
Lecture 15: Hough Transform (cont.)

CPSC 425: Computer Vision 

!1

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Menu for Today (March 5, 2020)
Topics: 

— Hough Transform 
— Hough Transform for Object Detection

Reminders: 

— Assignment 4: is out   
— Today is ECCV deadline (major computer vision conference)

— Stereo 

Redings: 
— Today’s Lecture:  Forsyth & Ponce (2nd ed.) 7.1.1, 7.2.1, 7.4, 7.6                               

— Next Lecture:       Forsyth & Ponce (2nd ed.) 7.1.1, 7.2.1, 7.4, 7.6 



Weidong Yin
Person-in-Context Synthesis with Compositional Structural Space
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by Suhail Mohammed 
Living on the Edge: Scene Graph Generation Using Edged Graph Neural Networks
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RANSAC is a technique to fit data to a model 
— divide data into inliers and outliers 
— estimate model from minimal set of inliers 
— improve model estimate using all inliers 
— alternate fitting with re-classification as inlier/outlier  

RANSAC is a general method suited for a wide range of model fitting problems 
— easy to implement 
— easy to estimate/control failure rate  

RANSAC only handles a moderate percentage of outliers without cost blowing 
up 
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Lecture 14: Re-cap RANSAC



RANSAC: k Samples Chosen (p = 0.99)
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Figure Credit: Hartley & Zisserman



Idea of Hough transform:  
— For each token vote for all models to which the token could belong  
— Return models that get many votes  

Example: For each point, vote for all lines that could pass through it; the true 
lines will pass through many points and so receive many votes  
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Lecture 14: Re-cap Hough Transform
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Hough Transform: Lines

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Hough Transform for Lines (switching to books notation)

Idea: Each point votes for the lines that pass through it  

— A line is the set of points,         , such that  

— Different choices of       give different lines 
x sin ✓ � y cos ✓ + r = 0

(x, y)

✓, r



Idea: Each point votes for the lines that pass through it  

— A line is the set of points,         , such that  

— Different choices of       give different lines  

— For any          there is a one parameter family of lines through this point. Just 
let          be constants and for each value of    the value of    will be determined  

— Each point enters votes for each line in the family  

— If there is a line that has lots of votes, that will be the line passing near the 
points that voted for it 
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Hough Transform for Lines (switching to books notation)



Example: Hough Transform for Lines
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Example: Hough Transform for Lines
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Example: Clean Data
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Votes
Tokens Horizontal axis is θ 

Vertical Axis is r
Forsyth & Ponce (2nd ed.) Figure 10.1 (Top)



Example: Some Noise
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Votes
Tokens Horizontal axis is θ 

Vertical Axis is r
Forsyth & Ponce (2nd ed.) Figure 10.1 (Bottom)



Example: Too Much Noise
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Votes
Tokens Horizontal axis is θ 

Vertical Axis is r
Forsyth & Ponce (2nd ed.) Figure 10.2
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Real World Example

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Real World Example
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Original Edges Hough LinesParameter  
space

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Mechanics of Hough Transform

1. Construct a quantized array to represent θ and r 
2. For each point, render curve (θ, r) into this array adding one vote at each cell  

Difficulties: 
— How big should the cells be? (too big, and we merge quite different lines; too 
small, and noise causes lines to be missed)  

How many lines? 
— Count the peaks in the Hough array  
— Treat adjacent peaks as a single peak 
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Some Practical Details of Hough Transform

It is best to vote for the two closest bins in each dimension, as the locations of 
the bin boundaries are arbitrary 
— This means that peaks are “blurred” and noise will not cause similar votes to 
fall into separate bins  

Can use a hash table rather than an array to store the votes  
— This means that no effort is wasted on initializing and checking empty bins 
— It avoids the need to predict the maximum size of the array, which can be 
non-rectangular  
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A key is to have each feature (token) determine as many parameters as possible 
— Lines are detected more effectively from edge elements with  
both position and orientation 
— For object recognition, each token should predict position,  
orientation, and scale  

The Hough transform can extract feature groupings from clutter in linear time  
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Some Practical Details of Hough Transform



Hough Transform for Circles (of known size)

!34



Generalized Hough Transform
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What if we want to detect an arbitrary geometric shape? 



Generalized Hough Transform
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What if we want to detect an arbitrary geometric shape? 

Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980



Example 1: Object Recognition — Implicit Shape Model
Combined object detection and segmentation using an implicit shape model. 
Image patches cast weighted votes for the object centroid. 
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B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model,  
ECCV Workshop on Statistical Learning in Computer Vision 2004



Example 1: Object Recognition — Implicit Shape Model

Basic Idea: 

— Find interest points/keypoints in an image (e.g., SIFT Keypoint detector or Corners)  

— Match patch around each interest point to a training patch (e.g., SIFT Descriptor) 

— Vote for object center given that training instances  

— Find the patches that voted for the peaks (back-project) 
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Example 1: Object Recognition — Implicit Shape Model
“Training” images of cows “Testing” image

* Slide from Sanja Fidler
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Example 1: Object Recognition — Implicit Shape Model
“Training” images of cows “Testing” image

Vote for center of object

* Slide from Sanja Fidler
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Example 1: Object Recognition — Implicit Shape Model
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Example 1: Object Recognition — Implicit Shape Model
“Training” images of cows “Testing” image

of course sometimes wrong votes are bound to  happen

* Slide from Sanja Fidler
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Example 1: Object Recognition — Implicit Shape Model

That’s ok. We want  only peaks in voting space.

“Training” images of cows “Testing” image

* Slide from Sanja Fidler
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Example 1: Object Recognition — Implicit Shape Model
“Training” images of cows “Testing” image

* Slide from Sanja Fidler

Find patches that voted for the peaks (back-project)
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Example 1: Object Recognition — Implicit Shape Model
“Training” images of cows “Testing” image

* Slide from Sanja Fidler

Find objects based on the back projected patches

box around patches = object
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Example 1: Object Recognition — Implicit Shape Model
“Training” images of cows “Testing” image

* Slide from Sanja Fidler

We need to match a patch around each yellow keypoint to 
all patches in all training images (slow)

Really easy … but slow … how  do we make it fast? 



Visual Words

!48 * Slide from Sanja Fidler
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training image

visual codeword with 
displacement vectors

Index displacements by “visual codeword”

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model,  
ECCV Workshop on Statistical Learning in Computer Vision 2004

Example 1: Object Recognition — Implicit Shape Model
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B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model,  
ECCV Workshop on Statistical Learning in Computer Vision 2004

Example 1: Object Recognition — Implicit Shape Model



Combined object detection and segmentation using an implicit shape model. 
Image patches cast weighted votes for the object centroid. 
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B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model,  
ECCV Workshop on Statistical Learning in Computer Vision 2004

Inferring Other Information: Segmentation 
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Inferring Other Information: Segmentation 

* Slide from Sanja Fidler
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Inferring Other Information: Segmentation 

* Slide from Sanja Fidler



Inferring Other Information: Part Labels
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Inferring Other Information: Depth

* Slide from Sanja Fidler



Example 2: Object Recognition — Boundary Fragments
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Boundary fragments cast weighted votes for the object centroid. Also obtains 
an estimate of the object’s contour. 

Image credit: Opelt et al., 2006
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Boundary fragments cast weighted votes for the object centroid. Also obtains 
an estimate of the object’s contour. 

Image credit: Opelt et al., 2006

Example 2: Object Recognition — Boundary Fragments
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Example 3: Object Recognition — Poselets 
Poselets are image patches that have distinctive appearance and can be used 
to infer some of the configuration of a parts-based object. Detected poselets 
vote for the object configuration.

Image credit: Bourdev and Malik, 2009



Example 3: Object Recognition — Poselets 
Poselets are image patches that have distinctive appearance and can be used 
to infer some of the configuration of a parts-based object. Detected poselets 
vote for the object configuration.

!59
Image credit: Bourdev and Malik, 2009



Discussion of Hough Transform

Advantages:  
— Can handle high percentage of outliers: each point votes separately 
— Can detect multiple instances of a model in a single pass  

Disadvantages:  
— Complexity of search time increases exponentially with the number of model 
parameters 
— Can be tricky to pick a good bin size  
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Summary of Hough Transform

The Hough transform is another technique for fitting data to a model 
— a voting procedure 
— possible model parameters define a quantized accumulator array  
— data points “vote" for compatible entries in the accumulator array  

A key is to have each data point (token) constrain model parameters as tightly 
as possible  
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