THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 17: Optical Flow (cont.



Menu for Today (march 11, 2020)

Topics:
— Optical Flow (cont) — Naive Bayes Classifier
— Classification — Bayes' Risk

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 15.1, 15.2
— Next Lecture: Forsyth & Ponce (2nd ed.) 16.1.3, 16.1.4, 16.1.9

Reminders:

— Assignment 4: Local Invariant Features and RANSAC due Tuesday

— Midterm graded. Grades will be released soon.



Today’s “fun” Example: Visual Microphone

The Visual Microphone:
Passive Recovery of Sound from Video

Abe Davis
Michael Rubinstein
Neal Wadhwa
Gautham J. Mysore
Fredo Durand
William T. Freeman

Follow-up work to previous lecture’s example of Eulerian video magnification
3
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Lecture 16: Re-cap

Optical flow is the apparent motion of brightness patterns in the image

Applications

— Image and video stabilization in digital cameras, camcorders

— motion-compensated video compression schemes such as MPEG
— Image registration for medical iImaging, remote sensing

— action recognition

— motion segmentation



Lecture 16: Re-cap




Aperture Problem

In which direction is the line moving”
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Aperture Problem

— Without distinct features to track, the true visual motion iIs ambiguous

— Locally, one can compute only the component of the visual motion In the
direction perpendicular to the contour
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Aperture Problem

Detected
direction

\

\

Receptive \ Motion
field < direction
(aperture) g

— Without distinct features to track, the true visual motion iIs ambiguous

— Locally, one can compute only the component of the visual motion In the
direction perpendicular to the contour
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Visual Motion

Visual motion is determined when there are distinct features to track, provided:
— the features can be detected and localized accurately; and
— the features can be correctly matched over time
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Vlotion as Matching

Representation Result is. ..
Point/feature based (very) sparse
Contour based (relatively) sparse
(Differential) gradient based dense
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Optical Flow Constraint Equation

Consider image intensity also to be a function of time, t. We write
I(x,y,t)
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Optical Flow Constraint Equation

Consider image intensity also to be a function of time, t. We write
I(x,y,t)
Applying the chain rule for differentiation, we obtain

dl(x,y,t) _ g dr I dy
dat  Cdt Vdt

where subscripts denote partial differentiation

I
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Optical Flow Constraint Equation

Consider image intensity also to be a function of time, t. We write
I(z,y,1)
Applying the chain rule for differentiation, we obtain
dl(x,y,t) dx dy

= - -
dt dat " Vdr
where subscripts denote partial differentiation
d
Define u = d—f and v = d_?Z . Then [u,v| is the 2-D motion and the space of all

such v and v Is the 2-D velocity space
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Optical Flow Constraint Equation

Consider image intensity also to be a function of time, t. We write
I(x,y,t)
Applying the chain rule for differentiation, we obtain
dl(x,y,t) dx dy

gt teg Tlvge T
where subscripts denote partial differentiation
Define u = Cfi—f and v = % . Then [u,v| is the 2-D motion and the space of all
such v and v Is the 2-D velocity space
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Optical Flow Constraint Equation

What does this mean, and why is it reasonable?

dI(x,y,t)
dt

Suppose — 0 - T'hen we obtain the (classic) optical flow constraint

equation Lou+ Lo+ I, =0
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Optical Flow Constraint Equation

Scene point moving through image sequence

(z(k), y(k))
(x(2),y(2))
(z(1),y(1))

What does this mean, and why is it reasonable?

dI(x,y,t)

y — 0 - Then we obtain the (classic) optical flow constraint
v

Suppose
equation

lyu+ Lyo+ 1 =0
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Optical Flow Constraint Equation

Scene point moving through image sequence

........................................................................................... R
g 5(2). 5(2))
(z(1),y(1))
I(z,y,1) I(z,y,2) [(z,y,k)

What does this mean, and why is it reasonable?

dI(x,y,t)

y — 0 - Then we obtain the (classic) optical flow constraint
v

Suppose
equation

lyu+ Lyo+ 1 =0
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Optical Flow Constraint Equation

Brightness Constancy Assumption: Brightness of the point remains the same

............................................................................ B
g N
(z(1),y(1))
I(z,y,1) I(z,y,2) T
I(x(t),y(t),t) =C
constant

What does this mean, and why is it reasonable?

dI(x,y,t)

y — 0 - Then we obtain the (classic) optical flow constraint
v

Suppose
equation

lyu+ Lyo+ 1 =0
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Aside: Derivation of Optical Flow Constraint
I(x 4+ udt,y + vot,t + 6t) = I(x,y,t)

For small space-time step, brightness of a point Is the same

1 (xHuot,y+vor)

(x, ) (x,y)
timet timet + 0t
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Aside: Derivation of Optical Flow Constraint
I(x 4+ udt,y + vot,t + ét) = I(x,y,t)

For small space-time step, brightness of a point Is the same

Insight:
f the time step Is really small,
we can linearize the intensity function
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Aside: Derivation of Optical Flow Constraint
I(x + udt,y + vot,t + 0t) = I(x,y,t)

Multivariable Taylor Series Expansion
(First order approximation, two variables)

f(a:,y) o f(a'a b) T fa:(a'a b)(.’E o a’) o fy(aa b)(y T b)

- J
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Aside: Derivation of Optical Flow Constraint
I(x + udt,y + vot,t + ot) = I(x,y,t)

Multivariable Taylor Series Expansion
(First order approximation, two variables)

f(zc,y) o f(a’a b) T fa:(a'a b)(.’E o a) o fy(aa b)(y T b)

g J

01 01 01
I(zr;, Y, t) | 57 0T Y 0t = I(CU, Y, t) assuming small motion
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Aside: Derivation of Optical Flow Constraint
I(x + udt,y + vot,t + ot) = I(x,y,t)

Multivariable Taylor Series Expansion
(First order approximation, two variables)

f(zc,y) ~ f(a’a b) + fa:(a'a b)(.’E o a) o fy(aa b)(y T b)

g J

partial derivative

01 o1 o1
I(zc,y,t) | 83';5:6 | 6y5y | 8t5t=1($,y,t) assuming small motion

fixed point

cancel terms
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Aside: Derivation of Optical Flow Constraint
I(x + udt,y + vot,t + ot) = I(x,y,t)

Multivariable Taylor Series Expansion
(First order approximation, two variables)

f(a:,y) ~ f(a’a b) + fa:(aa b)(.’L‘ o a) o fy(aa b)(y T b)

\_ J

ol ol ol
[(z,y,t) ox t5t = I(x,y,t) assuming small motion

D
S
%
S~

- Or 0
ol ol ol
—dx 4 Sy - 3 = cancel terms
ox v oy y ot .
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Aside: Derivation of Optical Flow Constraint
I(x 4+ udt,y + vot,t + 6t) = I(x,y,t)

f(z,y) = f(a,b) + fz(a,b)(z — a) — fy(a,b)(y — b)

ol ol ol
[(z,y,t) 0x 0Y ; ot = I(x,y,t) assuming small motion

- Ox oy o,
)4 ol ol divide by 4t
07 1 | -
oz . oy oy ot 0t =0 take limit 6t — 0

~

0l dx , 01 dy , o _ o Brightness Constancy
Ox dt Oy dt Ot Equation
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How do we compute ...

Iwu—l—ly’v—l—ft = ()
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How do we compute ...

Ia,’u,—l—fy’v—l—ft =0

.

Iy =

spatial derivative

- 01
~ By

_J
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How do we compute ...

Ia;’U,-FIy’U-I-It =0

ol ol
IL=— I,=—
or 7 Oy

spatial derivative

Forward difference
Sobel filter
Scharr filter
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How do we compute ...

Ia;’U,-FIy’U-I-It = ()

ol ol ol

I.’:C —_— Iy — < It —_—

0x oy Ot
spatial derivative temporal derivative

Forward difference
Sobel filter
Scharr filter
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How do we compute ...

lyu+L,v+1; =0

- 2 - 2
I — o1 I — ol I ol
xr 8_.’13 y 8y t — a
! spatial derivative ) temporal derivative
. y
Forward difference Frame differencing
Sobel filter

Scharr filter
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Frame Differencing: =xample
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(example of a forward temporal difference)
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How do we compute ...

Iwu—l—ly’v—l—ft =0

- 2 - 2
I — ol I — o1 I ol
= 9. YT O U = 7 t = 9t
spatial derivative optical flow temporal derivative
. y . y
Forward difference How do you compute this? Frame differencing
Sobel filter

Scharr filter

40 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



How do we compute ...

Ia,’u,—l—fy’v—l—ft = ()

(- ) éa )
) ;oI
T — A Yy~ Q.. U — — t — A,
oz oy At ot
spatial derivative optical flow temporal derivative
g J . J
Forward difference We need to solve for this! Frame differencing
Sobel filter (this is the unknown in the
Scharr filter optical flow problem)

A Slide Credit: loannis (Yannis) Gkioulekas (CMU)



How do we compute ...

Ia,’u,—l—fy’v—l—ft = ()

- 2 - 2
I — ol I — ol I ol
T = 5y YT Oy U = a7 t = 5t
\ spatial derivative ) optical flow temporal derivative
. y

Forward difference Frame differencing

Sobel filter Solution lies on a line

Scharr filter
Cannot be found uniquely

with a single constraint
49 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Optical Flow Constraint Equation

Iwu—FIyU-I-It:O

many combinations of u and v will satisfy the equality u

Equation determines a straight line in velocity space

43 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Lucas-Kanade

Observations:

1. The 2-D motion, |u, v|, at a given point, |z, y], has two degrees-of-freedom
2. The partial derivatives, I, I,,, I;, provide one constraint

3. The 2-D motion, [u, v], cannot be determined locally from I, I, I; alone
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Lucas-Kanade

Observations:

1. The 2-D motion, |u, v|, at a given point, |z, y], has two degrees-of-freedom
2. The partial derivatives, I, I,,, I;, provide one constraint

3. The 2-D motion, [u, v], cannot be determined locally from I, I, I; alone

Lucas—-Kanade Idea:

Obtain additional local constraint by computing the partial derivatives, I, 1,,, I,
in a window centered at the given |z, ¥/

Constant Flow Assumption: nearby pixels will likely have same optical flow
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Lucas-Kanade Optical Flow Constraint Equation: [,u + [, v 4+ [ = 0

Suppose [z1,y1] = [z, y] is the (original) center point in the window. Let [x2, yo]
be any other point in the window. This gives us two equations that we can write

Lp,u+ 1,0 =—1
lp,u+ 1,0 = —1,

and that can be solved locally for v and v as

I, I,
Ly, I

U
U

1

Ly

2

orovided that u and v are the same In both equations and provided that the
required matrix inverse exists.
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Lucas-Kanade Optical Flow Constraint Equation: [,u + [, v 4+ [ = 0

Considering all n points in the window, one obtains

[pu+ 1, v=—1
lp,u+ 1,,v=—1,

I, u+1, v=—1

which can be written as the matrix equation

Av=DL
IfL‘l Iyl | ]t1
IfL‘2 I?JQ Itz
where v=[u,v]", A=| . . |and b=—|
]xn Iyn B ‘[tn
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Lucas-Kanade

The standard least squares solution, v, to Is

v=(A"A)"'A'Db

again provided that u and v are the same In all equations and provided that the
rank of A1 A is 2 (so that the required inverse exists)
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Lucas-Kanade

1 r
— &\ e I.’L‘l Iyl
~ ~ ~ ng ‘[y2
— &\ e : :
The standard least squares solution, v, to is <~ 8 I. I.
| | L CUn yn

v=(A"A)"'A'Db

again provided that u and v are the same In all equations and provided that the
rank of A1 A is 2 (so that the required inverse exists)
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Lucas-Kanade

Note that we can explicitly write down an expression for A* A as

N2 S ILI
ATA: Z T LY
_ > 1.1, Iy2

which 1s identical to the matrix C that we saw In the context of Harris corner
detection
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Lucas-Kanade

Note that we can explicitly write down an expression for A* A as

N2 S ILI
ATA: Z T LY
_ > 1.1, Iy2

which 1s identical to the matrix C that we saw In the context of Harris corner
detection

What does that mean®?
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| ucas-Kanade Summary

A dense method to compute motion, [y, v] at every location in an image
Key Assumptions:

1. Motion Is slow enough and smooth enough that differential methods apply
(.e., that the partial derivatives, I, I,,, I;, are well-defined)

dl(x,y,t
2. The optical flow constraint equation holds (i.e., (Z ty ) =0)

3. A window size is chosen so that motion, |u, v, is constant in the window

4. A window size is chosen so that the rank of AY A is 2 for the window
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Aside: Optical Flow Smoothness Constraint

Many methods trade off a ‘departure from the optical flow constraint” cost with
a ‘departure from smoothness’ cost.

The optimization objective to minimize becomes
E= [ [+ Lo+ TP 4 20 9wl + )| 7 o)

where A IS a weighing parameter.

o4



Horn-Schunck Optical Flow

smoothness brightness constancy

t weight

55 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Horn-Schunck Optical Flow

Brightness constancy Eq(i,7) = | Ipuij + Lyvi; + I

Smoothness
Es(1,7) = i (wi5 — Uir1,5)* + (Uig — vijr1)” + (Vij — vig,;)° + (vij — vijp1)°
z',j'—i—l i i+ 1 i,j?—l—l i i+ 1
(wij = wit1,5) (wij — wij+1) (Vij = Vit1,5) (Vij = ij+1)
et R TR e Y T
i, 7 — 1 ij—1 t,J —1 8,7 — 1
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Summary

Motion, like binocular stereo, can be formulated as a matching problem. That is,

given a scene point located at (xg, yo) in an image acquired at time to, what is
its position, (z1,y1), in an image acquired at time ¢17?

Assuming image intensity does not change as a conseqguence of motion, we
obtain the (classic) optical flow constraint equation

lyu+ 1Lyo+ 1 =0

where |u, v}, is the 2-D motion at a given point, |z, y|, and I, 1., I; are the partial
derivatives of intensity with respect to x, y, and ¢

Lucas-Kanade is a dense method to compute the motion, |u, v|, at every
location In an Image

of



