

CPSC 425: Computer Vision

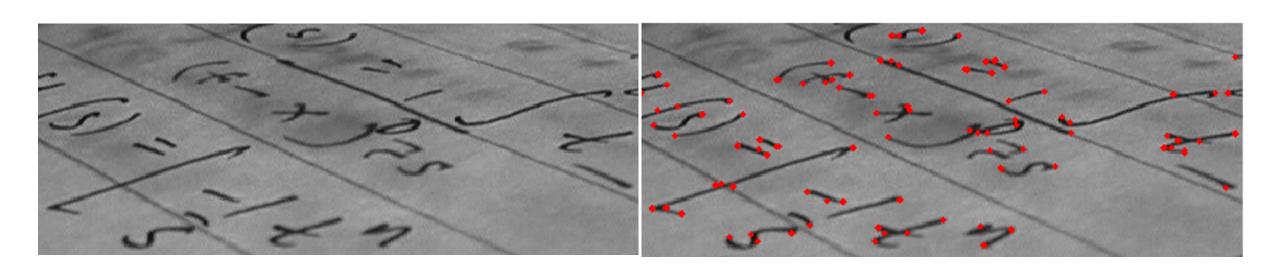


Image Credit: https://en.wikipedia.org/wiki/Corner_detection

Lecture 10: Corner Detection (cont)

(unless otherwise stated slides are taken or adopted from **Bob Woodham, Jim Little** and **Fred Tung**)

Menu for Today (February 6, 2020)

Topics:

- Harris Corner Detector (review)
- Blob Detection

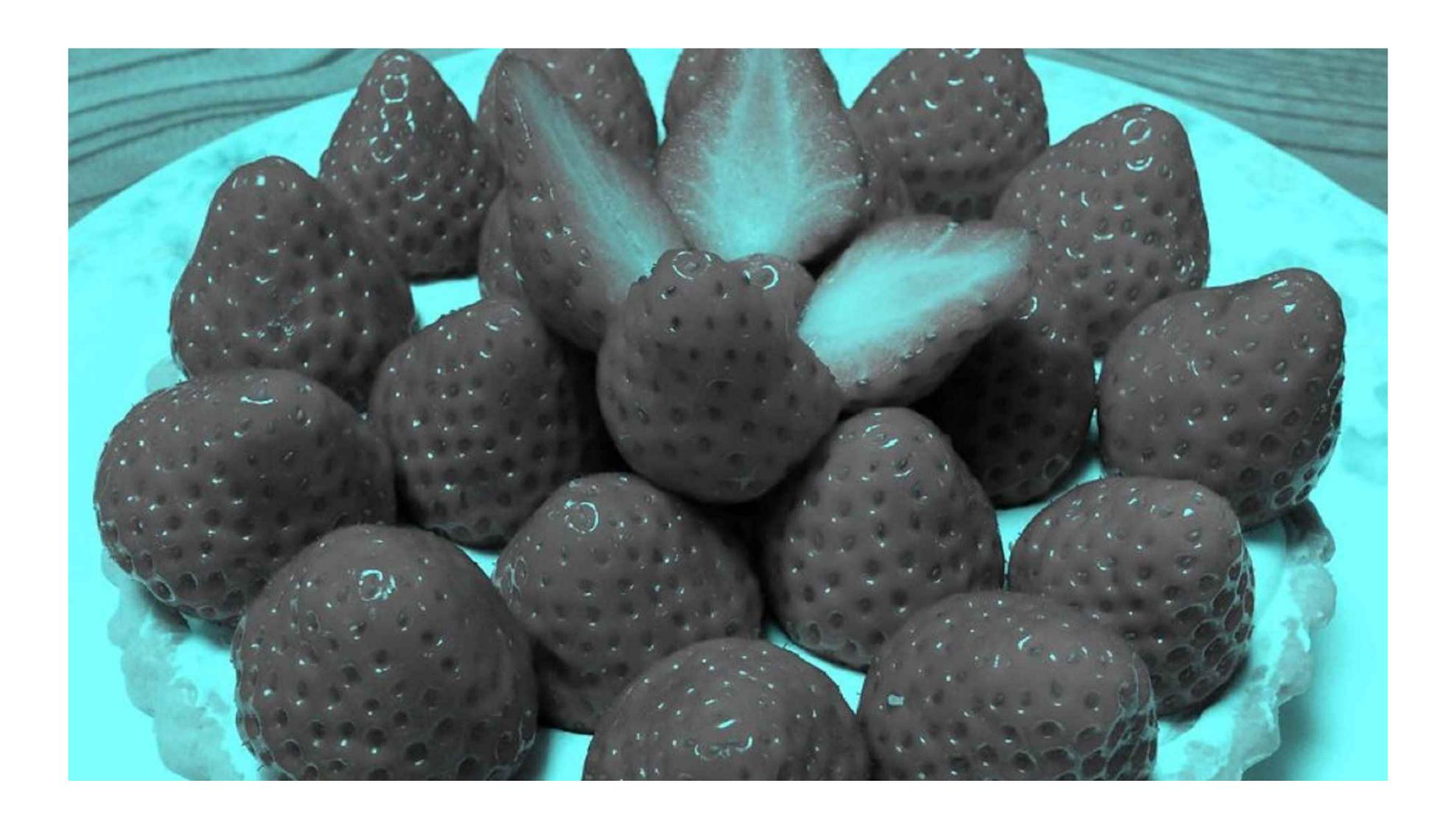
Searching over Scale

Redings:

- Today's Lecture: Forsyth & Ponce (2nd ed.) 5.3, 6.1, 6.3
- Next Lecture: Forsyth & Ponce (2nd ed.) 3.1-3.3

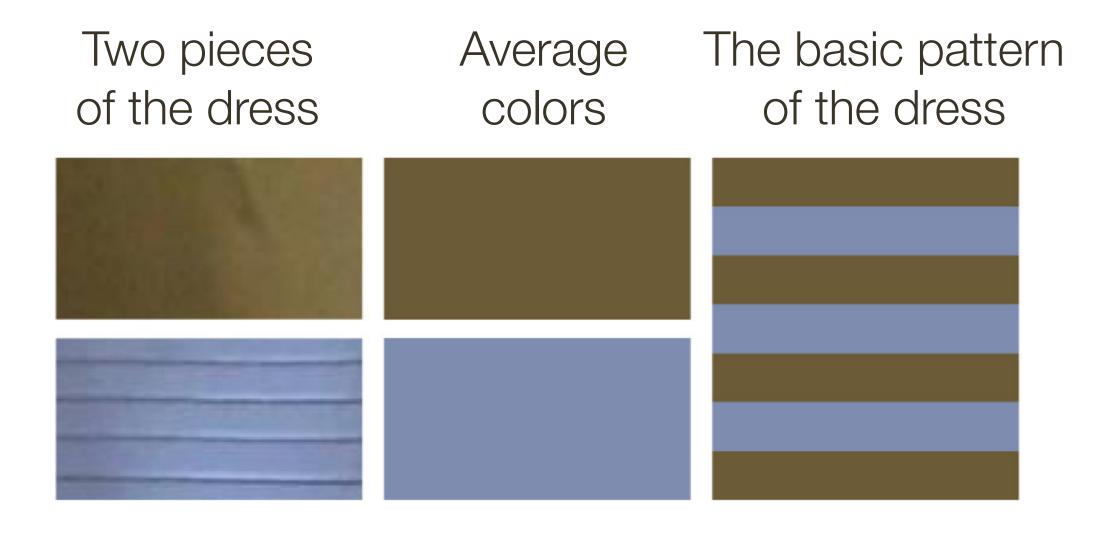
Reminders:

Assignment 2: Face Detection in a Scaled Representation is February 11th



- Some people see a white and gold dress.
- Some people see a blue and black dress.
- Some people see one interpretation and then switch to the other

- Some people see a white and gold dress.
- Some people see a blue and black dress.
- Some people see one interpretation and then switch to the other



IS THE DRESS IN SHADOW?

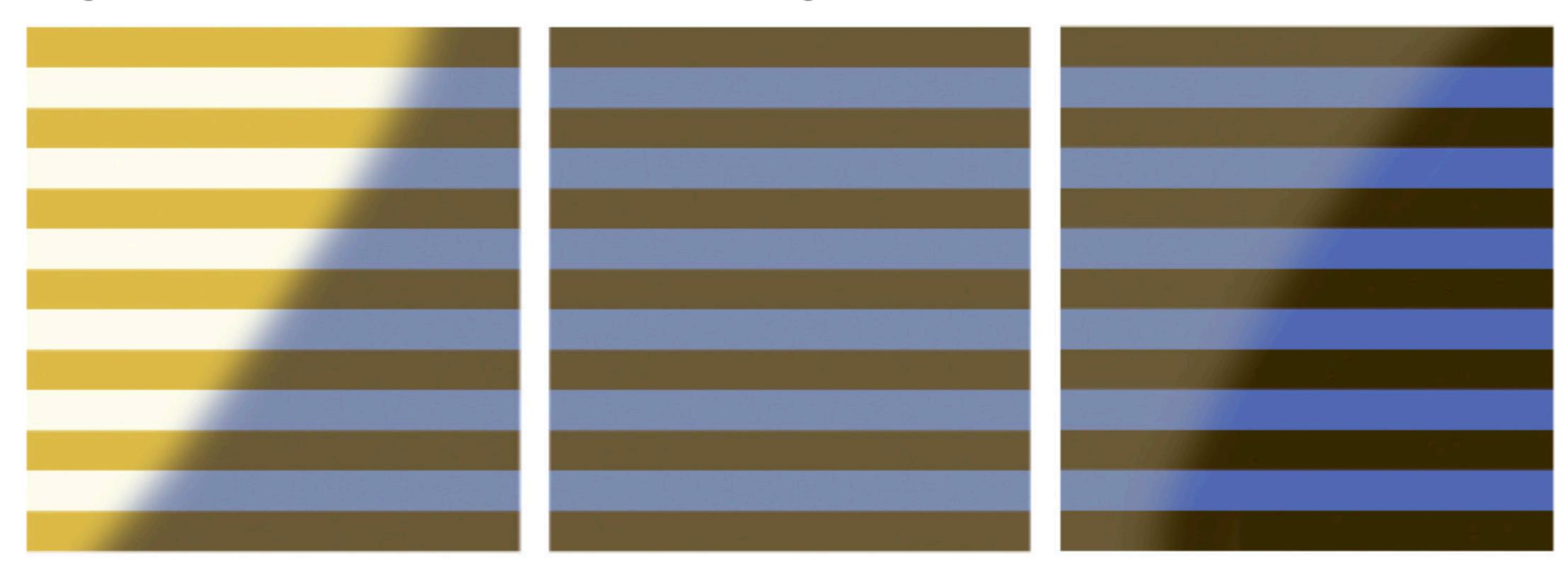
If you think the dress is in shadow, your brain may remove the blue cast and perceive the dress as being white and gold.

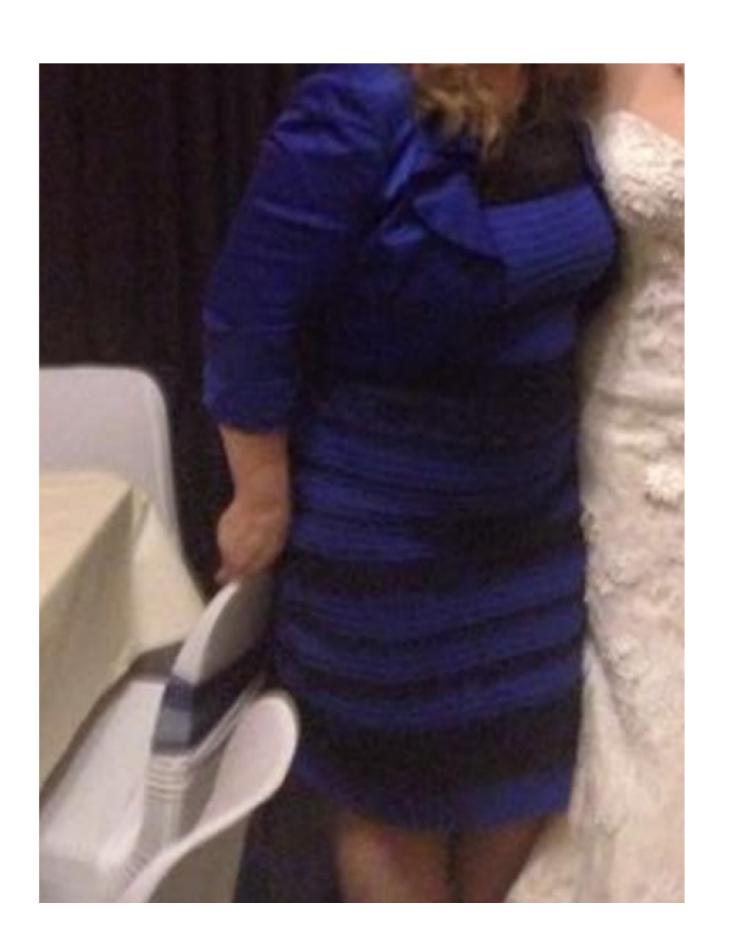
THE DRESS IN THE PHOTO

If the photograph showed more of the room, or if skin tones were visible, there might have been more clues about the ambient light.

IS THE DRESS IN BRIGHT LIGHT?

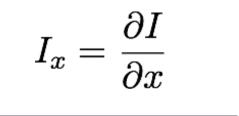
If you think the dress is being washed out by bright light, your brain may perceive the dress as a darker blue and black.

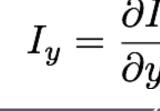


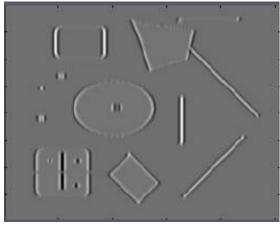


Lecture 9: Re-cap (Harris Corner Detection)

- 1.Compute image gradients over small region
- 2. Compute the covariance matrix
- 3.Compute eigenvectors and eigenvalues
- 4.Use threshold on eigenvalues to detect corners



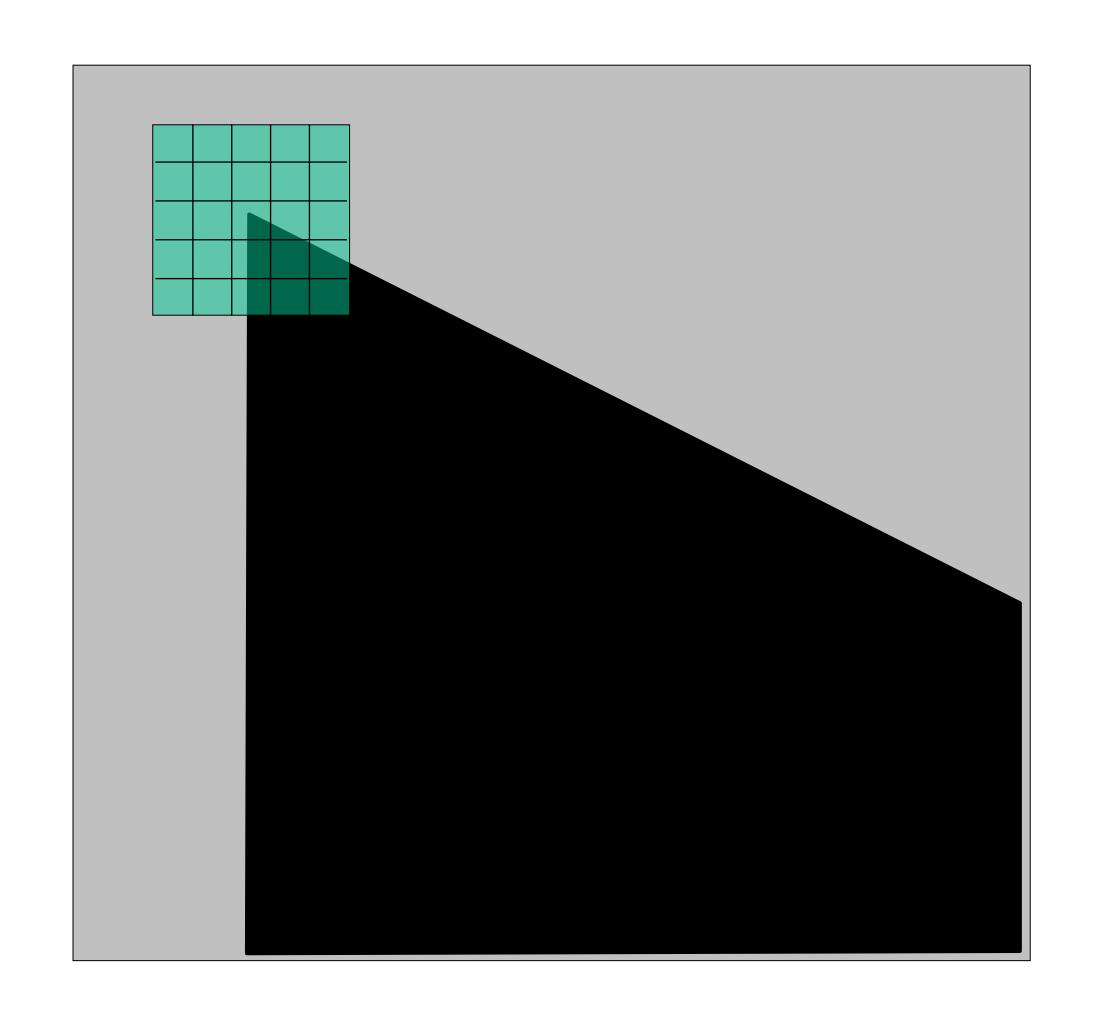




$$\left[\begin{array}{ccc} \sum\limits_{p\in P}I_xI_x & \sum\limits_{p\in P}I_xI_y \\ \sum\limits_{p\in P}I_yI_x & \sum\limits_{p\in P}I_yI_y \end{array}\right]$$

Lecture 9: Re-cap (compute image gradients at patch)

(not just a single pixel)



array of x gradients

$$I_x = \frac{\partial I}{\partial x}$$

array of y gradients

$$\frac{\partial I}{\partial y} = \frac{\partial I}{\partial y}$$

Lecture 9: Re-cap (compute the covariance matrix)

Sum over small region around the corner

Gradient with respect to x, times gradient with respect to y

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

Matrix is symmetric

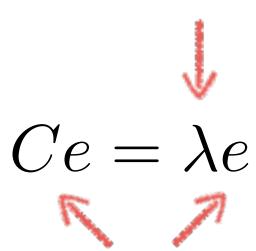
Lecture 9: Re-cap

It can be shown that since every C is symmetric:

$$C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix} = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

Lecture 9: Re-cap (computing eigenvalues and eigenvectors)

eigenvalue



eigenvector

$$(C - \lambda I)e = 0$$

1. Compute the determinant of (returns a polynomial)

$$C - \lambda I$$

2. Find the roots of polynomial (returns eigenvalues)

$$\det(C - \lambda I) = 0$$

3. For each eigenvalue, solve (returns eigenvectors)

$$(C - \lambda I)e = 0$$

Lecture 9: Re-cap (interpreting eigenvalues)

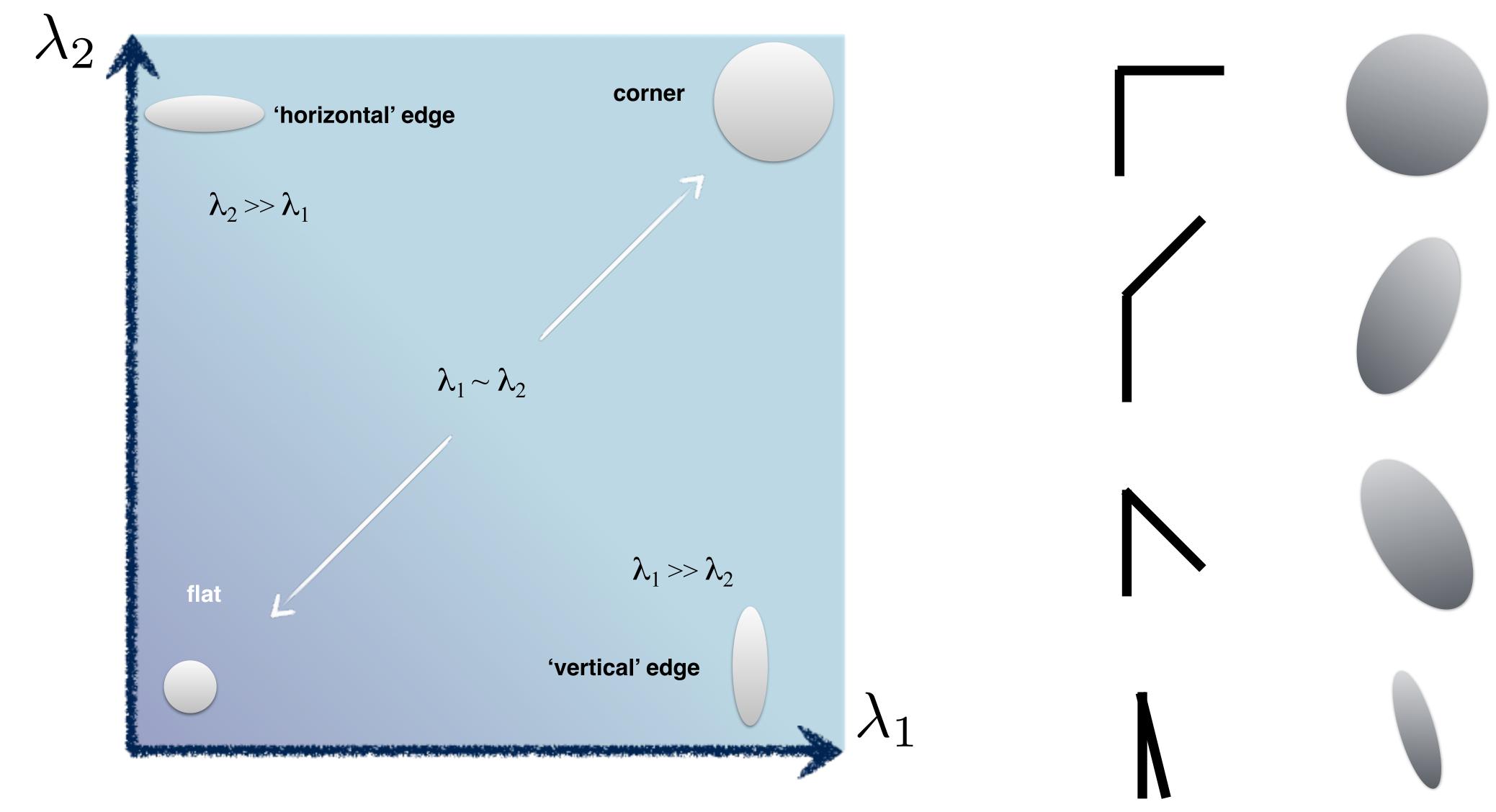


Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 9: Re-cap (Threshold on Eigenvalues to Detect Corners)

Harris & Stephens (1988)

$$\det(C) - \kappa \operatorname{trace}^2(C)$$

Kanade & Tomasi (1994)

$$\min(\lambda_1,\lambda_2)$$

Nobel (1998)

$$\frac{\det(C)}{\operatorname{trace}(C) + \epsilon}$$

Harris Corner Detection Review

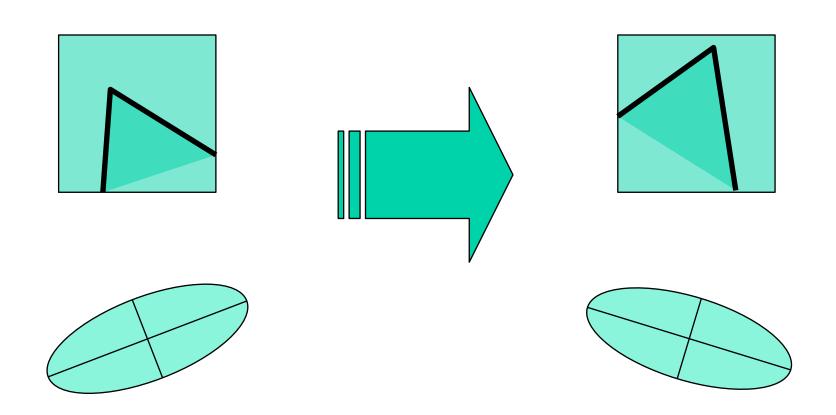
- Filter image with Gaussian
- Compute magnitude of the x and y gradients at each pixel
- Construct C in a window around each pixel
 - Harris uses a Gaussian window
- Solve for product of the λ 's

Harris & Stephens (1988)

$$\det(C) - \kappa \operatorname{trace}^2(C)$$

- If λ 's both are big (product reaches local maximum above threshold) then we have a corner
 - Harris also checks that ratio of λs is not too high

Properties: Rotational Invariance



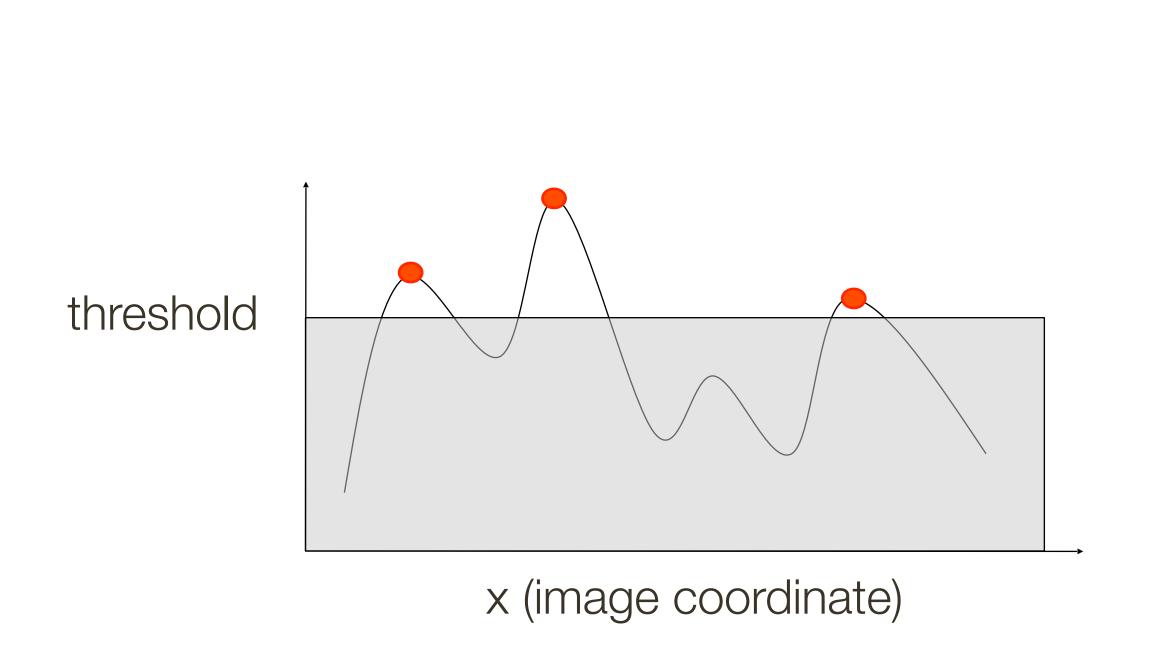
Ellipse rotates but its shape (eigenvalues) remains the same

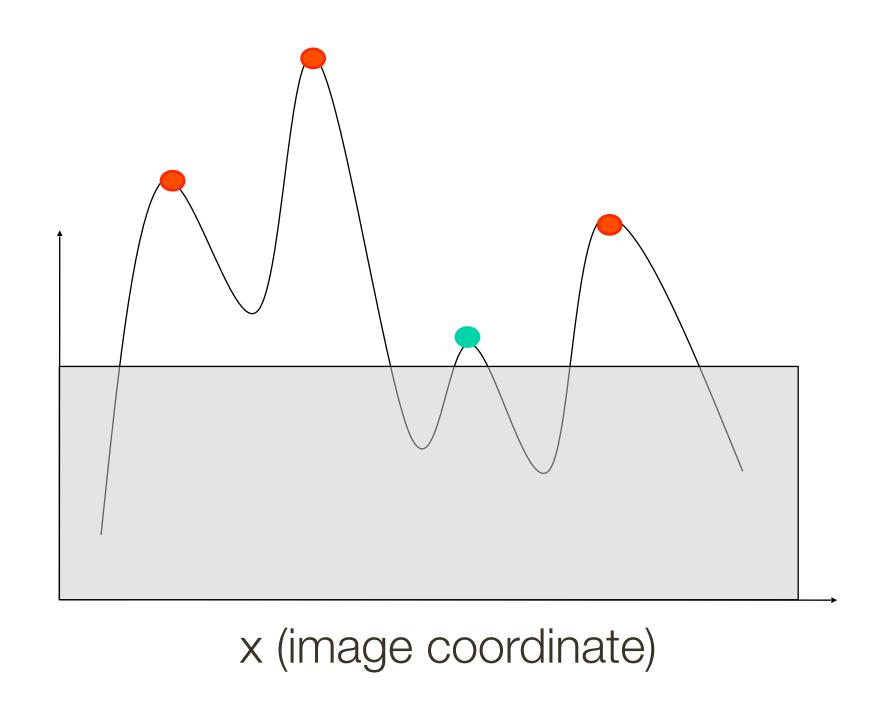
Corner response is invariant to image rotation

Properties: (partial) Invariance to Intensity Shifts and Scaling

Only derivatives are used -> Invariance to intensity shifts

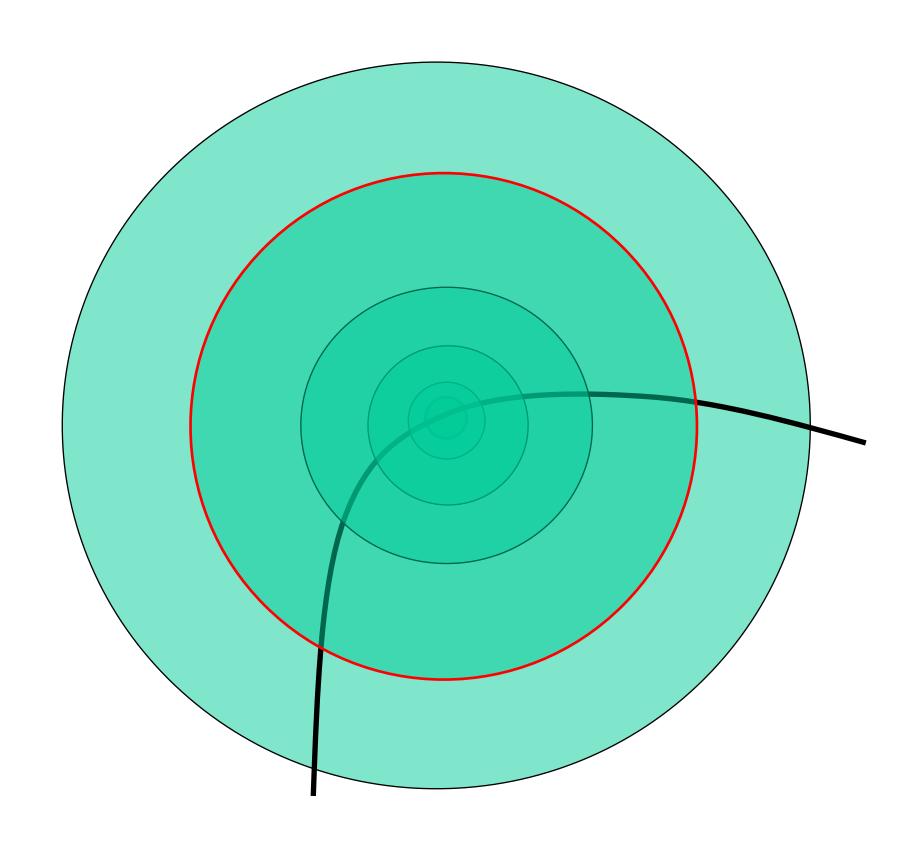
Intensity scale could effect performance

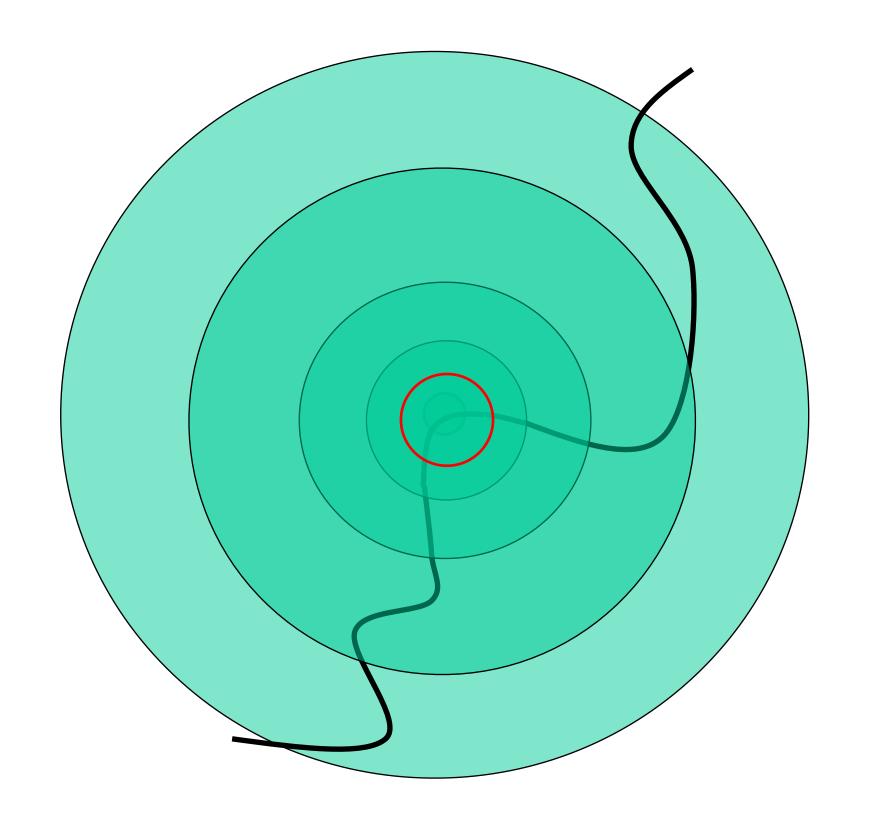




Properties: NOT Invariant to Scale Changes

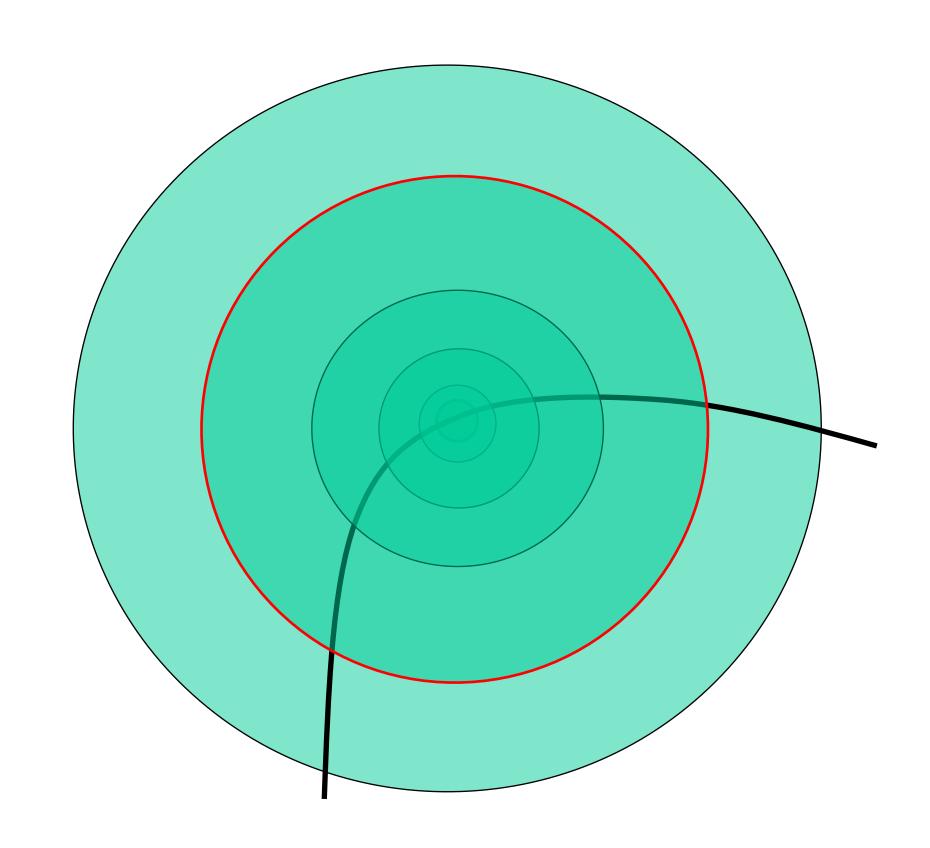
Intuitively ...

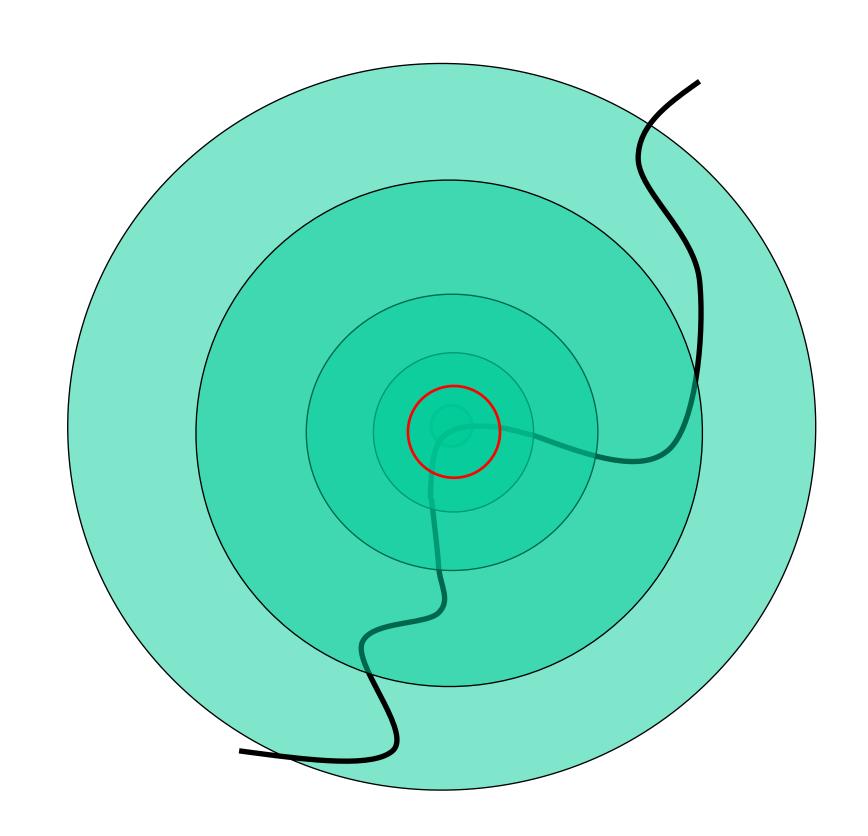




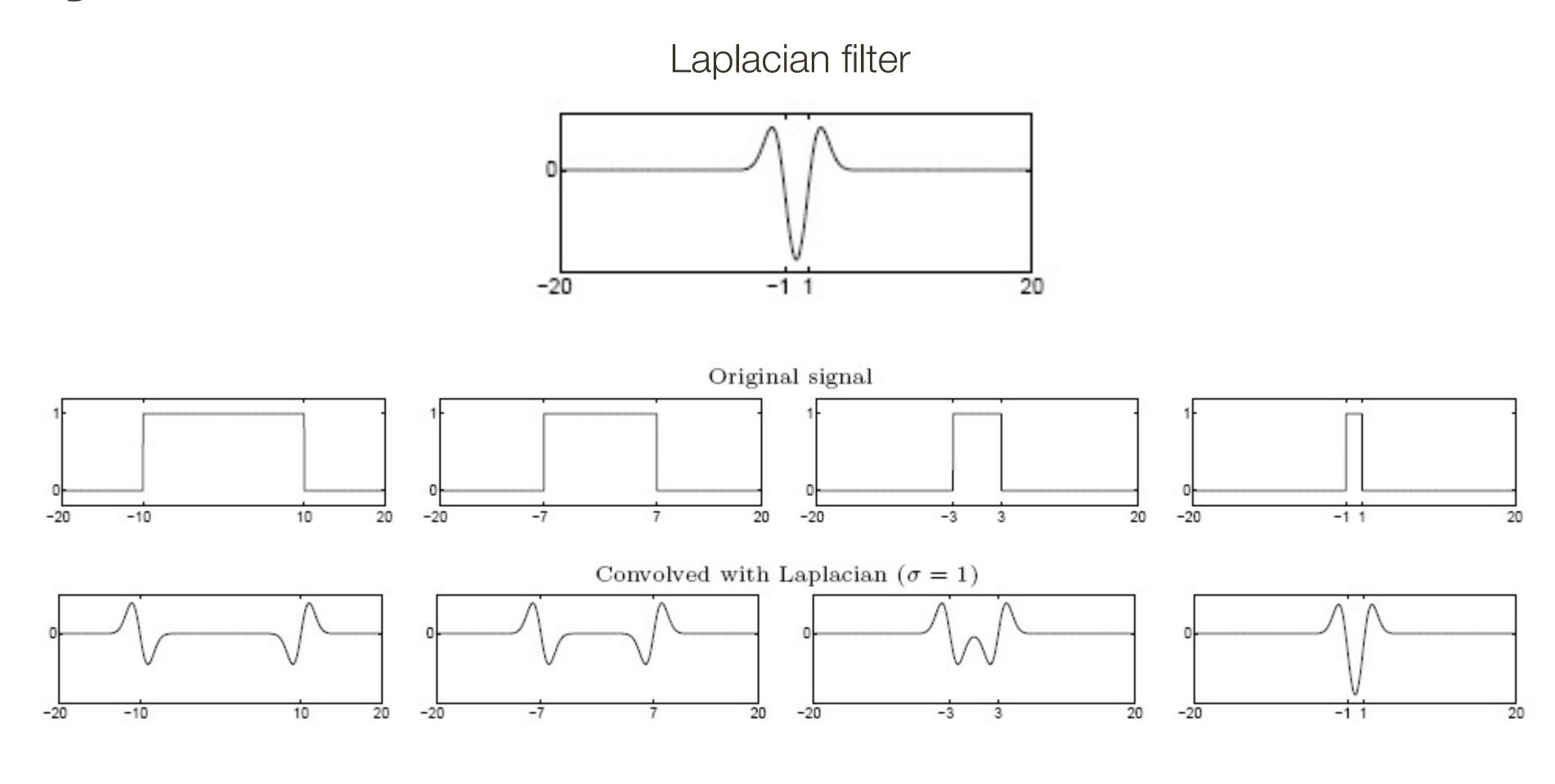
Intuitively ...

Find local maxima in both position and scale





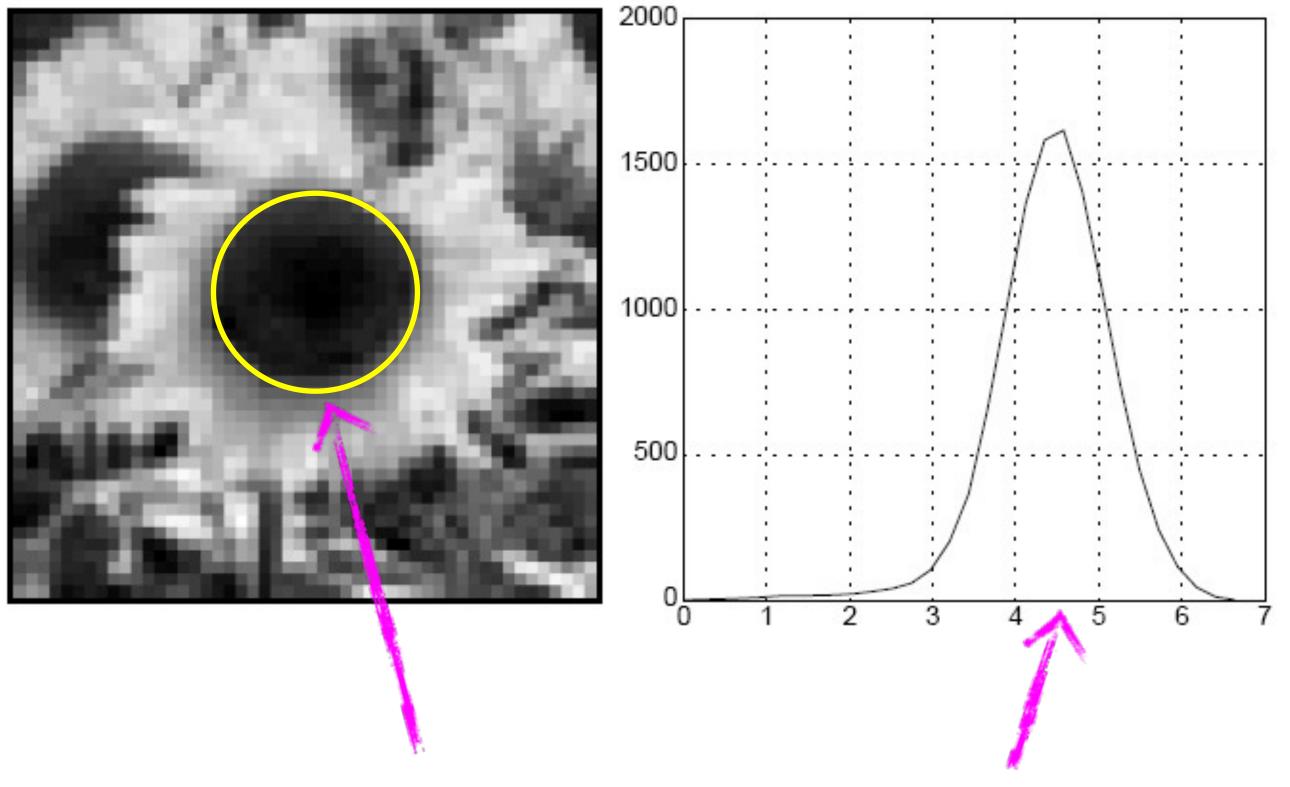
Formally ...



Highest response when the signal has the same **characteristic scale** as the filter

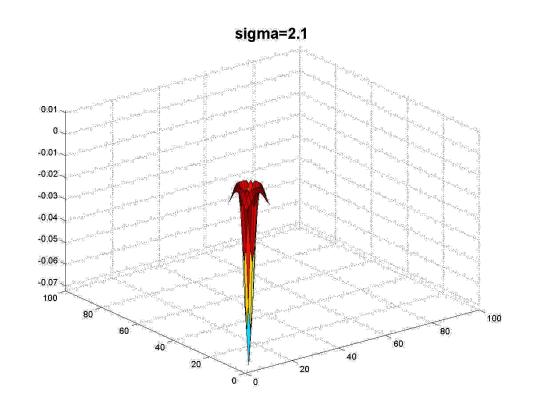
Characteristic Scale

characteristic scale - the scale that produces peak filter response

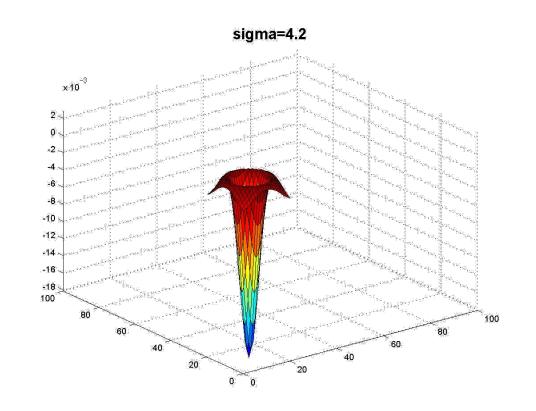


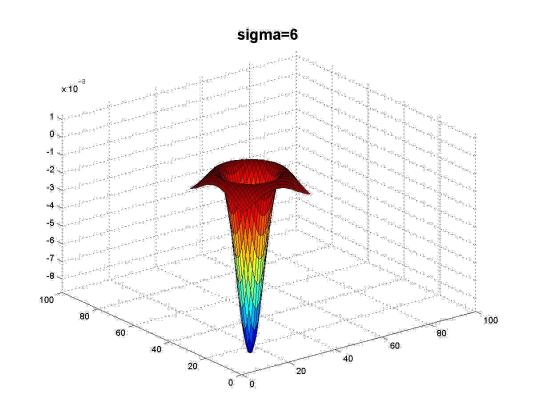
characteristic scale

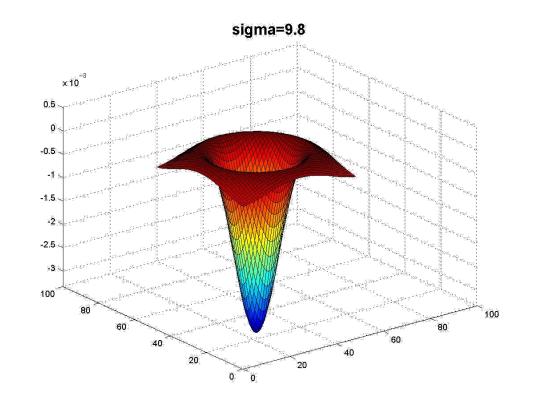
we need to search over characteristic scales

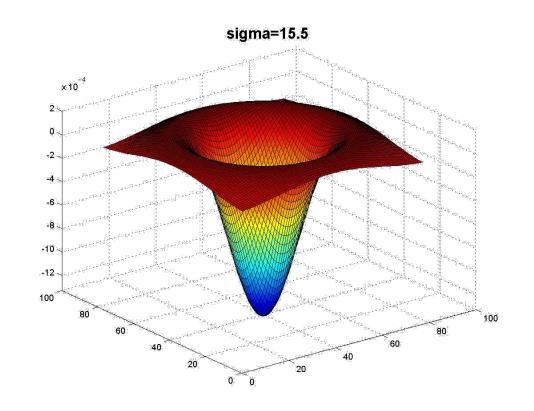


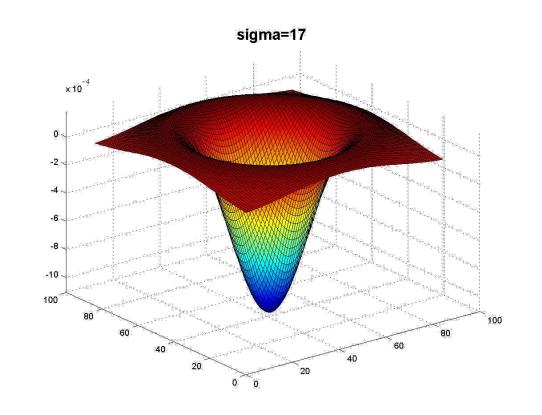
jet color scale blue: low, red: high





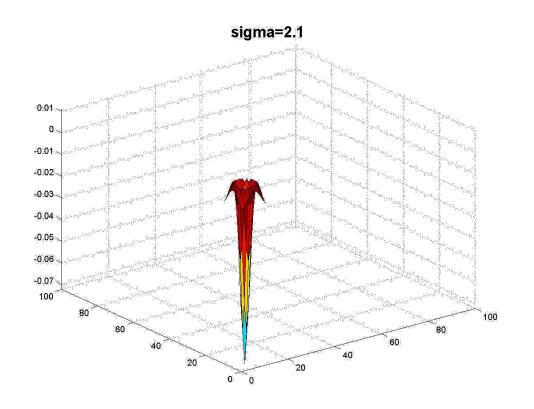


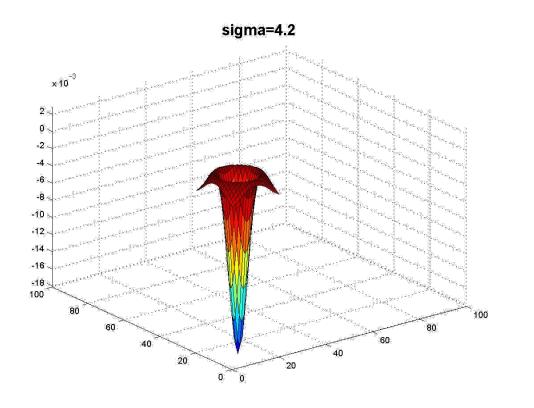




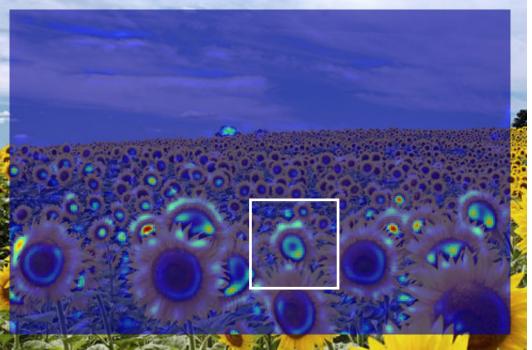
Full size

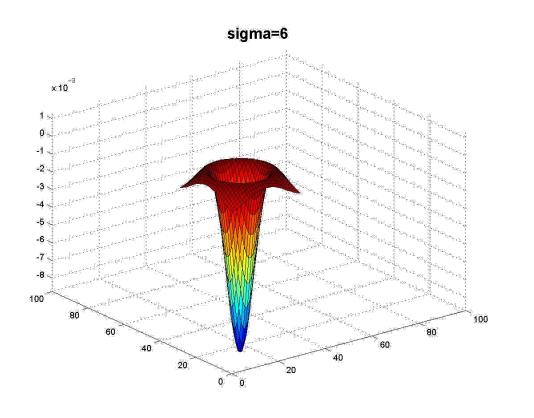
3/4 size

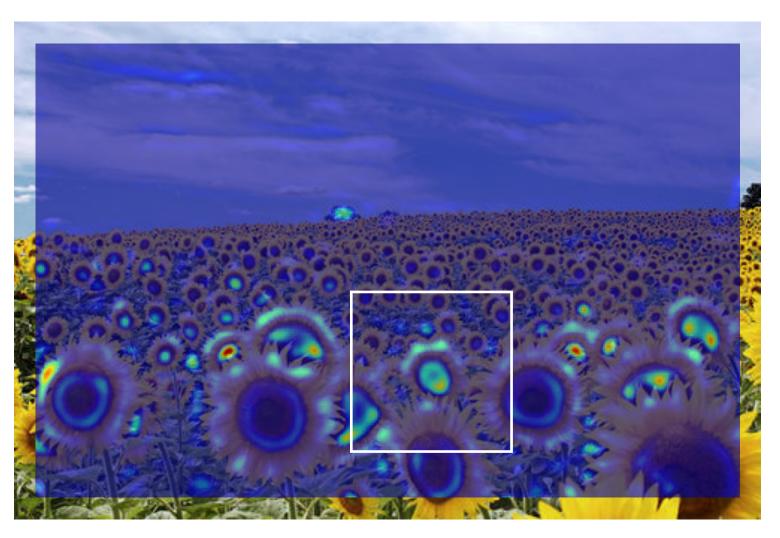


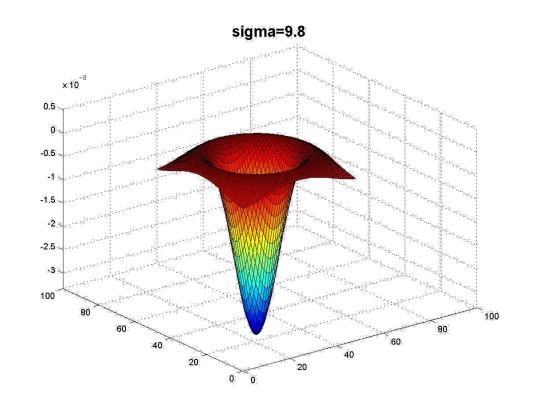


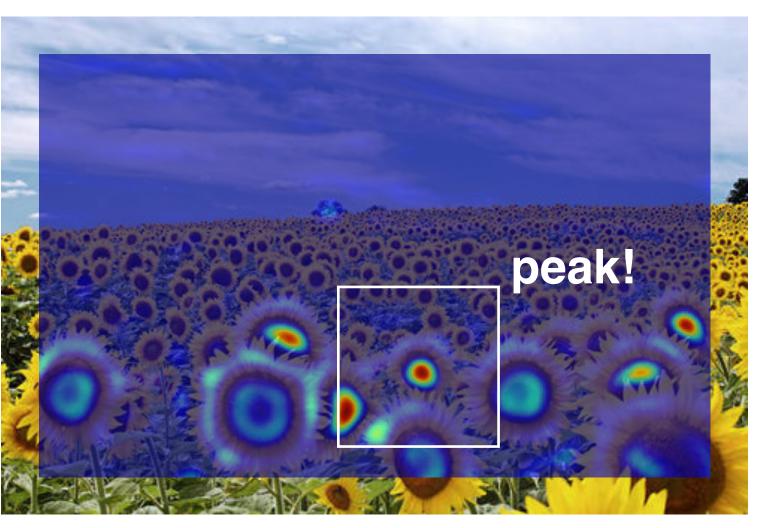


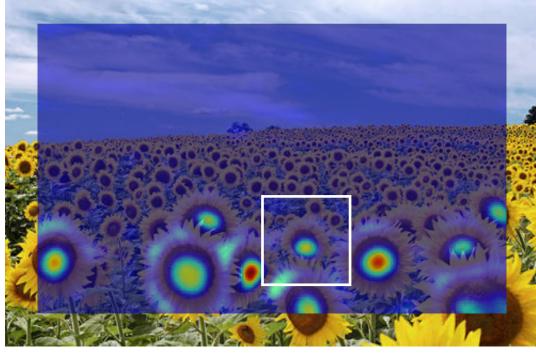


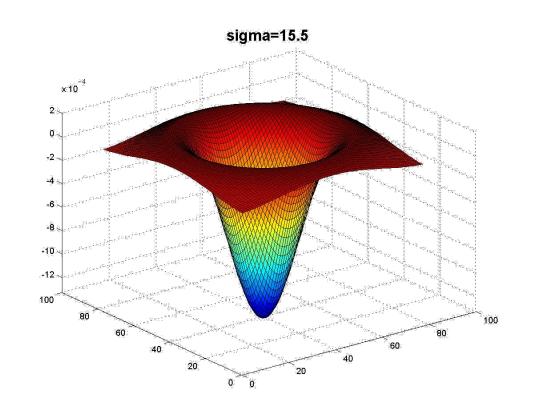


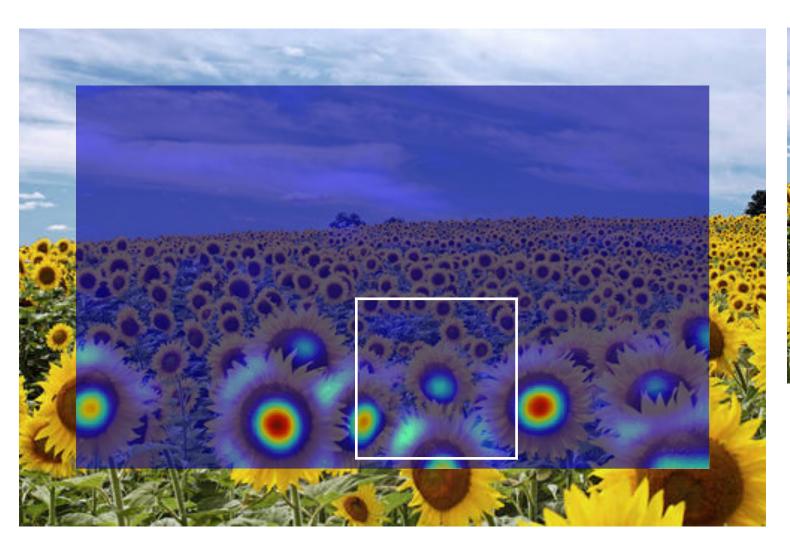


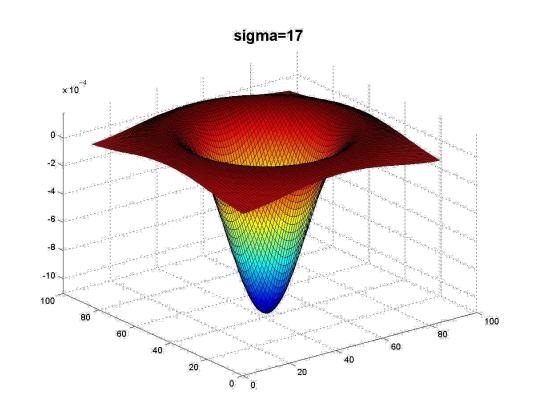




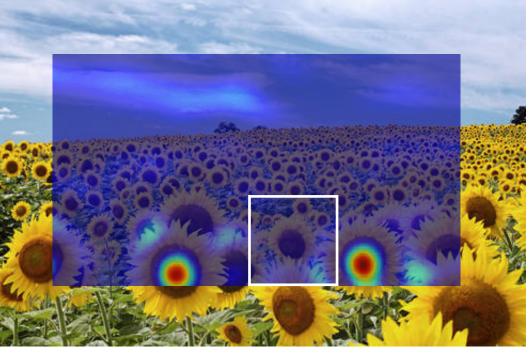






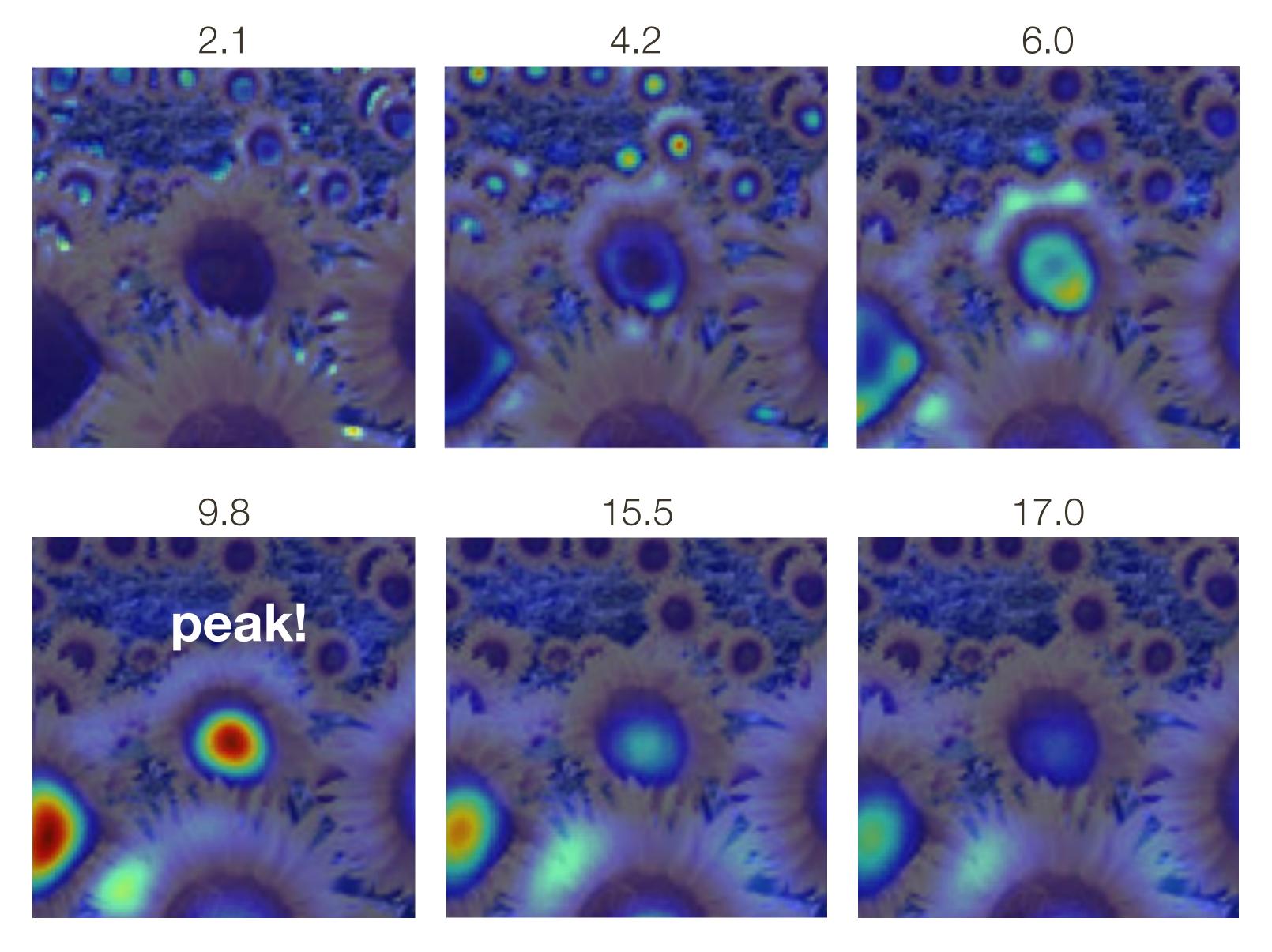


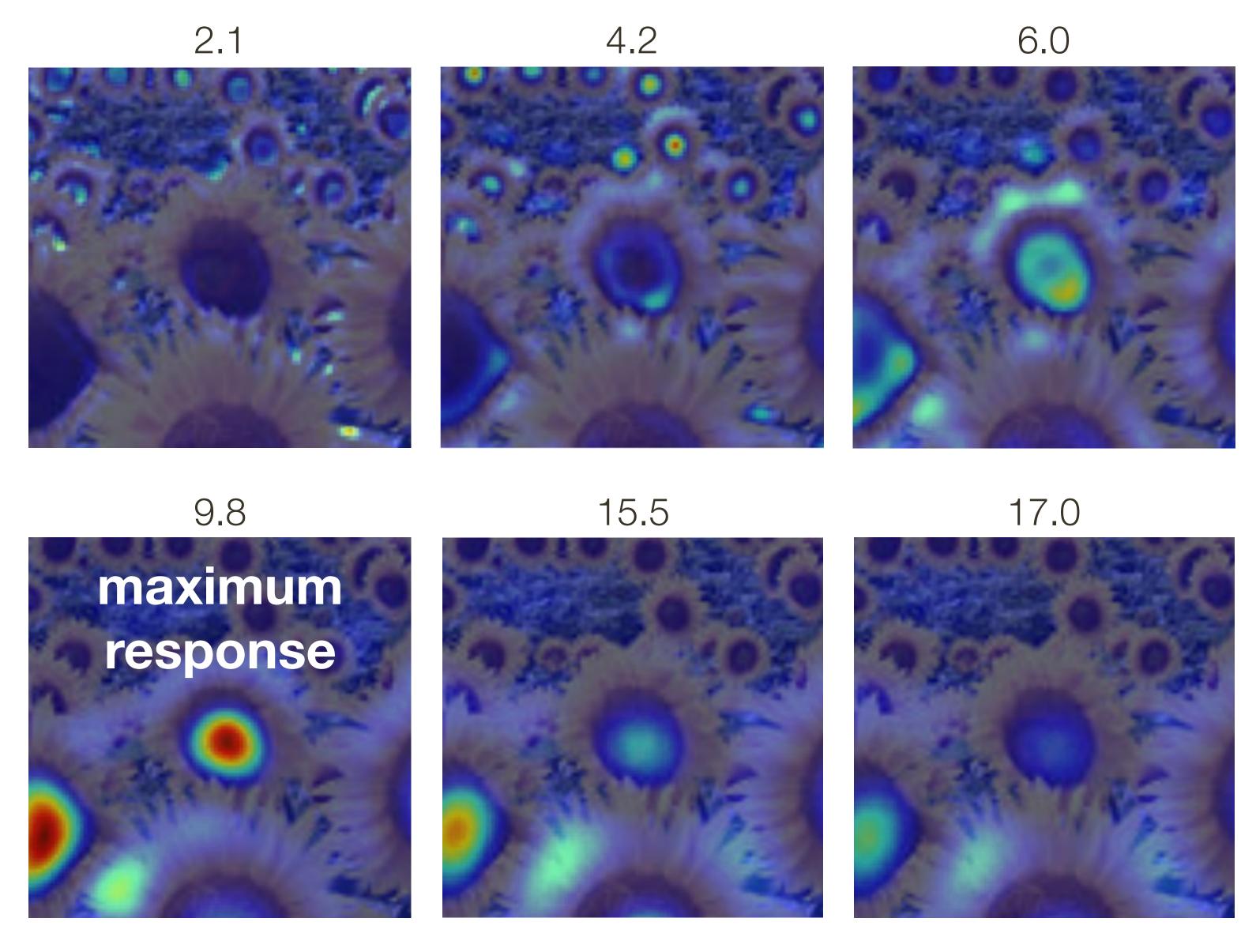




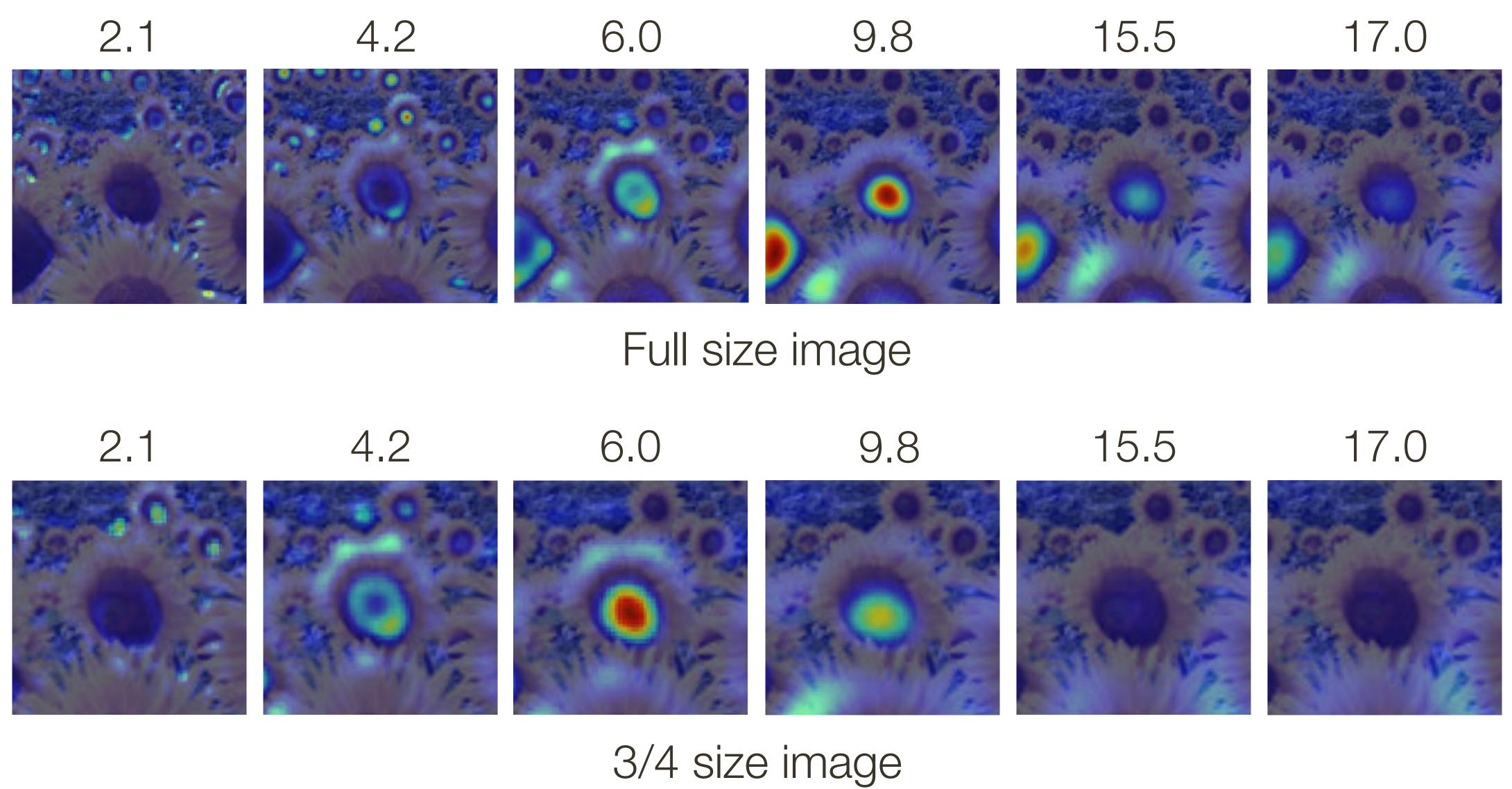
Full size

3/4 size

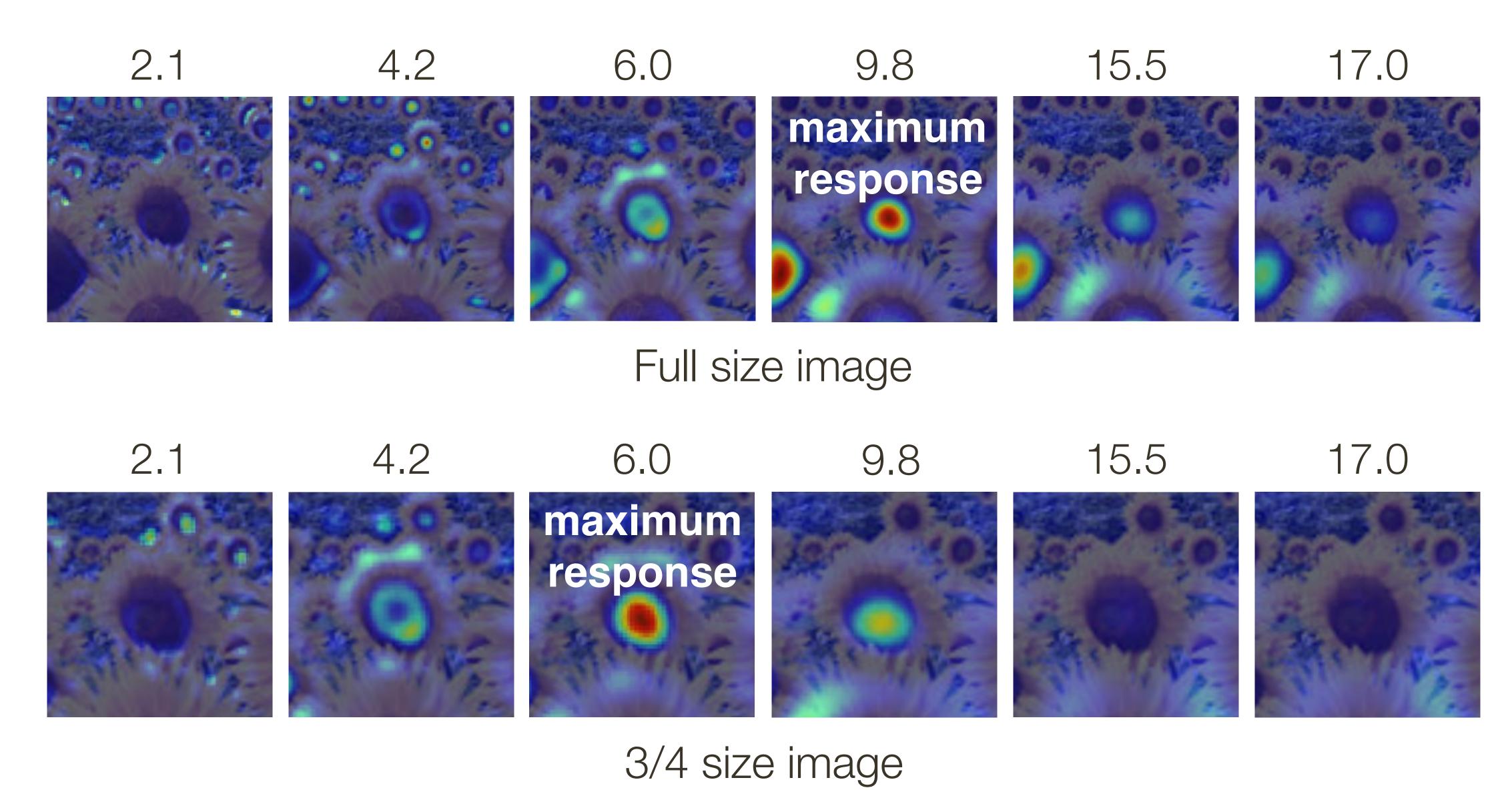




Optimal Scale



Optimal Scale



41

Implementation

```
For each level of the Gaussian pyramid compute feature response (e.g. Harris, Laplacian)
```

For each level of the Gaussian pyramid if local maximum and cross-scale save scale and location of feature (x,y,s)

Summary

A corner is a distinct 2D feature that can be localized reliably

Edge detectors perform poorly at corners

→ consider corner detection directly

Harris corner detection

- corners are places where intensity gradient direction takes on multiple distinct values
- interpret in terms of autocorrelation of local window
- translation and rotation invariant, but not scale invariant