
Lecture 14: Object Recognition, RANSAC, Hough Transform

CPSC 425: Computer Vision 
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Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Menu for Today (March 3, 2020)
Topics: 

— Object Detection 
— Model Fitting

Readings: 
— Today’s & Next Lecture:  Forsyth & Ponce (2nd ed.) 10.1, 10.2

Reminders: 
— Assignment 3: is due today 
— Midterm is being graded (grades are expected next week) 
— Assignment 4: will be available tonight / tomorrow  

— RANSAC 
— Hough Transform 
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Today’s “fun” Example: Everybody Dance Now
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Today’s “fun” Example: Everybody Dance Now



Lecture 13: Re-Cap

— We motivated SIFT for identifying locally distinct keypoints in an image 
(detection)  

— SIFT features (description) are invariant to translation, rotation, and scale; 
robust to 3D pose and illumination 
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1. Multi-scale extrema detection 
2. Keypoint localization 
3. Orientation assignment 
4. Keypoint descriptor



Keypoint is an image location at which a 
descriptor is computed 
— Locally distinct points 
— Easily localizable and identifiable 

The feature descriptor summarizes the local 
structure around the key point 
— Allows us to (hopefully) unique matching of 
keypoints in presence of object pose variations, 
image and photometric deformations 

Note, for repetitive structure this would still not 
give us unique matches. 
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1. Multi-scale extrema detection 
2. Keypoint localization 
3. Orientation assignment 
4. Keypoint descriptor



Four steps to SIFT feature generation:  

1. Scale-space representation and local extrema detection 
— use DoG pyramid 
— 3 scales/octave, down-sample by factor of 2 each octave  

	2. Keypoint localization 
— select stable keypoints (threshold on magnitude of extremum, ratio of   

principal curvatures)  
	3. Keypoint orientation assignment 

— based on histogram of local image gradient directions  
	4. Keypoint descriptor 

— histogram of local gradient directions — vector with 8 × (4 × 4) = 128 dim 
— vector normalized (to unit length) 
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Lecture 13: Re-Cap



Pedestrian detection

64 pixels 
8 cells 

7 blocks

128 pixels 
16 cells 

15 blocks

15 x 7 x 4 x 9 = 
3780

1 cell step size visualization

Redundant representation due to overlapping blocks

Lecture 13: Histogram of Oriented Gradients (HOG)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



4 x 4 cell grid
Each cell is represented 

by 4 values: 

How big is the SURF descriptor?

5 x 5 
sample 
points

Haar wavelets filters
(Gaussian weighted from center)

Lecture 13: ‘Speeded’ Up Robust Features

64 dimensions

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



I(X,Y )

What types of transformations can we do? 

changes domain of image function

Warping

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I 0(X,Y )
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I 0(X,Y )
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We will call this 
“Warping” a “Model”
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We will call this 
“Warping” a “Model”
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Aside: Warping with Different Transformations
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Translation Affine
Projective 

(homography)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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I 0(X,Y )
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We will call this 
“Warping” a “Model”
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Solution for Affine Parameters
Affine transform of          to 

Rewrite to solve for transformation parameters:
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Solution for Affine Parameters



Limitation of this …

We need to have exact matches 
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3D Object Recognition 

Extract outlines with background 
subtraction  
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Only 3 keypoints are needed for recognition, 
so extra keypoints provide robustness  
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3D Object Recognition 



Recognition Under Occlusion 

!25



Location Recognition 
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SIFT Usage 
— Recognize charging station 
— Communicate with visual cards
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Example 1: Sony Aibo



Summary of Object Recognition with SIFT

Match each keypoint independently to database of known keypoints 
extracted from “training” examples 
— use fast (approximate) nearest neighbour matching 
— threshold based on ratio of distances to best and to second best match 

Identify clusters of (at least) 3 matches that agree on an object and a 
similarity pose 
— use generalized Hough transform  

Check each cluster found by performing detailed geometric fit of affine 
transformation to the model 
— accept/reject interpretation accordingly 
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Limitation of this …

We need to have exact matches 
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Fitting a Model to Noisy Data 
Suppose we are fitting a line to a dataset that consists of 50% outliers  

We can fit a line using two points  

!30

If we draw pairs of points uniformly at random, what fraction of 
pairs will consist entirely of ‘good’ data points (inliers)? 



Fitting a Model to Noisy Data 
Suppose we are fitting a line to a dataset that consists of 50% outliers  

We can fit a line using two points  

— If we draw pairs of points uniformly at random, then about 1/4 of these pairs 
will consist entirely of ‘good’ data points (inliers)  

— We can identify these good pairs by noticing that a large collection of other 
points lie close to the line fitted to the pair  

— A better estimate of the line can be obtained by refitting the line to the points 
that lie close to the line 
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RANSAC (RANdom SAmple Consensus) 

1. Randomly choose minimal subset of data points necessary to fit model (a 
sample)  

2. Points within some distance threshold, t, of model are a consensus set. 
Size of consensus set is model’s support  

3. Repeat for N samples; model with biggest support is most robust fit  
— Points within distance t of best model are inliers  
— Fit final model to all inliers  

!32
Slide Credit: Christopher Rasmussen
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RANSAC is very useful for variety of applications
Slide Credit: Christopher Rasmussen



RANSAC (RANdom SAmple Consensus) 

1. Randomly choose minimal subset of data points necessary to fit model (a 
sample)  

2. Points within some distance threshold, t, of model are a consensus set. 
Size of consensus set is model’s support  

3. Repeat for N samples; model with biggest support is most robust fit  
— Points within distance t of best model are inliers  
— Fit final model to all inliers  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Fitting a Line: 2 points

Slide Credit: Christopher Rasmussen



Example 1: Fitting a Line
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Figure Credit: Hartley & Zisserman
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Example 1: Fitting a Line

Figure Credit: Hartley & Zisserman
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Example 1: Fitting a Line

Figure Credit: Hartley & Zisserman
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10 points



Algorithm 10.4
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RANSAC: Fitting Lines Using Random Sample Consensus

This was Algorithm 15.4 in Forsyth & Ponce (1st ed.)



RANSAC: How many samples?
Let     be the fraction of inliers (i.e., points on line) 

Let     be the number of points needed to define hypothesis  
       (          for a line in the plane) 

Suppose    samples are chosen 

The probability that a single sample of     points is correct (all inliers) is 
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RANSAC: How many samples?
Let     be the fraction of inliers (i.e., points on line) 

Let     be the number of points needed to define hypothesis  
       (          for a line in the plane) 

Suppose    samples are chosen 

The probability that a single sample of     points is correct (all inliers) is  

The probability that all    samples fail is  

Choose    large enough (to keep this below a target failure rate) 
!41
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RANSAC: k Samples Chosen (p = 0.99)
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Figure Credit: Hartley & Zisserman



After RANSAC

RANSAC divides data into inliers and outliers and yields estimate computed 
from minimal set of inliers  

Improve this initial estimate with estimation over all inliers (e.g., with standard 
least-squares minimization)  

But this may change inliers, so alternate fitting with re-classification as inlier/
outlier  
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C D
B

A

Example 2: Fitting a Line

Figure Credit: Hartley & Zisserman

4 points
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Example 2: Fitting a Line

C D
B

A

Figure Credit: Hartley & Zisserman

10 points



Example 3: Automatic Matching of Images
— How to get correct correspondences without human intervention?  
— Can be used for image stitching or automatic determination of epipolar geometry

!46 Figure Credit: Hartley & Zisserman



Example 3: Feature Extraction
— Find features in pair of images using Harris corner detector  
— Assumes images are roughly the same scale  

!47 Figure Credit: Hartley & Zisserman

≈ 500 corner features found in each image



Example 3: Finding Feature Matches
Select best match over threshold within a square search window (here ±320 pixels) 
using SSD or (normalized) cross-correlation for small patch around the corner  

!48 Figure Credit: Hartley & Zisserman

≈ 500 corner features found in each image



Example 3: Initial Match Hypothesis

!49 Figure Credit: Hartley & Zisserman

268 matched features (over SSD threshold) superimposed on left image 
(pointing to locations of corresponding feature in right image)



Example 3: Outliers & Inliers after RANSAC
— n is 4 for this problem (a homography relating 2 images)  
— Assume up to 50% outliers 
— 43 samples used with t = 1.25 pixels 

!50 Figure Credit: Hartley & Zisserman

117 outliers 151 inliers



Example 3: Final Matches

!51 Figure Credit: Hartley & Zisserman
final set of 262 matches



Discussion of RANSAC

Advantages:  
— General method suited for a wide range of model fitting problems  
— Easy to implement and easy to calculate its failure rate  

Disadvantages:  
— Only handles a moderate percentage of outliers without cost blowing up  
— Many real problems have high rate of outliers (but sometimes selective 
choice of random subsets can help)  

The Hough transform can handle high percentage of outliers 
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Example: Photo Tourism

Takes as input unstructured collections of photographs and reconstructs each 
photo’s viewpoint and a sparse 3D model of the scene  

Uses both SIFT and RANSAC 
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Figure credit: Snavely et al. 2006



Fitting a Model

Suppose we want to fit a model to a set of tokens  

— e.g. A line fits well to a set of points. This is unlikely to be due to chance, so 
we represent the points as a line.  

— e.g. A 3D model can be scaled, rotated and translated to closely fit a set of 
points or line segments. If it fits well, the object is recognized.  
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Fitting a Model is Difficult 

Difficulties arise owing to:  

Extraneous data: clutter or multiple models 
— We do not know what is part of the model 
— Can we fit models with a few parts when there is significant background 
clutter? 

Missing data: only some parts of model are present Noise  

Computational cost: 
— Not feasible to check all combinations of features by fitting a model to 
each possible subset 
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Hough Transform

Idea of Hough transform:  
— For each token vote for all models to which the token could belong  
— Return models that get many votes  

Example: For each point, vote for all lines that could pass through it; the true 
lines will pass through many points and so receive many votes  
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Lines: Slope intercept form
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slope y-intercept

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Image space

Hough Transform: Image and Parameter Space
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variables

parameters

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Image space Parameter space

Hough Transform: Image and Parameter Space
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variables

parameters parameters

variables

a line 
becomes a 

point

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Image space

Hough Transform: Image and Parameter Space
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variables

parameters

What would a point in image space 
become in parameter space?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Image space Parameter space

Hough Transform: Lines
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variables
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Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Image space Parameter space

Hough Transform: Lines
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variables

parameters parameters

variables

two  
points?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Image space Parameter space

Hough Transform: Lines
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variables

parameters parameters
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two  
points?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Image space Parameter space

Hough Transform: Lines
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variables

parameters parameters

variables

three  
points?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Image space Parameter space

Hough Transform: Lines
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variables

parameters parameters

variables

three  
points?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Image space Parameter space

Hough Transform: Lines
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variables

parameters parameters

variables

four  
points?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Image space Parameter space

Hough Transform: Lines
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variables

parameters parameters

variables

four  
points?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Image space Parameter space

How would you find the best fitting line?

Hough Transform: Lines

!68 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Image space Parameter space

Is this method robust to measurement noise? clutter?

Hough Transform: Lines

!69 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Line Detection by Hough Transform
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Parameter Space

1 1
1 1

1 1
2

1 1
1 1

1 1

Algorithm:

1.Quantize Parameter Space 

2.Create Accumulator Array

3.Set 

4. For each image edge       
     For each element in  
     If     lies on the line:  
         Increment

5. Find local maxima in 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



How big does the accumulator need to be for the parameterization        ?

Problems with Parametrization
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Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



How big does the accumulator need to be for the parameterization        ?

Problems with Parametrization
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1 1
1 1
1 1
2

1 1
1 1

1 1

The space of m is huge! The space of c is huge!

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Lines: Slope intercept form
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slope y-intercept

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Lines: Normal form
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x sin ✓ � y cos ✓ + r = 0

0  ✓  2⇡

x sin ✓ � y cos ✓ = ⇢

r � 0

Book’s convention

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



!75
Image space Parameter space

variables

parameters

a point 
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x sin ✓ � y cos ✓ = ⇢

parameters

variables

Hough Transform: Lines

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Image space Parameter space

variables

parameters

a point 
becomes  
a wave

x sin ✓ � y cos ✓ = ⇢

parameters

variables

Hough Transform: Lines

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Image space Parameter space

variables

parameters

two points 
become?

x sin ✓ � y cos ✓ = ⇢

parameters

variables

Hough Transform: Lines

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Image space Parameter space

variables

parameters

three points 
become?
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Hough Transform: Lines

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Image space Parameter space
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four points 
become?

x sin ✓ � y cos ✓ = ⇢

parameters

variables

Hough Transform: Lines

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Hough Transform for Lines (switching to books notation)

Idea: Each point votes for the lines that pass through it  

— A line is the set of points,         , such that  

— Different choices of       give different lines 
x sin ✓ � y cos ✓ + r = 0

(x, y)

✓, r



Idea: Each point votes for the lines that pass through it  

— A line is the set of points,         , such that  

— Different choices of       give different lines  

— For any          there is a one parameter family of lines through this point. Just 
let          be constants and for each value of    the value of    will be determined  

— Each point enters votes for each line in the family  

— If there is a line that has lots of votes, that will be the line passing near the 
points that voted for it 
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x sin ✓ � y cos ✓ + r = 0

(x, y)

✓ r
(x, y)

(x, y)

✓, r

Hough Transform for Lines (switching to books notation)



Example: Hough Transform for Lines
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Example: Hough Transform for Lines

!88

�5 sin(5

�
)� 3 cos(5

�
) + r = 0 => r = 3.42

3
3.5
4

4.5
5

0 10 20 30 40 …

…
…

(-5,3)

(-2,3.3)



Example: Hough Transform for Lines
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Example: Hough Transform for Lines
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Example: Hough Transform for Lines
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Example: Hough Transform for Lines
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Example: Hough Transform for Lines
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Example: Clean Data
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Votes
Tokens Horizontal axis is θ 

Vertical Axis is r
Forsyth & Ponce (2nd ed.) Figure 10.1 (Top)



Example: Some Noise
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Votes
Tokens Horizontal axis is θ 

Vertical Axis is r
Forsyth & Ponce (2nd ed.) Figure 10.1 (Bottom)



Example: Too Much Noise
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Votes
Tokens Horizontal axis is θ 

Vertical Axis is r
Forsyth & Ponce (2nd ed.) Figure 10.2
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Real World Example

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)


