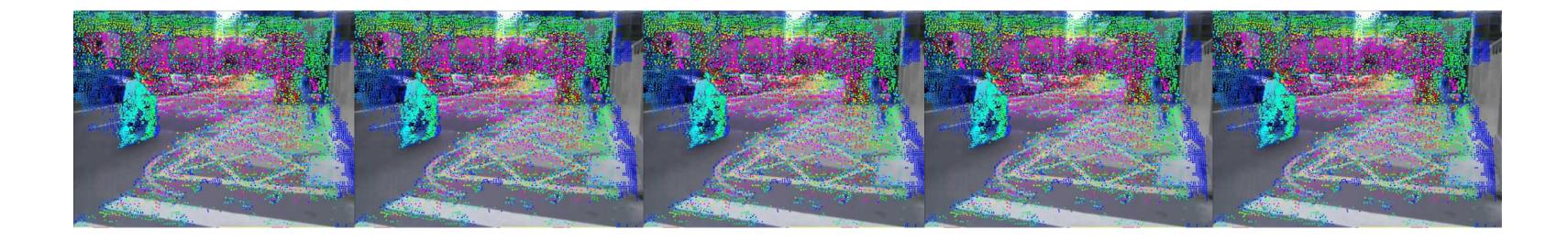


THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision



Lecture 17: Optical Flow (cont.)

Menu for Today (March 11, 2020)

Topics:

- Optical Flow (cont)
- Classification

Redings:

- Today's Lecture: Forsyth & Ponce (2nd ed.) 15.1, 15.2
- Next Lecture:

Reminders:

- Assignment 4: Local Invariant Features and RANSAC due Tuesday
- Midterm graded. Grades will be released soon.

Naive Bayes Classifier - Bayes' Risk

Forsyth & Ponce (2nd ed.) 16.1.3, 16.1.4, 16.1.9

Today's "fun" Example: Visual Microphone

The Visual Microphone: Passive Recovery of Sound from Video

Abe Davis Michael Rubinstein Neal Wadhwa Gautham J. Mysore Fredo Durand William T. Freeman

Follow-up work to previous lecture's example of Eulerian video magnification

Today's "fun" Example: Visual Microphone

The Visual Microphone: Passive Recovery of Sound from Video

Abe Davis Michael Rubinstein Neal Wadhwa Gautham J. Mysore Fredo Durand William T. Freeman

Follow-up work to previous lecture's example of Eulerian video magnification

Lecture 16: Re-cap

Optical flow is the apparent motion of brightness patterns in the image

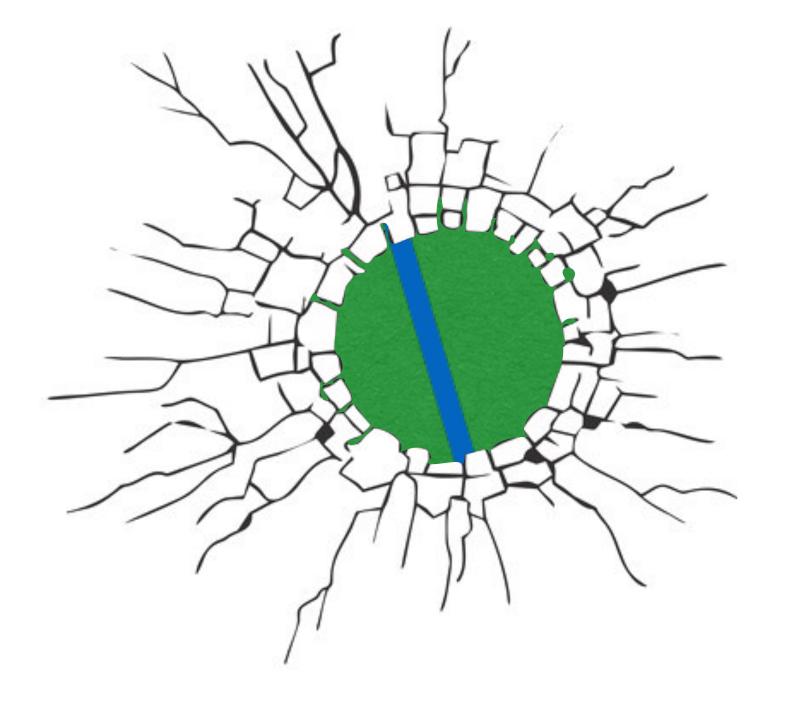
Applications

- image and video stabilization in digital cameras, camcorders
- motion-compensated video compression schemes such as MPEG
- image registration for medical imaging, remote sensing
- action recognition
- motion segmentation

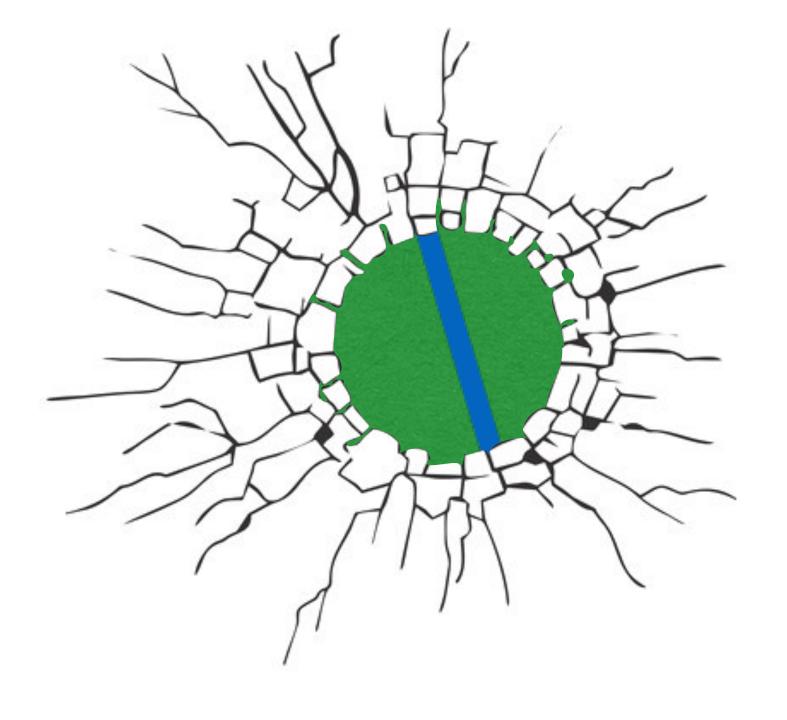
Lecture 16: Re-cap



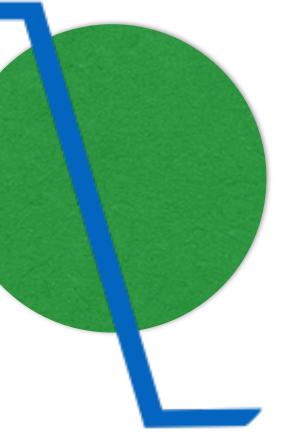
Figure credit: M. Srinivasan

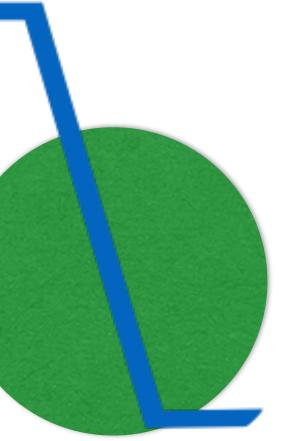


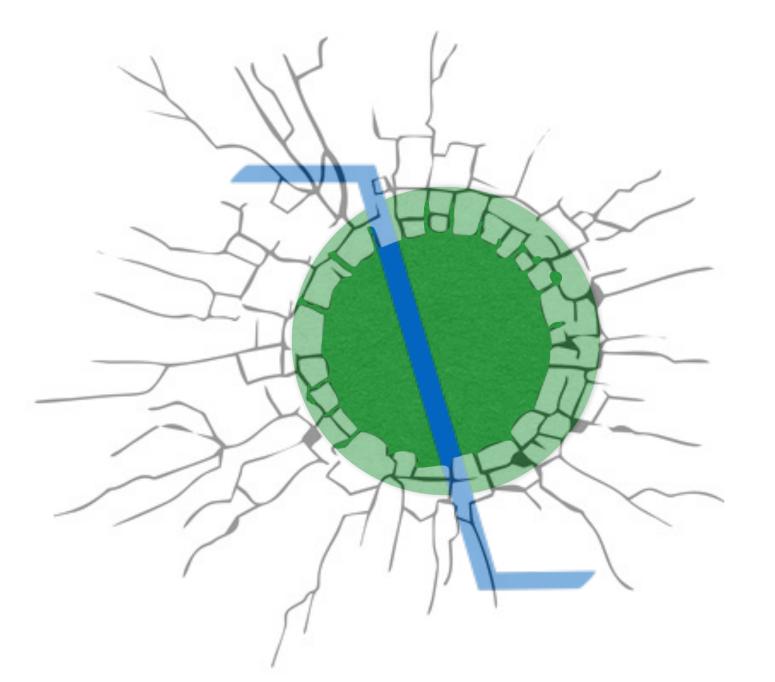
In which direction is the line moving?

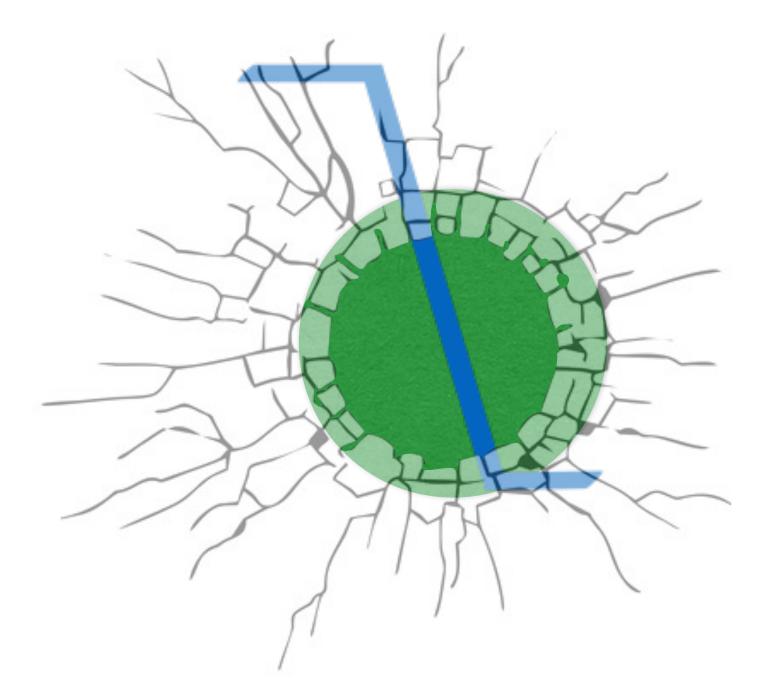


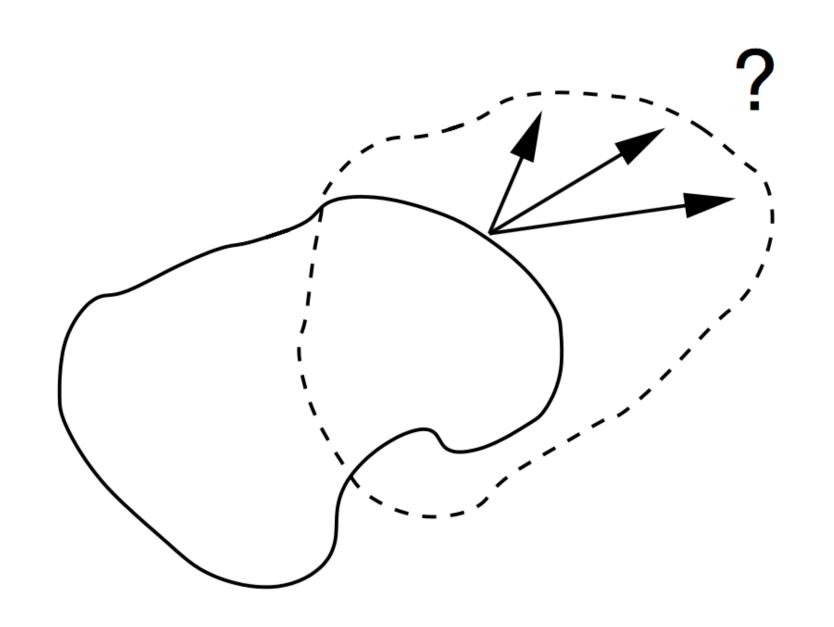
In which direction is the line moving?





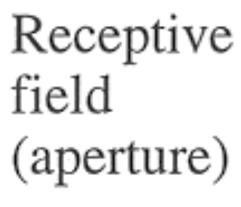






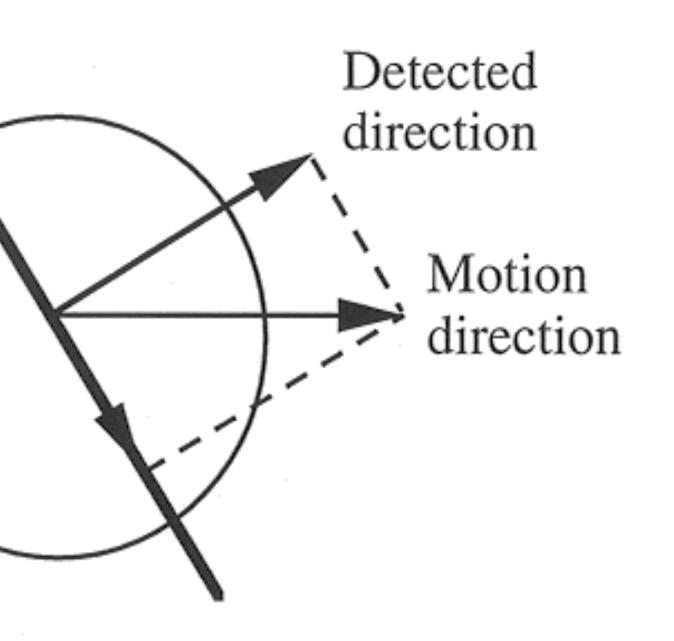
- Without distinct features to track, the true visual motion is ambiguous
- direction perpendicular to the contour

Locally, one can compute only the component of the visual motion in the

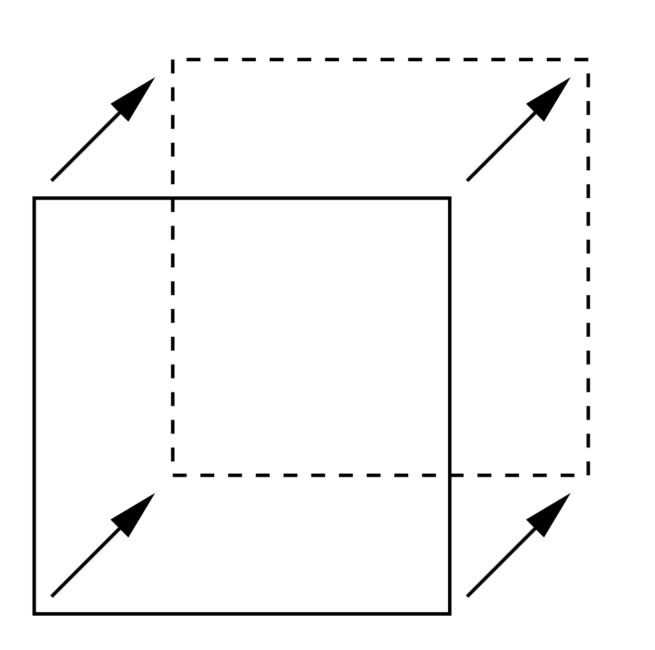


— Without distinct features to track, the true visual motion is ambiguous

 Locally, one can compute only the component of the visual motion in the direction perpendicular to the contour



Visual Motion



- the features can be detected and localized accurately; and
- the features can be correctly matched over time

Visual motion is determined when there are distinct features to track, provided:

Motion as Matching

Representation

Point/feature based

Contour based

(Differential) gradient based

Result is
(very) sparse
(relatively) sparse
dense

Consider image intensity also to be a function of time, t. We write

I(x, y, t)

Consider image intensity also to be a function of time, t. We write I(x, y, t)

Applying the **chain rule for differentiation**, we obtain

$$\frac{dI(x,y,t)}{dt}$$

where subscripts denote partial differentiation

$$I_x \frac{dx}{dt} + I_y \frac{dy}{dt} + I_t$$

Consider image intensity also to be a function of time, t. We write I(x, y, t)

Applying the **chain rule for differentiation**, we obtain

$$\frac{dI(x, y, t)}{dt}$$

where subscripts denote partial differentiation

Define $u = \frac{dx}{dt}$ and $v = \frac{dy}{dt}$. Then [u, v] is the 2-D motion and the space of all

such u and v is the **2-D velocity space**

$$I_x \frac{dx}{dt} + I_y \frac{dy}{dt} + I_t$$

Consider image intensity also to be a function of time, t. We write I(x, y, t)

Applying the **chain rule for differentiation**, we obtain

$$\frac{dI(x,y,t)}{dt}$$

where subscripts denote partial differentiation

Define $u = \frac{dx}{dt}$ and $v = \frac{dy}{dt}$. Then [u, v] is the 2-D motion and the space of all such u and v is the **2-D velocity space** Suppose $\frac{dI(x, y, t)}{dI(x, y, t)} = 0$. Then we obtain the (classic) optical flow constraint dtequation $I_x u + I$

$$I_x \frac{dx}{dt} + I_y \frac{dy}{dt} + I_t$$

$$I_y v + I_t = 0$$

Consider image intensity also to be a function of time, t. We write I(x, y, t)

Applying the **chain rule for differentiation**, we obtain

$$rac{dI(x,y,t)}{dt}$$

where subscripts denote partial differentiation

Define $u = \frac{dx}{dt}$ and $v = \frac{dy}{dt}$. Then [u, v] is the 2-D motion and the space of all

such u and v is the **2-D velocity space**

Suppose
$$\frac{dI(x,y,t)}{dt} = 0$$
. Then we obtain $I_x u + I_x u$

$$I_x \frac{dx}{dt} + I_y \frac{dy}{dt} + I_t$$

btain the (classic) optical flow constraint

 $I_y v + I_t = 0$

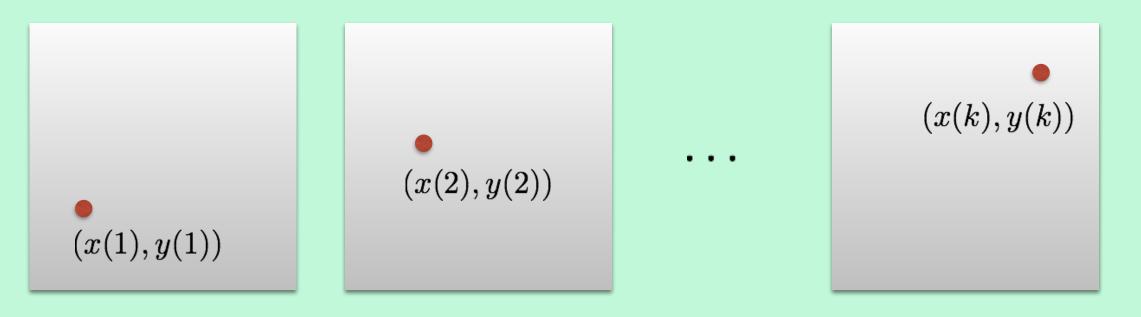
What does this mean, and why is it reasonable?

Suppose
$$\frac{dI(x, y, t)}{dt} = 0$$
. Then we obtain the set of $I_x u + I_x u +$

otain the (classic) optical flow constraint

 $I_y v + I_t = 0$

Scene point moving through image sequence



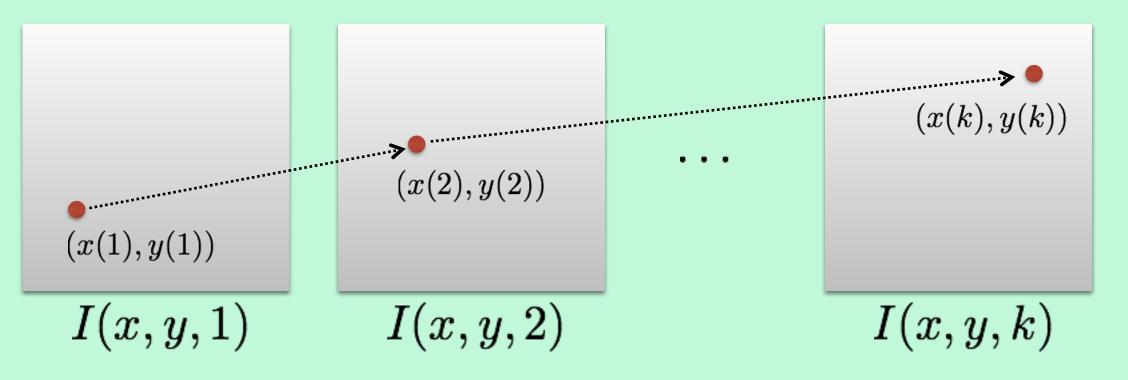
What does this mean, and why is it reasonable?

Suppose
$$\frac{dI(x,y,t)}{dt} = 0$$
. Then we obtain the second second

otain the (classic) optical flow constraint

 $I_y v + I_t = 0$

Scene point moving through image sequence



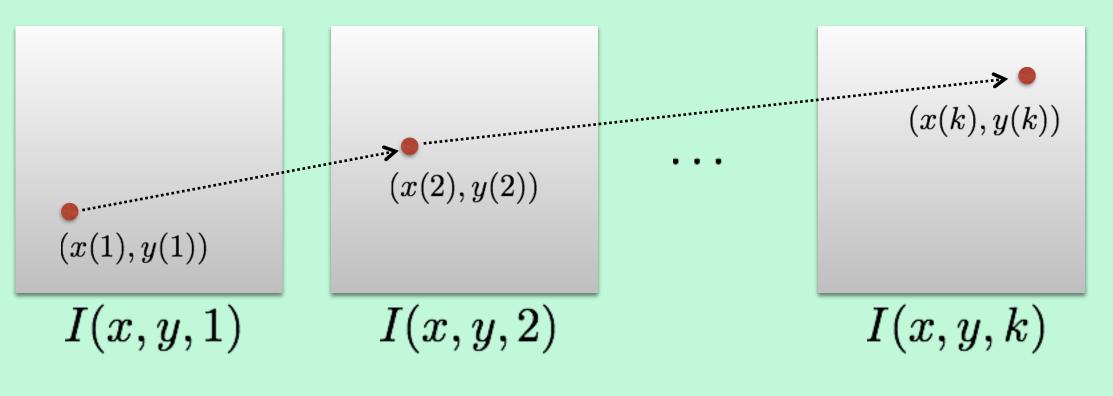
What does this mean, and why is it reasonable?

Suppose
$$\frac{dI(x, y, t)}{dt} = 0$$
. Then we obtain the second seco

otain the (classic) optical flow constraint

 $I_y v + I_t = 0$

Brightness Constancy Assumption: Brightness of the point remains the same



I(x(t),

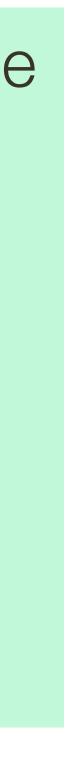
What does this mean, and why is it reasonable?

Suppose
$$\frac{dI(x,y,t)}{dt} = 0$$
. Then we obtain the second second

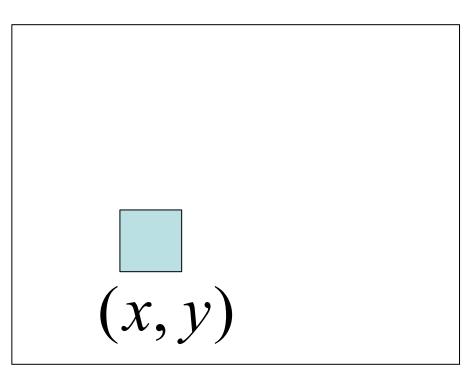
$$y(t), t) = C$$
 constant

otain the (classic) optical flow constraint

 $I_y v + I_t = 0$

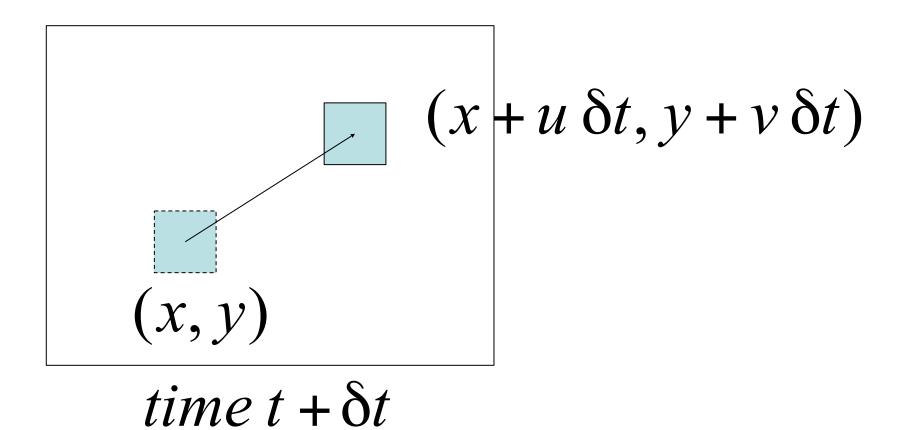


For small space-time step, brightness of a point is the same



time t

 $I(x + u\delta t, y + v\delta t, t + \delta t) = I(x, y, t)$



 $I(x + u\delta t, y + v\delta t, t + \delta t) = I(x, y, t)$

For small space-time step, brightness of a point is the same

Insight: If the time step is really small, we can *linearize* the intensity function

$I(x + u\delta t, y + v\delta t, y)$

 $f(x,y) \approx f(a,b) + f_x(a,b)$

$$,t + \delta t) = I(x,y,t)$$

Multivariable Taylor Series Expansion (First order approximation, two variables)

$$b)(x-a) - f_y(a,b)(y-b)$$

$I(x + u\delta t, y + v\delta t, y)$

 $f(x,y) \approx f(a,b) + f_x(a,b)$

$$I(x,y,t) + \frac{\partial I}{\partial x}\delta x + \frac{\partial I}{\partial y}\delta y + \frac{\partial I}{\partial t}\delta t = I(x,y,t)$$
 assuming small motion

$$,t + \delta t) = I(x,y,t)$$

Multivariable Taylor Series Expansion (First order approximation, two variables)

$$b)(x-a) - f_y(a,b)(y-b)$$

$I(x+u\delta t,y+v\delta t,y)$

 $f(x,y) \approx f(a,b) + f_x(a,b)$

partial derivative $I(x, y, t) + \frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y +$ fixed point

$$,t + \delta t) = I(x,y,t)$$

Multivariable Taylor Series Expansion (First order approximation, two variables)

$$b)(x-a) - f_y(a,b)(y-b)$$

$$\frac{\partial I}{\partial t} \delta t = I(x,y,t) \quad \text{assuming small motion}$$

cancel terms

$I(x + u\delta t, y + v\delta t, y)$

 $f(x,y) \approx f(a,b) + f_x(a,b)$

$$\begin{split} I(x,y,t) + \frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t &= I(x,y,t) & \text{assuming small motion} \\ \frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t &= 0 & \text{cancel terms} \end{split}$$

$$,t + \delta t) = I(x,y,t)$$

Multivariable Taylor Series Expansion (First order approximation, two variables)

$$b)(x-a) - f_y(a,b)(y-b)$$

$I(x + u\delta t, y + v\delta t, y)$

 $f(x,y) \approx f(a,b) + f_x(a,b)$

$$\begin{split} I(x,y,t) + \frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t &= I(x,y,t) & \text{assuming small motion} \\ \frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t &= 0 & \text{divide by } \delta t \\ & \text{take limit } \delta t \to 0 \end{split}$$

$$,t + \delta t) = I(x,y,t)$$

Multivariable Taylor Series Expansion (First order approximation, two variables)

$$b)(x-a) - f_y(a,b)(y-b)$$

$I(x + u\delta t, y + v\delta t)$

 $f(x,y) \approx f(a,b) + f_x(a,b)$

$$\begin{aligned} I(x,y,t) + \frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t &= I(x,y,t) & \text{assuming small motion} \\ \frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t &= 0 & \text{divide by } \delta t \\ & \text{take limit } \delta t \to 0 \end{aligned}$$

$$,t + \delta t) = I(x,y,t)$$

Multivariable Taylor Series Expansion (First order approximation, two variables)

$$b)(x-a) - f_y(a,b)(y-b)$$

$\partial x \ dt \ \ \partial y \ dt \ \ \partial t \ \ \ \partial t$ **Equation**

How do we compute ...

$I_x u + I_y v + I_t = 0$

How do we compute ...

$$\begin{bmatrix} I_x = \frac{\partial I}{\partial x} & I_y = \frac{\partial I}{\partial y} \end{bmatrix}$$
spatial derivative

$I_x u + I_y v + I_t = 0$

How do we compute ...

$$\begin{bmatrix} I_x = \frac{\partial I}{\partial x} & I_y = \frac{\partial I}{\partial y} \end{bmatrix}$$
spatial derivative

Forward difference Sobel filter Scharr filter

. . .

$I_x u + I_y v + I_t = 0$

$$\begin{bmatrix} I_x = \frac{\partial I}{\partial x} & I_y = \frac{\partial I}{\partial y} \end{bmatrix}$$
spatial derivative

Forward difference Sobel filter Scharr filter

. . .

$I_x u + I_y v + I_t = 0$

$$I_t = \frac{\partial I}{\partial t}$$
 temporal derivative

$$\begin{bmatrix} I_x = \frac{\partial I}{\partial x} & I_y = \frac{\partial I}{\partial y} \end{bmatrix}$$
spatial derivative

Forward difference Sobel filter Scharr filter

. . .

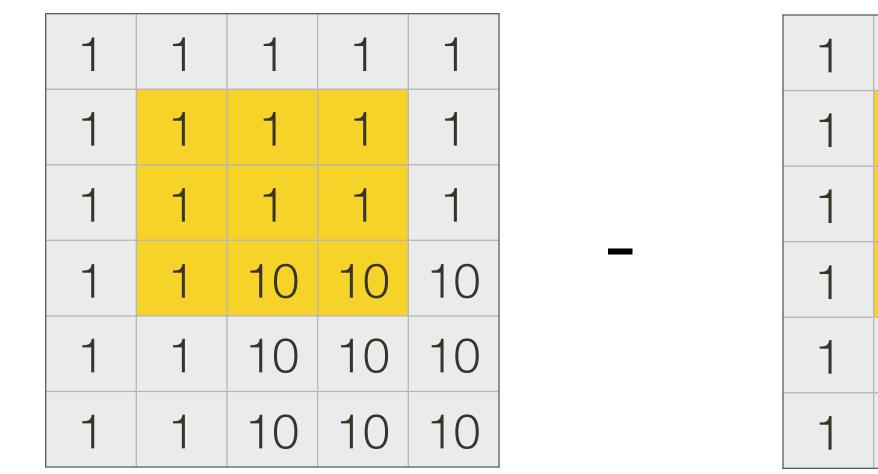
$I_x u + I_y v + I_t = 0$

$$I_t = \frac{\partial I}{\partial t}$$
 temporal derivative

Frame differencing

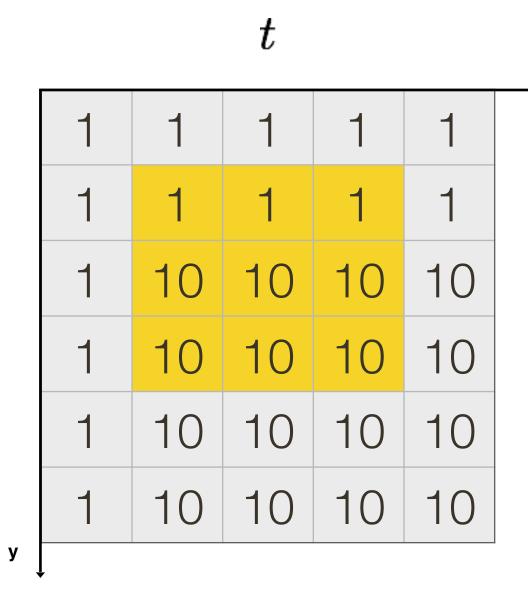
Frame Differencing: Example

t+1



	t				I_t		$\frac{\partial I}{\partial t}$	
1	1	1	1	0	0	0	0	0
1	1	1	1	0	0	0	0	0
10	10	10	10	0	-9	-9	-9	-9
10	10	10	10	0	-9	0	0	0
10	10	10	10	0	-9	0	0	0
10	10	10	10	0	-9	0	0	0

(example of a forward temporal difference)



$$I_x = \frac{\partial I}{\partial x}$$

					X		
-	0	0	0	-			
-	0	0	0	-			
-	9	0	0	-			
-	9	0	0	-			
-	9	0	0	-			
-	9	0	0	_			
-101							

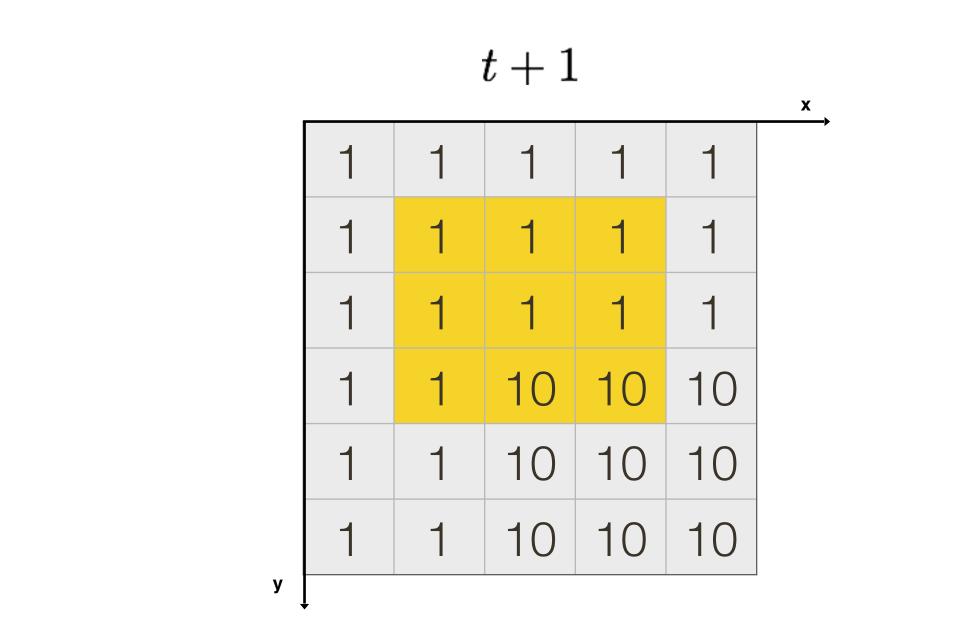
I	-
0	(
0	Q
0	(
0	(
-	-

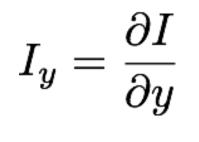
У

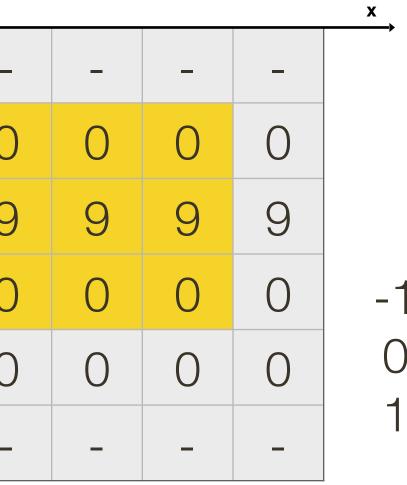
Х

У

ΙΟΙ

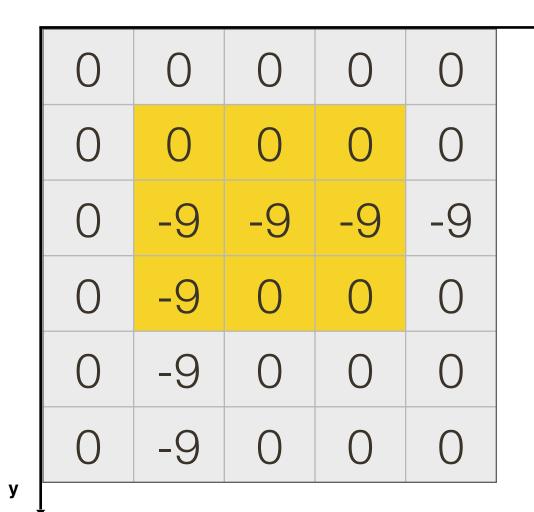






0

$$I_t = \frac{\partial I}{\partial t}$$



Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Х

 $I_x u + I$

$$\begin{bmatrix} I_x = \frac{\partial I}{\partial x} & I_y = \frac{\partial I}{\partial y} \\ \text{spatial derivative} & u = \frac{dx}{dt} & v = \frac{dy}{dt} \\ \text{optical flow} & \text{temporal derivative} \end{bmatrix}$$

Forward difference Sobel filter Scharr filter

. . .

How do you compute this?

$$I_y v + I_t = 0$$

Frame differencing

 $I_x u + J$

$$\begin{bmatrix} I_x = \frac{\partial I}{\partial x} & I_y = \frac{\partial I}{\partial y} \\ \text{spatial derivative} \end{bmatrix} \begin{bmatrix} u = \frac{dx}{dt} & v = \frac{dy}{dt} \\ \text{optical flow} \end{bmatrix}$$

Forward difference Sobel filter Scharr filter

. . .

We need to solve for this! (this is the unknown in the optical flow problem)

$$I_y v + I_t = 0$$

$$I_t = \frac{\partial I}{\partial t}$$

temporal derivative

 $I_x u + J$

$$\begin{bmatrix} I_x = \frac{\partial I}{\partial x} & I_y = \frac{\partial I}{\partial y} \\ \text{spatial derivative} \end{bmatrix} \begin{bmatrix} u = \frac{dx}{dt} & v = \frac{dy}{dt} \\ \text{optical flow} \end{bmatrix}$$

Forward difference Sobel filter Scharr filter

. . .

Solution lies on a line

Cannot be found uniquely with a single constraint

$$I_y v + I_t = 0$$

$$I_t = \frac{\partial I}{\partial t}$$

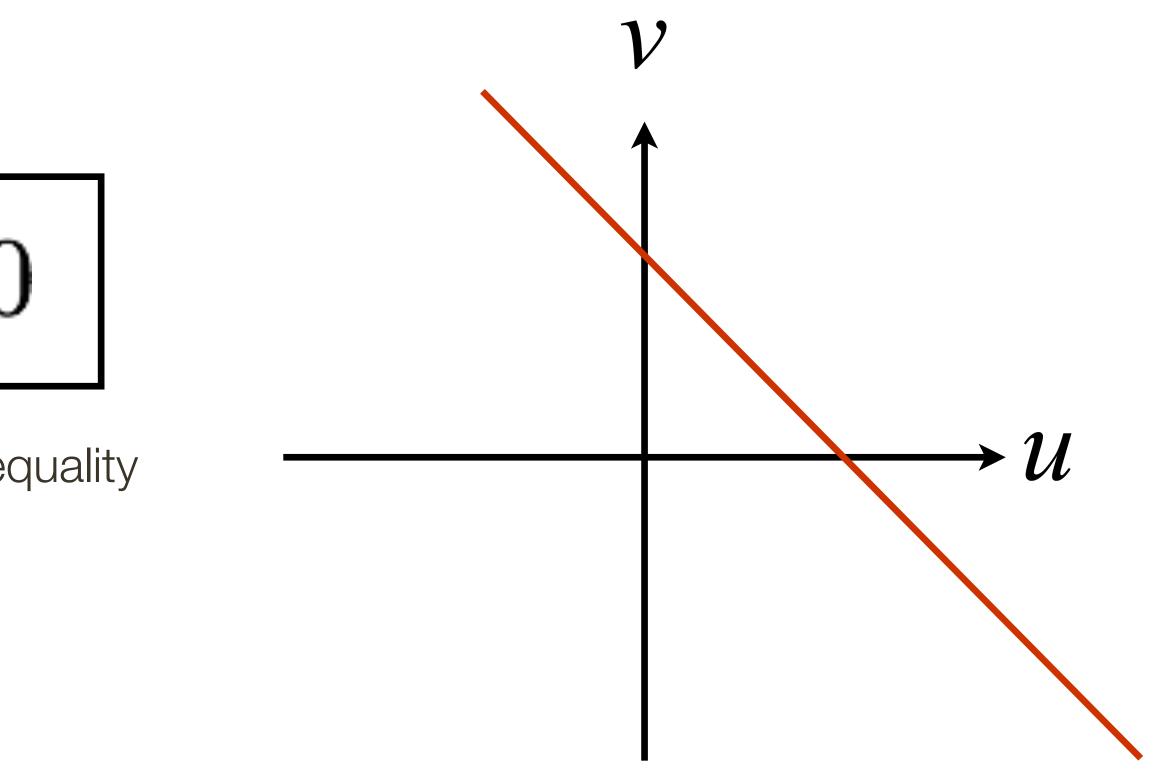
temporal derivative

Optical Flow Constraint Equation

$$I_x u + I_y v + I_t = 0$$

many combinations of u and v will satisfy the equality

Equation determines a **straight line** in velocity space



Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

43

Observations:

- **2.** The partial derivatives, I_x, I_y, I_t , provide one constraint
- **3**. The 2-D motion, [u, v], cannot be determined locally from I_x, I_y, I_t alone

1. The 2-D motion, [u, v], at a given point, [x, y], has two degrees-of-freedom

Observations:

- **2.** The partial derivatives, I_x, I_y, I_t , provide one constraint
- **3**. The 2-D motion, [u, v], cannot be determined locally from I_x, I_y, I_t alone

Lucas-Kanade Idea:

Obtain additional local constraint by computing the partial derivatives, I_x, I_y, I_t , in a window centered at the given [x, y]

1. The 2-D motion, [u, v], at a given point, [x, y], has two degrees-of-freedom

Observations:

- **2.** The partial derivatives, I_x, I_y, I_t , provide one constraint
- **3**. The 2-D motion, [u, v], cannot be determined locally from I_x, I_y, I_t alone

Lucas-Kanade Idea:

Obtain additional local constraint by computing the partial derivatives, I_x, I_y, I_t , in a window centered at the given [x, y]

1. The 2-D motion, [u, v], at a given point, [x, y], has two degrees-of-freedom

Constant Flow Assumption: nearby pixels will likely have same optical flow

 $I_{x_1}u +$ $I_{x_2}u +$

and that can be solved locally for u and v as

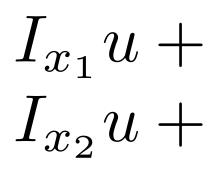
$$\begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_{x_1} & I_{y_1} \\ I_{x_2} & I_{y_2} \end{bmatrix}^{-1} \begin{bmatrix} I_{t_1} \\ I_{t_2} \end{bmatrix}$$

provided that u and v are the same in both equations and provided that the required matrix inverse exists.

Suppose $[x_1, y_1] = [x, y]$ is the (original) center point in the window. Let $[x_2, y_2]$ be any other point in the window. This gives us two equations that we can write

$$I_{y_1}v = -I_{t_1}$$
$$I_{y_2}v = -I_{t_2}$$

Considering all n points in the window, one obtains



$$I_{x_n}u + I_{y_n}v = -I_{t_n}$$

which can be written as the matrix equation

where
$$\mathbf{v} = [u, v]^T$$
, $\mathbf{A} = \begin{bmatrix} I_{x_1} & I_{y_1} \\ I_{x_2} & I_{y_2} \\ \vdots & \vdots \\ I_{x_n} & I_{y_n} \end{bmatrix}$

Optical Flow Constraint Equation: $I_x u + I_y v + I_t = 0$

$$I_{y_1}v = -I_{t_1}$$
$$I_{y_2}v = -I_{t_2}$$
$$\vdots$$

Av = b

and
$$\mathbf{b} = -\begin{bmatrix} I_{t_1} \\ I_{t_2} \\ \vdots \\ I_{t_n} \end{bmatrix}$$

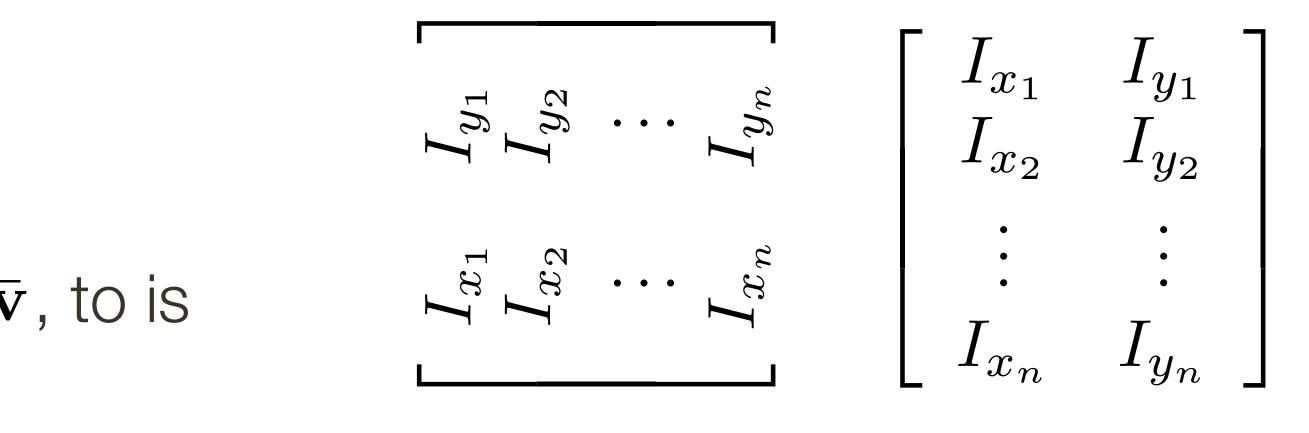
The standard least squares solution, $\bar{\mathbf{v}}$, to is

again provided that u and v are the same in all equations and provided that the rank of $\mathbf{A}^T \mathbf{A}$ is 2 (so that the required inverse exists)

$\bar{\mathbf{v}} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$

The standard least squares solution, $\bar{\mathbf{v}}$, to is

again provided that u and v are the same in all equations and provided that the rank of $\mathbf{A}^T \mathbf{A}$ is 2 (so that the required inverse exists)



$\bar{\mathbf{v}} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$

Note that we can explicitly write down an expression for $\mathbf{A}^T \mathbf{A}$ as

$\mathbf{A}^{T}\mathbf{A} = \begin{bmatrix} \sum I_{x}^{2} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & I_{y}^{2} \end{bmatrix}$

which is identical to the matrix ${\bf C}$ that we saw in the context of Harris corner detection

Note that we can explicitly write down an expression for $\mathbf{A}^T \mathbf{A}$ as

$\mathbf{A}^{T}\mathbf{A} = \begin{bmatrix} \sum I_{x}^{2} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & I_{y}^{2} \end{bmatrix}$

which is identical to the matrix ${\bf C}$ that we saw in the context of Harris corner detection

What does that mean?

Lucas-Kanade Summary

A dense method to compute motion, [u, v] at every location in an image

Key Assumptions:

- **1**. Motion is slow enough and smooth enough that differential methods apply (i.e., that the partial derivatives, I_x , I_y , I_t , are well-defined)
- 2. The optical flow constraint equation
- **3**. A window size is chosen so that motion, [u, v], is constant in the window
- **4.** A window size is chosen so that the rank of $\mathbf{A}^T \mathbf{A}$ is 2 for the window

n holds (i.e.,
$$\frac{dI(x, y, t)}{dt} = 0$$
)

Aside: Optical Flow Smoothness Constraint

Many methods trade off a 'departure from the optical flow constraint' cost with a 'departure from smoothness' cost.

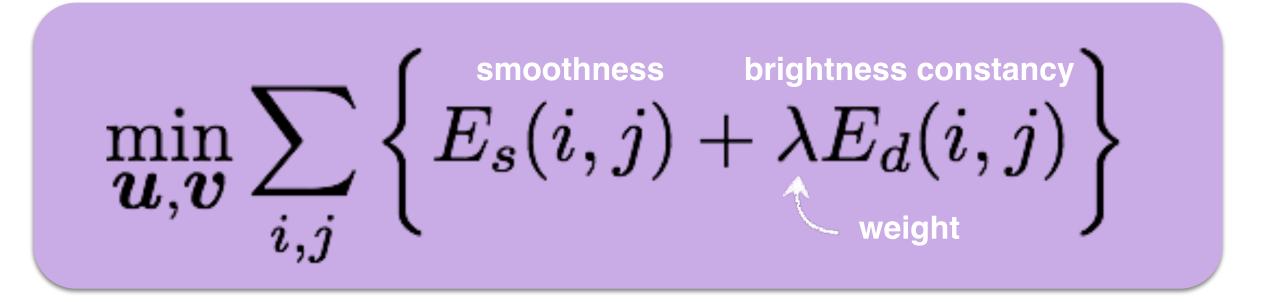
The optimization objective to minimize becomes

$$E = \int \int (I_x u + I_y v + I_y$$

where λ is a weighing parameter.

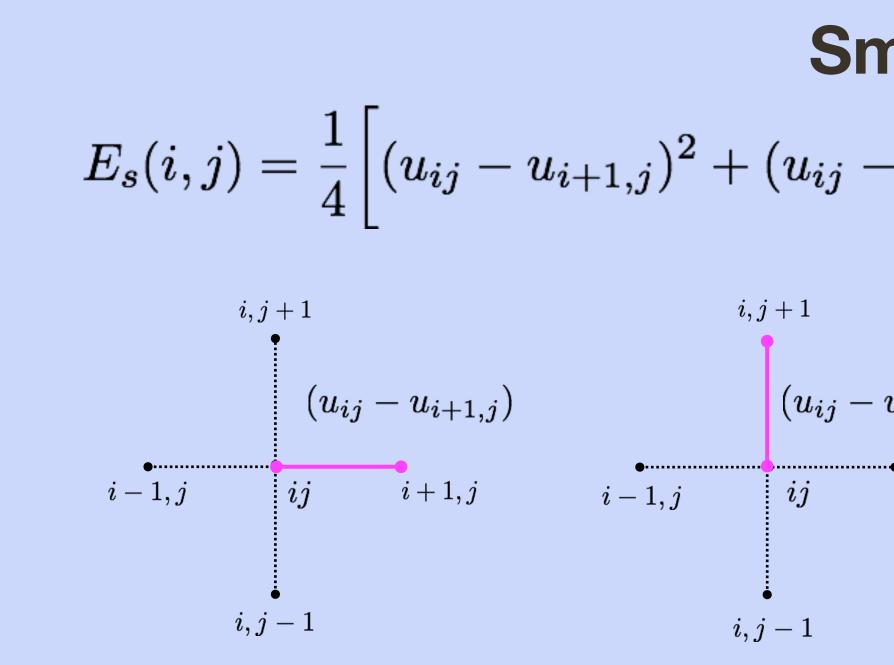
 $I_t)^2 + \lambda(|| \bigtriangledown u||^2 + || \bigtriangledown v||^2)$

Horn-Schunck Optical Flow



Horn-Schunck Optical Flow

Brightness constancy



$$E_d(i,j) = \left[I_x u_{ij} + I_y v_{ij} + I_t\right]^2$$

Smoothness

$$\left[u_{i,j+1} \right]^2 + (v_{ij} - v_{i+1,j})^2 + (v_{ij} - v_{i,j+1})^2 \right]$$

$$i, j+1$$

 $i, j+1$
 $(v_{ij} - v_{i+1,j})$
 $(v_{ij} - v_{i+1,j})$
 $(v_{ij} - v_{i,j+1})$
 $(i - 1, j$
 $i, j - 1$
 $i, j - 1$
 $i, j - 1$

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

56

Summary

Motion, like binocular stereo, can be formulated as a matching problem. That is, given a scene point located at (x_0, y_0) in an image acquired at time t_0 , what is its position, (x_1, y_1) , in an image acquired at time t_1 ?

Assuming image intensity does not change as a consequence of motion, we obtain the (classic) optical flow constraint equation

 $I_x u + I_u v + I_t = 0$

derivatives of intensity with respect to x, y, and t

Lucas–Kanade is a dense method to compute the motion, [u, v], at every location in an image

where [u, v], is the 2-D motion at a given point, [x, y], and I_x, I_y, I_t are the partial