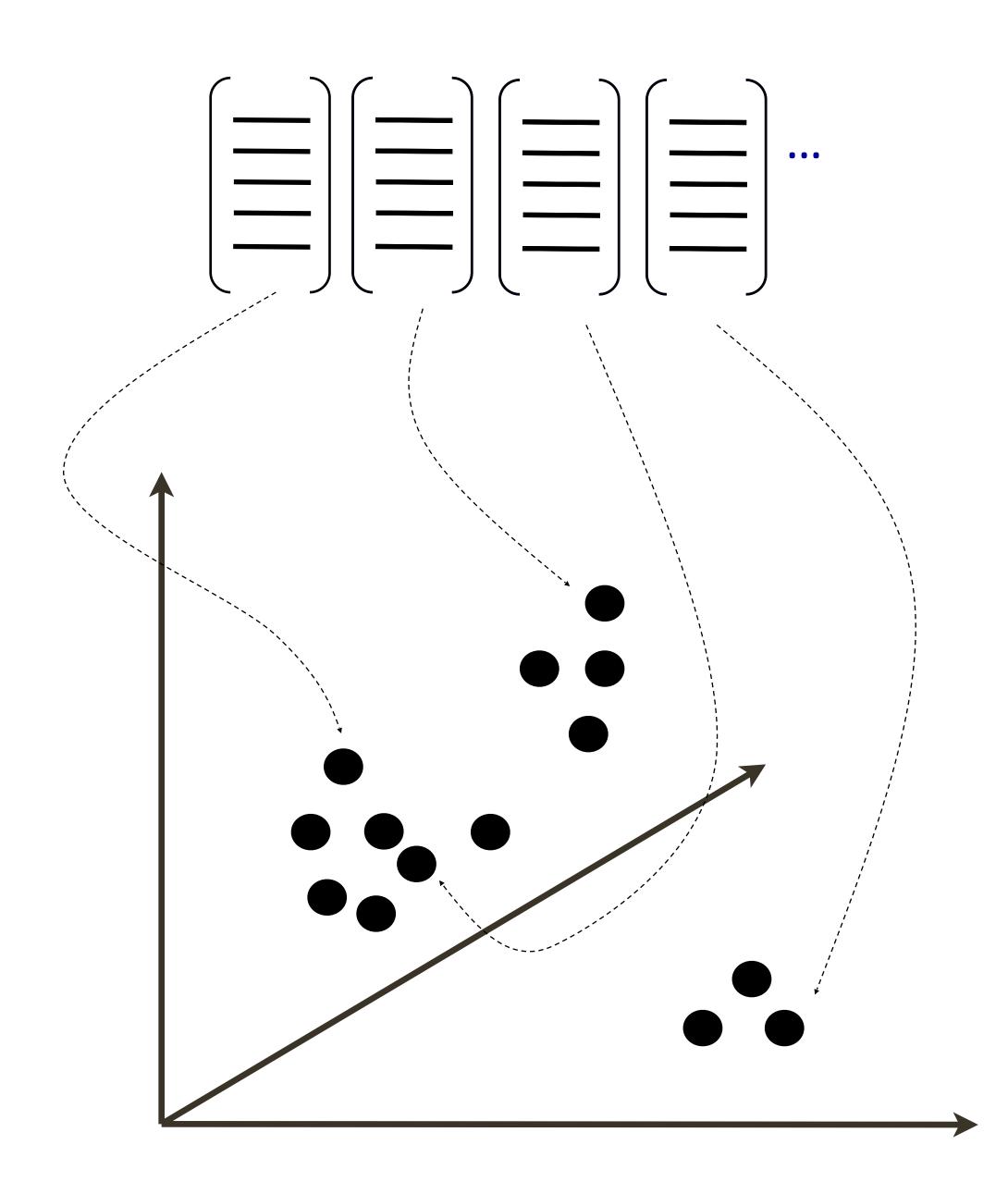


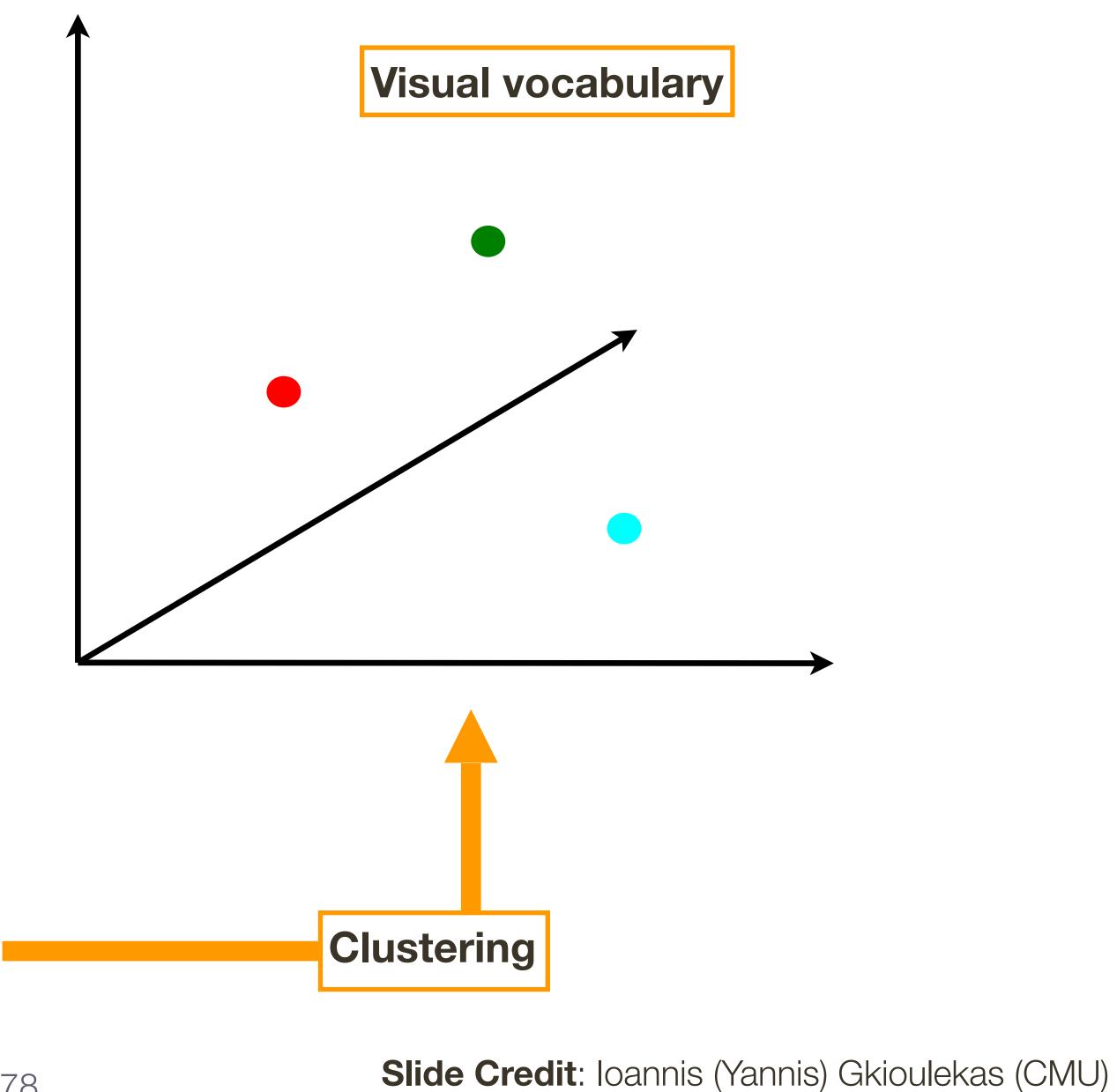
Creating Dictionary





Creating Dictionary





K-means clustering

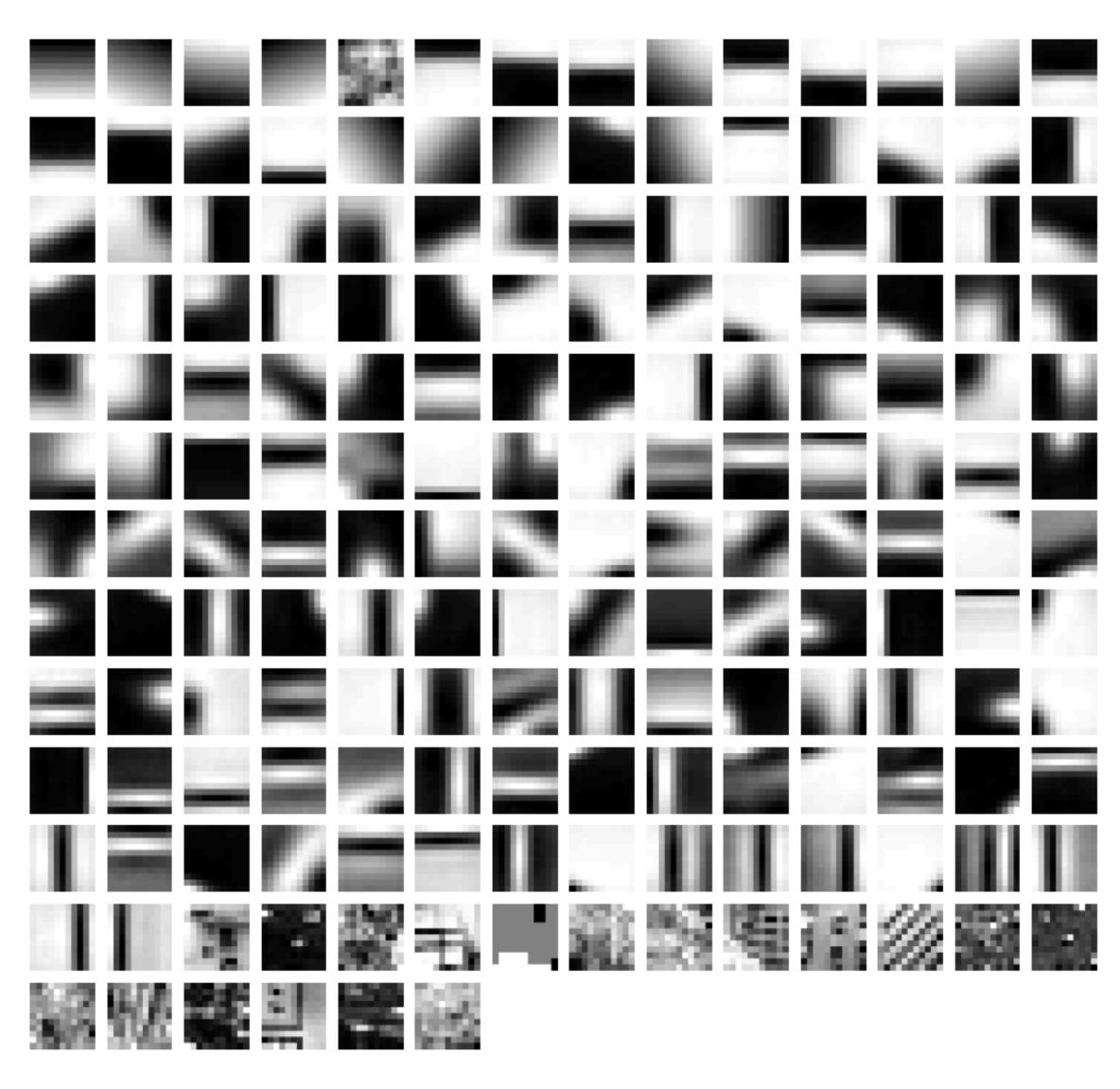
K-means Clustering

K-means is a clustering technique that iterates between

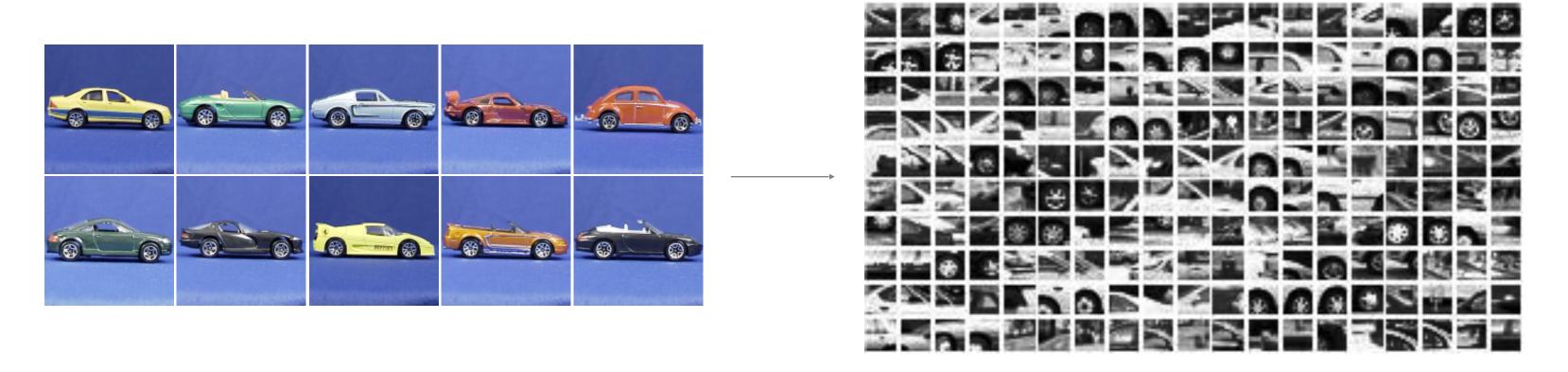
- 1. Assume the cluster centers are known. Assign each point to the closest cluster center.
- 2. Assume the assignment of points to clusters is known. Compute the best cluster center for each cluster (as the mean).

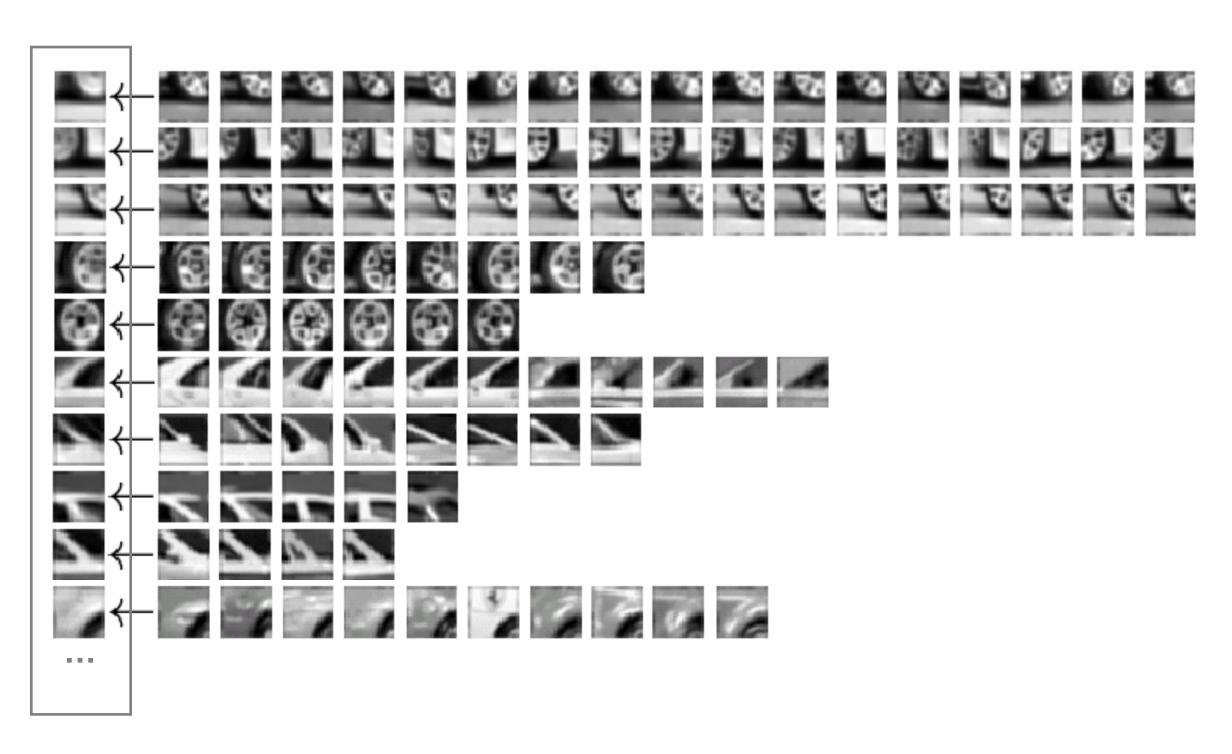
K-means clustering is initialization dependent and converges to a local minimum

Example Visual Dictionary



Example Visual Dictionary





Source: B. Leibe

Example Visual Dictionary

Source: B. Leibe

Standard Bag-of-Words Pipeline (for image classification)

Dictionary Learning:

Learn Visual Words using clustering

Encode:

build Bags-of-Words (BOW) vectors for each image

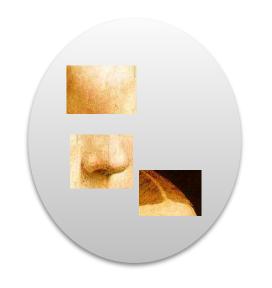
Classify:

Train and test data using BOWs

2. Encode: build Bag-of-Words (BOW) vectors for each image

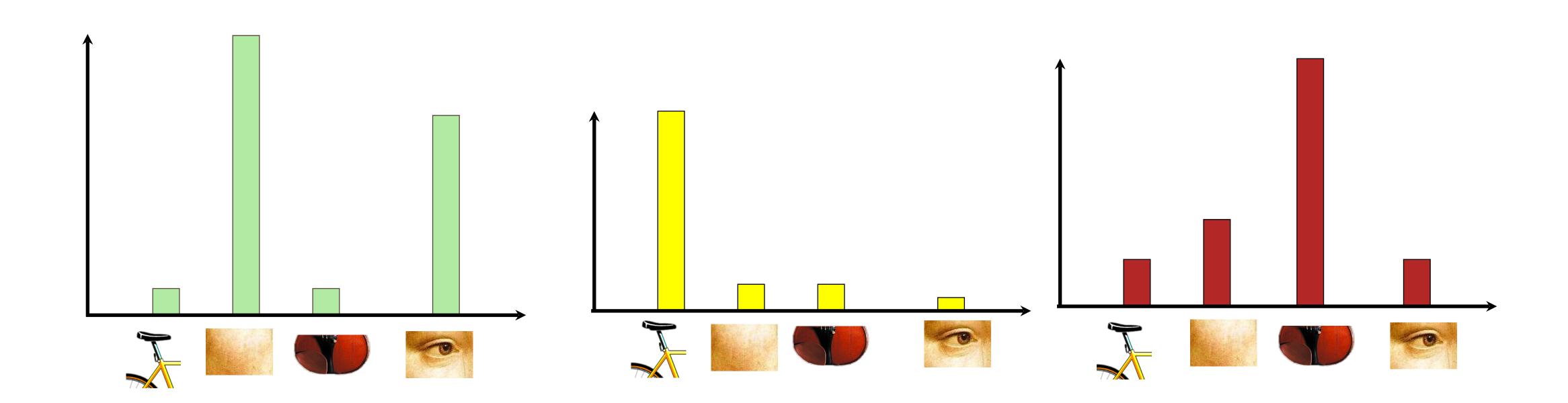


1. Quantization: image features gets associated to a visual word (nearest cluster center)



2. Encode: build Bag-of-Words (BOW) vectors for each image

2. Histogram: count the number of visual word occurrences



2. Encode: build Bag-of-Words (BOW) vectors for each image

Standard Bag-of-Words Pipeline (for image classification)

Dictionary Learning:

Learn Visual Words using clustering

Encode:

build Bags-of-Words (BOW) vectors for each image

Classify:

Train and test data using BOWs

3. Classify: Train and text classifier using BOWs

