
Lecture 8: Edge Detection (cont.)

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )



Menu for Today (January 29, 2018)
Topics: 

— Edge Detection 
— Marr / Hildreth and Canny Edges

Redings: 
— Today’s Lecture:  Forsyth & Ponce (2nd ed.) 5.1 - 5.2 
— Next Lecture:       Forsyth & Ponce (2nd ed.) 5.3.0 - 5.3.1 

Reminders: 
— Assignment 2: Face Detection in a Scaled Representation is February 8th 
— Midterm

— Image Boundaries 
— iClicker Quiz
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Today’s “fun” Example #1: Motion Illusion
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Today’s “fun” Example #1: Rotating Snakes Illusion
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Today’s “fun” Example #2: NCIS
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Today’s “fun” Example #2: LavaRAND



7

Today’s “fun” Example #2: LavaRAND



Template matching as (normalized) correlation  

Template matching is not robust to changes in  
— 2D spatial scale and 2D orientation 
— 3D pose and viewing direction 
— illumination  

Scaled representations facilitate: 
— template matching at multiple scales 
— efficient search for image-to-image correspondences  
— image analysis at multiple levels of detail  

A Gaussian pyramid reduces artifacts introduced when sub-sampling to 
coarser scales 
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Lecture 7: Re-cap
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Lecture 7: Re-cap

A (discrete) approximation is  

— “First forward difference” 
— Can be implemented as a convolution 
— Sensitive to noise: typically smooth the image prior to derivative estimation.
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Use the “first forward difference" to compute the image derivatives in X and Y 
directions.  

(Compute two arrays, one of        values and one of        values.)  

10

1 1 0.6 0.3 0 0

1 1 0.6 0.3 0 0

0 0 0 0 0 0

0 0 0 0 0 0

@f

@y
@f

@x

Lecture 7: Re-cap



Use the “first forward difference" to compute the image derivatives in X and Y 
directions.  

(Compute two arrays, one of        values and one of        values.)  
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A Sort Exercise: Derivative in Y Direction



Lecture 7: Re-cap

Physical properties of a 3D scene cause “edges” in an image:  
— depth discontinuity 
— surface orientation discontinuity 
— reflectance discontinuity  
— illumination boundaries  
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Lecture 7: Re-cap

Edge: a location with high gradient (derivative) 

Need smoothing to reduce noise prior to taking derivative  

Need two derivatives, in x and y direction  

We can use derivative of Gaussian filters 
— because differentiation is convolution, and  
— convolution is associative  

Let     denote convolution  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D ⌦ (G⌦ I(X,Y )) = (D ⌦G)⌦ I(X,Y )

⌦



The edge strength is given by the gradient magnitude: 

The gradient direction is given by: 

Lecture 7: Re-cap

14

The gradient of an image: 

The gradient points in the direction of most rapid increase of intensity: 

(how is this related to the direction of the edge?)



Sobel Edge Detector
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1. Use central differencing to compute gradient image (instead of first 
forward differencing). This is more accurate. 

2. Threshold to obtain edges 

Sobel Gradient Sobel EdgesOriginal Image

Thresholds are brittle, we can do better! 



Two Generic Approaches for Edge Detection
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Two generic approaches to edge point detection: 
— (significant) local extrema of a first derivative operator  
— zero crossings of a second derivative operator 



Marr / Hildreth Laplacian of Gaussian

A “zero crossings of a second derivative operator” approach  

Design Criteria:  

1. localization in space  

2. localization in frequency  

3. rotationally invariant  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Marr / Hildreth Laplacian of Gaussian
A “zero crossings of a second derivative operator” approach  

Steps:  
1. Gaussian for smoothing  

2. Laplacian (     ) for differentiation where  

3. Locate zero-crossings in the Laplacian of the Gaussian (         ) where  
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Here’s a 3D plot of the Laplacian of the Gaussian (         ) 

. . . with its characteristic “Mexican hat” shape
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Marr / Hildreth Laplacian of Gaussian

r2G
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Laplacian of Gaussian 
operator

Where is the edge?  Zero-crossings of bottom graph

1D Example: Continued

r2G
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Lets consider a row of pixels in an image:
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Image From: A. Campilho

Marr / Hildreth Laplacian of Gaussian



Marr / Hildreth Laplacian of Gaussian
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Image From: A. Campilho



Assignment 1: High Frequency Image
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original - smoothed 
(scaled by 4, offset +128)

smoothed  
(5x5 Gaussian)
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Assignment 1: High Frequency Image
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(scaled by 4, offset +128)
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Assignment 1: High Frequency Image
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Canny Edge Detector

A “local extrema of a first derivative operator” approach  

Design Criteria:  

1. good detection 
       — low error rate for omissions (missed edges)  
       — low error rate for commissions (false positive)  

2. good localization  

3. one (single) response to a given edge 
       — (i.e., eliminate multiple responses to a single edge) 
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Example: Edge Detection

27

filter
response

Question: How many edges are there?  

Question: What is the position of each edge? 
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filter
response

threshold

Question: How many edges are there?  

Question: What is the position of each edge? 

Example: Edge Detection



29

filter
response

threshold

Question: How many edges are there?  

Question: What is the position of each edge? 

Example: Edge Detection



Canny Edge Detector

Steps:  

1. Apply directional derivatives of Gaussian  

2. Compute gradient magnitude and gradient direction  

3. Non-maximum suppression  
    — thin multi-pixel wide “ridges” down to single pixel width  

4. Linking and thresholding 
    — Low, high edge-strength thresholds 
    — Accept all edges over low threshold that are connected to edge over high    
         threshold 
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Non-maxima Suppression
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Idea: suppress near-by similar detections to obtain one “true” result
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Slide Credit: Kristen Grauman

Idea: suppress near-by similar detections to obtain one “true” result

Non-maxima Suppression
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Slide Credit: Kristen Grauman

Idea: suppress near-by similar detections to obtain one “true” result

Non-maxima Suppression



Non-maxima Suppression
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Select the image maximum point across the width of the edge

Forsyth & Ponce (1st ed.) Figure 8.11
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Forsyth & Ponce (2nd ed.) Figure 5.5 left

Value at q must be larger than interpolated values at p and r

Non-maxima Suppression
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Forsyth & Ponce (2nd ed.) Figure 5.5 left

Value at q must be larger than interpolated values at p and r

Non-maxima Suppression



Example: Non-maxima Suppression
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Slide Credit: Christopher Rasmussen

Original Image Gradient Magnitude Non-maxima  
Suppression



Example
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Forsyth & Ponce (1st ed.) Figure 8.13 top
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Forsyth & Ponce (1st ed.) Figure 8.13 top Figure 8.13 bottom left 
Fine scale (          ), high threshold

Example

� = 1
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Example

Forsyth & Ponce (1st ed.) Figure 8.13 top Figure 8.13 bottom middle 
Fine scale (          ), high threshold� = 4
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Example

Forsyth & Ponce (1st ed.) Figure 8.13 top Figure 8.13 bottom right 
Fine scale (          ), low threshold  � = 4



Linking Edge Points
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Assume the marked point is an edge point. Take the normal to the gradient at 
that point and use this to predict continuation points (either r or s) 

Forsyth & Ponce (2nd ed.) Figure 5.5 right



Edge Hysteresis

One way to deal with broken edge chains is to use hysteresis  

Hysteresis: A lag or momentum factor  

Idea: Maintain two thresholds          and  
— Use khigh to find strong edges to start edge chain 
— Use klow to find weak edges which continue edge chain  

Typical ratio of thresholds is (roughly):  
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Canny Edge Detector
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Original  
Image

Strong  
Edges

Weak  
Edges

Strong +  
connected  
Weak Edges



How do humans perceive boundaries? 

Edges are a property of the 2D image.  

It is interesting to ask: How closely do image edges correspond to 
boundaries that humans perceive to be salient or significant?  
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"Divide the image into some number of segments, where the segments 
represent ’things’ or ’parts of things’ in the scene. The number of segments is 
up to you, as it depends on the image. Something between 2 and 30 is likely to 
be appropriate. It is important that all of the segments have approximately equal 
importance."  

(Martin et al. 2004) 

How do humans perceive boundaries? 
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Figure Credit: Martin et al. 2001

How do humans perceive boundaries? 
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How do humans perceive boundaries? 

Figure Credit: Martin et al. 2001
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Figure Credit: Szeliski Fig. 4.31. Original: Martin et al. 2004

Each image shows multiple (4-8) human-marked boundaries. Pixels are darker 
where more humans marked a boundary. 

How do humans perceive boundaries? 



Boundary Detection

We can formulate boundary detection as a high-level recognition task  
— Try to learn, from sample human-annotated images, which visual features or 
cues are predictive of a salient/significant boundary  

Many boundary detectors output a probability or confidence that a pixel is 
on a boundary  
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Boundary Detection: Example Approach

— Consider circular windows cut in half by an oriented line through the middle  

— Compare visual features on both sides of the cut line  

— If features are very different on the two sides, the cut line probably 
corresponds to a boundary  

— Notice this gives us an idea of the orientation of the boundary as well  
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Features: 
— Raw Intensity 
— Orientation Energy 
— Brightness Gradient 
— Color Gradient  
— Texture gradient

Image Raw 
Intensity

Orient 
Energy

Bright 
Grad

Color 
Grad

Texture 
Grad

Boundary Detection:

Figure Credit: Martin et al. 2004
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Boundary Detection: Example Approach

Figure Credit: Szeliski Fig. 4.33. Original: Martin et al. 2004



Summary
Physical properties of a 3D scene cause “edges” in an image:  
— depth discontinuity 
— surface orientation discontinuity 
— reflectance discontinuity  
— illumination boundaries  

Two generic approaches to edge detection: 
— local extrema of a first derivative operator → Canny 
— zero crossings of a second derivative operator → Marr/Hildreth  

Many algorithms consider “boundary detection” as a high-level 
recognition task and output a probability or confidence that a pixel is on a 
human-perceived boundary 
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