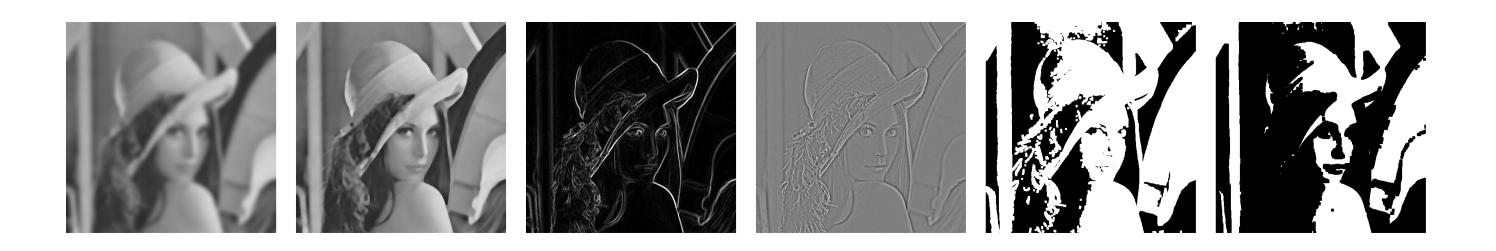


CPSC 425: Computer Vision



Lecture 5: Image Filtering (final)

(unless otherwise stated slides are taken or adopted from **Bob Woodham, Jim Little** and **Fred Tung**)

Menu for Today (January 17, 2018)

Topics:

— Non-linear Filters: Median, ReLU

Bilateral Filter

Redings:

- Today's Lecture: Forsyth & Ponce (2nd ed.) 4.4

- Next Lecture: Forsyth & Ponce (2nd ed.) 4.5

Reminders:

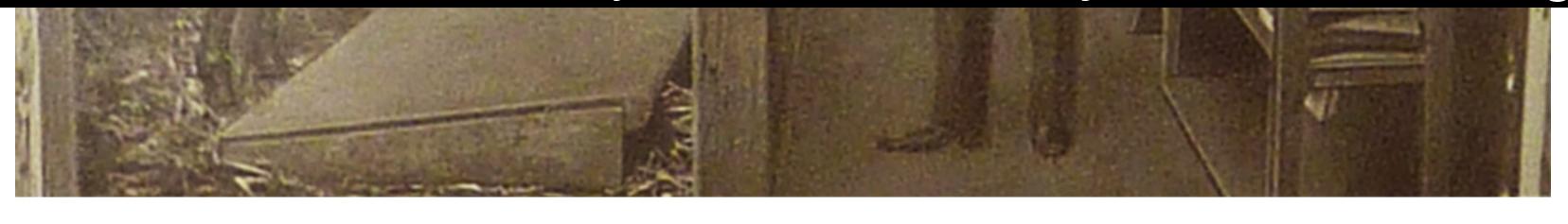
Assignment 1: Image Filtering and Hybrid Images due January 25th

Today's "fun" Example: Clever Hans

Hans could get 89% of the math questions right

Today's "fun" Example: Clever Hans

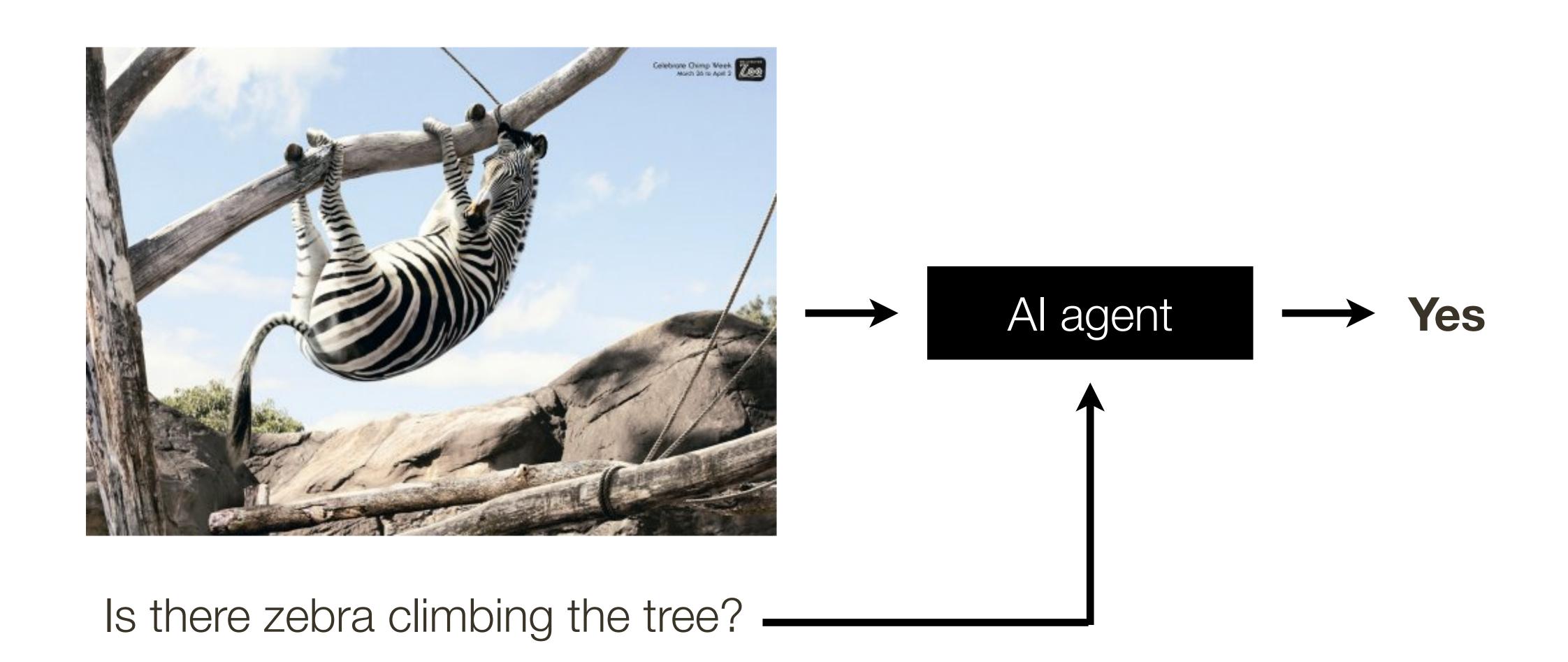
The course was **smart**, just not in the way van Osten thought!



Hans could get 89% of the math questions right

Clever DNN

Visual Question Answering



Lecture 4: Re-cap

Linear filtering (one intepretation):

- new pixels are a weighted sum of original pixel values
- "filter" defines weights

Linear filtering (another intepretation):

- each pixel influences the new value for itself and its neighbours
- "filter" specifies the influences

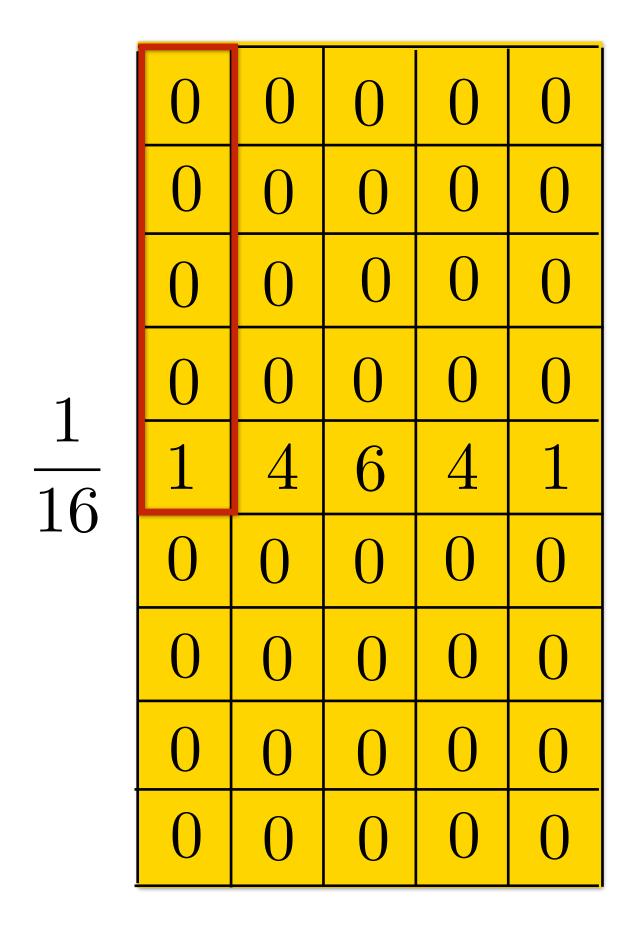
Lecture 4: Re-cap

We covered two additional linear filters: Gaussian, pillbox

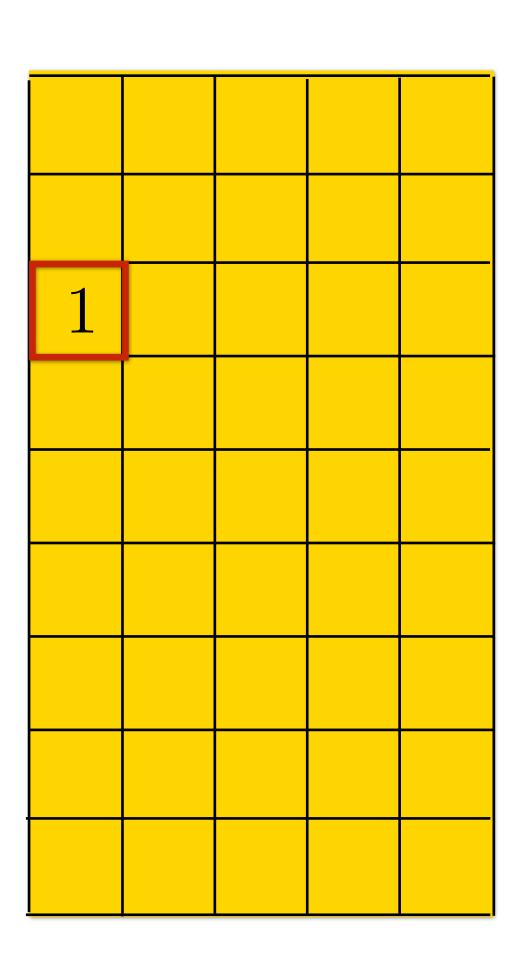
Separability (of a 2D filter) allows for more efficient implementation (as two 1D filters)

The Convolution Theorem: In **Fourier** space, convolution can be reduced to (complex) multiplication

Convolution is associative and symmetric (correlation is not in general)

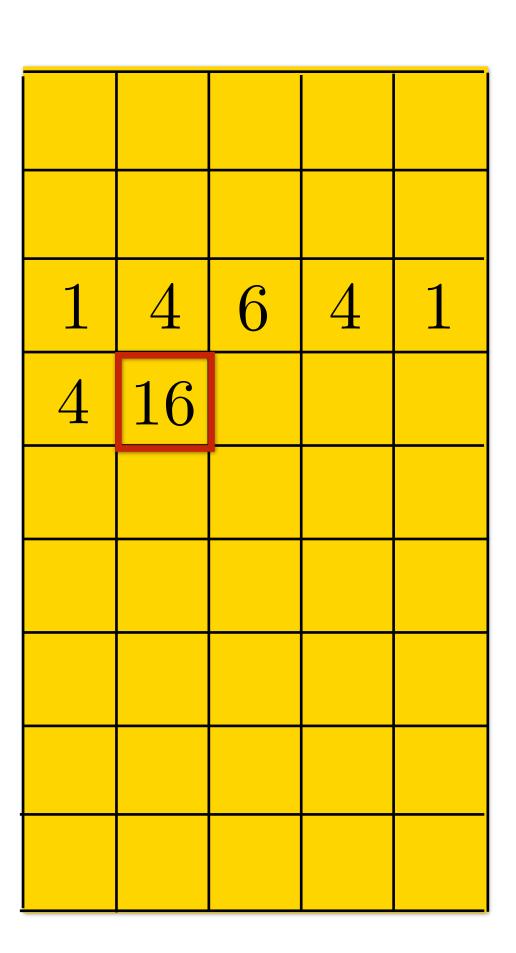


$$\frac{1}{4} = \frac{1}{256}$$



	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
1	0	0	0	0	0
$\frac{1}{16}$	1	4	6	4	1
10	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0

$$\otimes \frac{1}{16} = \frac{1}{256}$$



	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
1	0	0	0	0	0
$\frac{1}{16}$	1	4	6	4	1
10	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
'					

$$\otimes \frac{1}{16} = \frac{1}{256}$$

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1

	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
1	0	0	0	0	0
$\frac{1}{16}$	1	4	6	4	1
10	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
•					

$$> \frac{1}{16}$$

$$= \frac{1}{256}$$

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1

Non-linear Filters

We've seen that linear filters can perform a variety of image transformations

- shifting
- smoothing
- sharpening

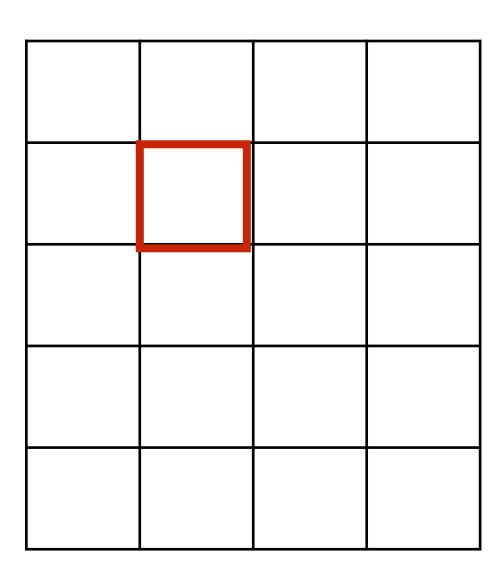
In some applications, better performance can be obtained by using **non-linear filters**.

For example, the median filter selects the **median** value from each pixel's neighborhood.

Take the median value of the pixels under the filter:

5	13	5	221
4	16	7	34
24	54	34	23
23	75	89	123
54	25	67	12

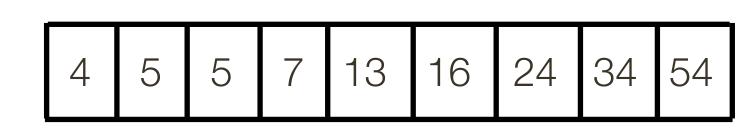
Image

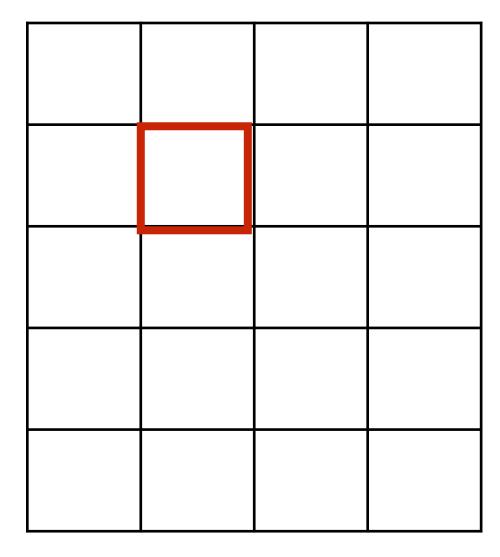


Dutput

Take the median value of the pixels under the filter:

5	13	5	221
4	16	7	34
24	54	34	23
23	75	89	123
54	25	67	12



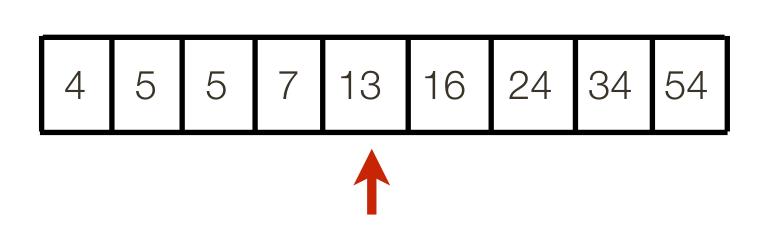


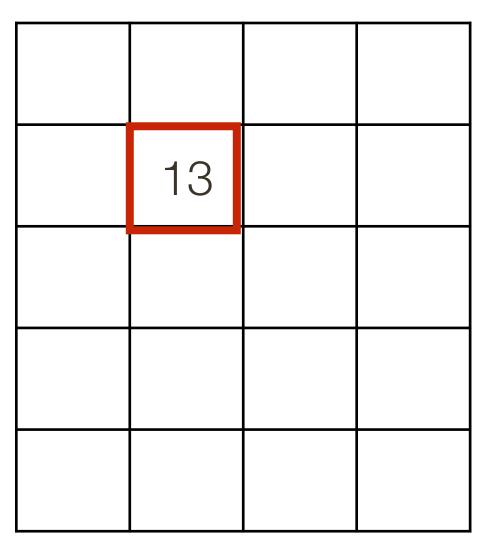
Image

Output

Take the median value of the pixels under the filter:

5	13	5	221
4	16	7	34
24	54	34	23
23	75	89	123
54	25	67	12





Image

Output

Effective at reducing certain kinds of noise, such as impulse noise (a.k.a 'salt and pepper' noise or 'shot' noise)

The median filter forces points with distinct values to be more like their neighbors

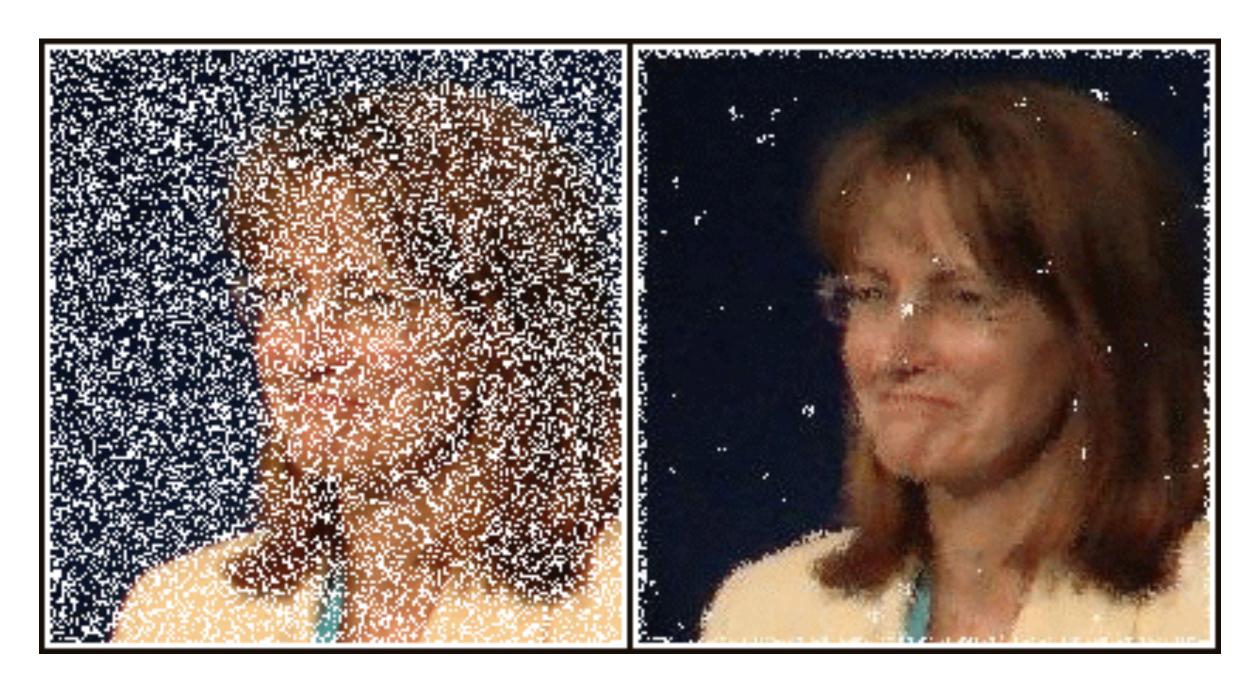


Image credit: https://en.wikipedia.org/wiki/Median_filter#/media/File:Medianfilterp.png

An edge-preserving non-linear filter

Like a Gaussian filter:

- The filter weights depend on spatial distance from the center pixel
- Pixels nearby (in space) should have greater influence than pixels far away

Unlike a Gaussian filter:

- The filter weights also depend on range distance from the center pixel
- Pixels with similar brightness value should have greater influence than pixels with dissimilar brightness value

Gaussian filter: weights of neighbor at a spatial offset (x,y) away from the center pixel I(X,Y) given by:

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2+y^2}{2\sigma^2}}$$

(with appropriate normalization)

Gaussian filter: weights of neighbor at a spatial offset (x, y) away from the center pixel I(X, Y) given by:

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2+y^2}{2\sigma^2}}$$

(with appropriate normalization)

Bilateral filter: weights of neighbor at a spatial offset (x, y) away from the center pixel I(X, Y) given by a product:

$$\exp^{-\frac{x^{2}+y^{2}}{2\sigma_{d}^{2}}} \exp^{-\frac{(I(X+x,Y+y)-I(X,Y))^{2}}{2\sigma_{r}^{2}}}$$

(with appropriate normalization)

Gaussian filter: weights of neighbor at a spatial offset (x,y) away from the center pixel I(X,Y) given by:

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2+y^2}{2\sigma^2}}$$

(with appropriate normalization)

Bilateral filter: weights of neighbor at a spatial offset (x,y) away from the center pixel I(X,Y) given by a product:

$$\exp^{-\frac{x^2+y^2}{2\sigma_d^2}} \in$$

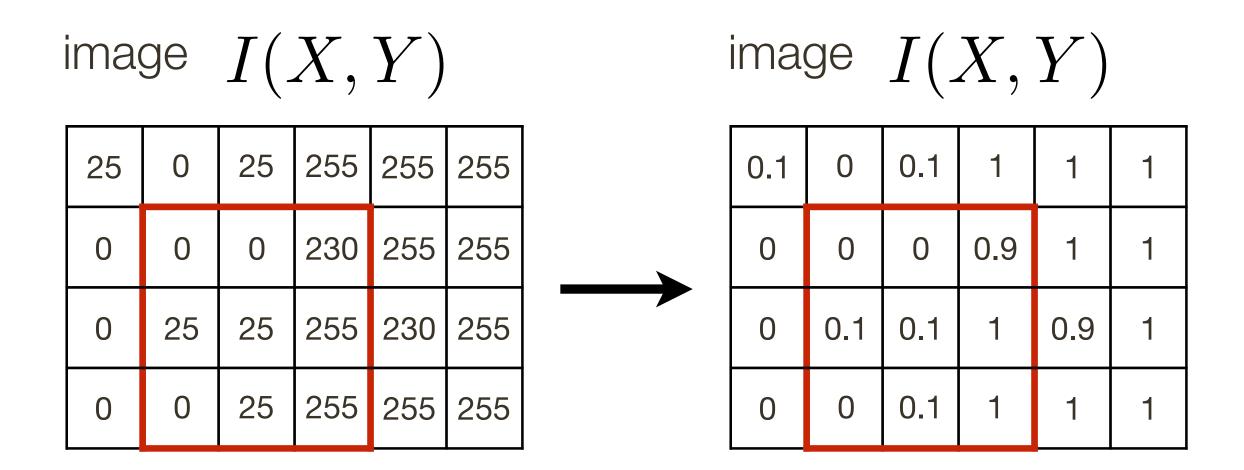
$$\exp^{-\frac{x^{2}+y^{2}}{2\sigma_{d}^{2}}} \exp^{-\frac{(I(X+x,Y+y)-I(X,Y))^{2}}{2\sigma_{r}^{2}}}$$

range kernel

(with appropriate normalization)

image I(X,Y)

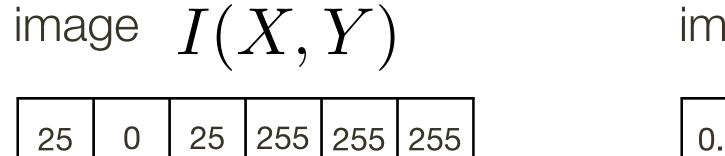
25	0	25	255	255	255
0	0	0	230	255	255
0	25	25	255	230	255
0	0	25	255	255	255





Domain Kernel $\sigma_d=0.45$

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08



25	0	25	255	255	255
0	0	0	230	255	255
0	25	25	255	230	255
0	0	25	255	255	255

image I(X,Y)

0.1	0	0.1	1	1	1
0	0	0	0.9	1	1
0	0.1	0.1	1	0.9	1
0	0	0.1	1	1	1

Range Kernel

$$\sigma_r = 0.45$$

0.98	0.98	0.2
1	1	0.1
0.98	1	0.1

(this is different for each locations in the image)

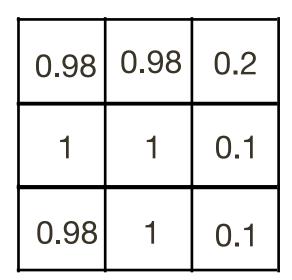
Domain Kernel

$$\sigma_d = 0.45$$

0.08	0.12	0.08
0.12	0.20	0.12
80.0	0.12	80.0

Range Kernel

 $\sigma_r = 0.45$



multiply

Range * Domain Kernel

0.08 0.12 0.02

0.12 0.20 0.01

0.08 0.12 0.01

(this is different for each locations in the image)

Domain Kernel

$$\sigma_d = 0.45$$

	0.08	0.12	0.08
	0.12	0.20	0.12
1	0.08	0.12	0.08

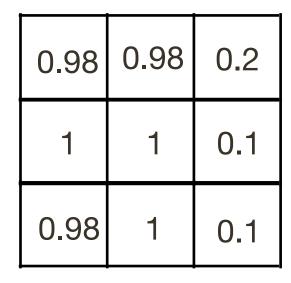


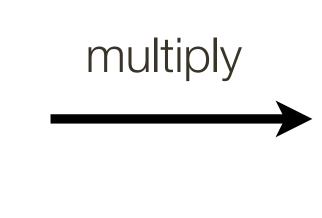
Domain Kernel $\sigma_d=0.45$

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08

Range Kernel

 $\sigma_r = 0.45$





Range * Domain Kernel

sum to 1	0.02	0.12	0.08
	0.01	0.20	0.12
	0.01	0.12	80.0

0.11	0.16	0.03
0.16	0.26	0.01
0.11	0.16	0.01

(this is different for each locations in the image)

Domain Kernel $\sigma_d=0.45$

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08

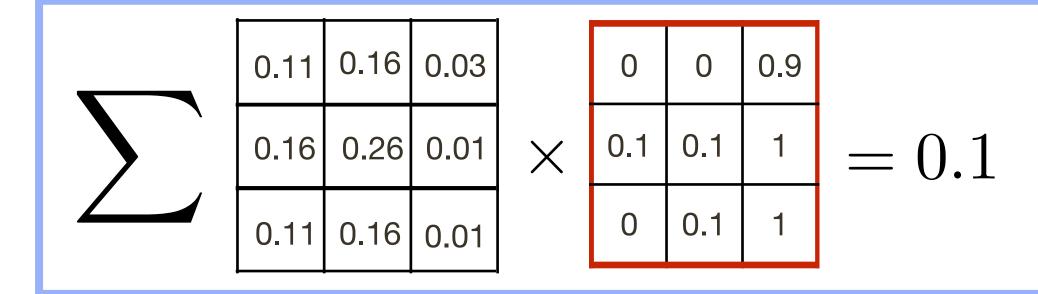
Range Kernel

 $\sigma_r = 0.45$

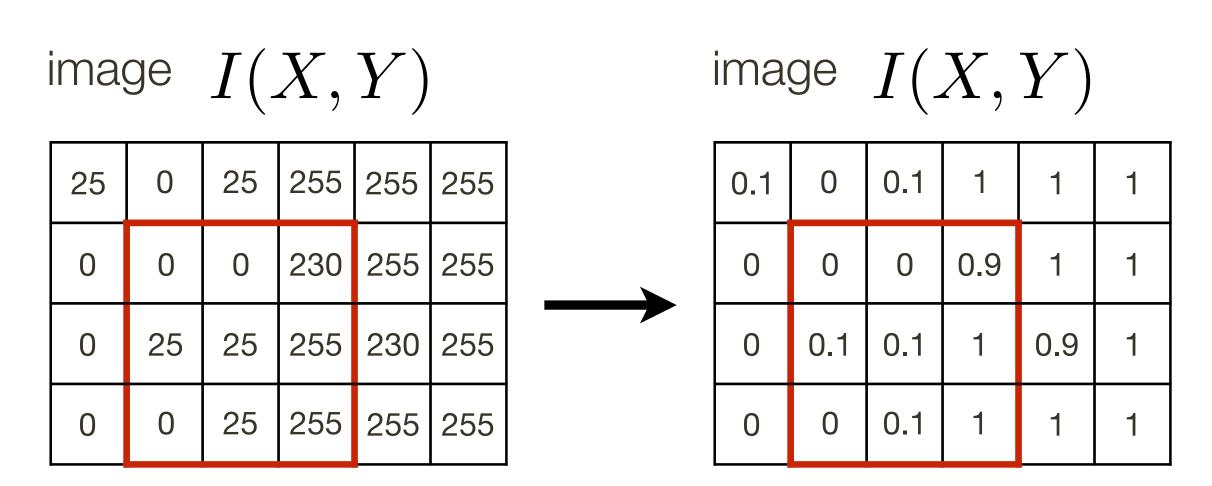
0.98	0.98	0.2
1	1	0.1
0.98	1	0.1

Range * Domain Kernel

(this is different for each locations in the image)

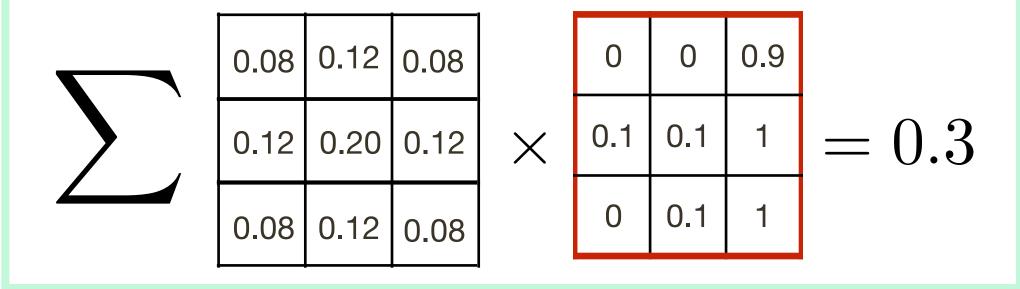


Bilateral Filter



Domain Kernel

$$\sigma_d = 0.45$$



Gaussian Filter (only)

Range Kernel

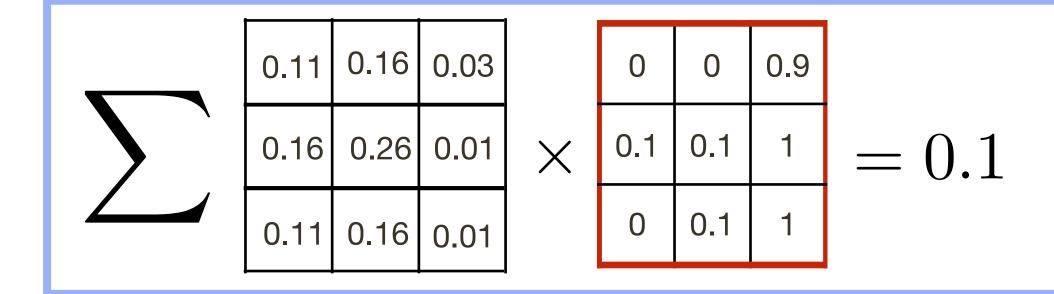
 $\sigma_r = 0.45$

0.98	0.98	0.2
1	1	0.1
0.98	1	0.1

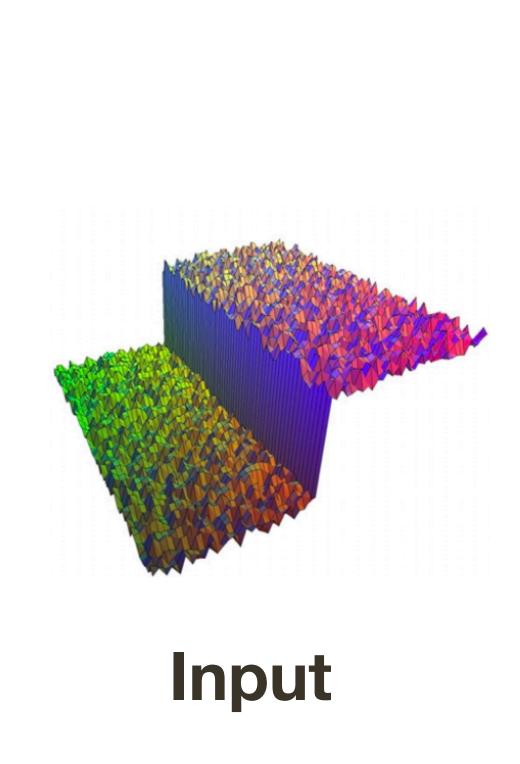
multiply	0.08	0.12	0.02
	0.12	0.20	0.01
	0.08	0.12	0.01

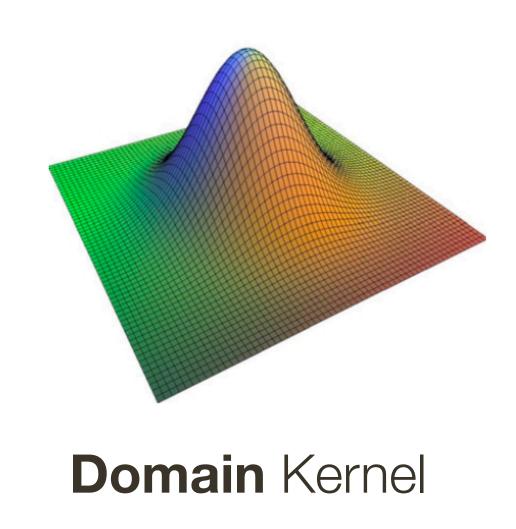
(this is different for each locations in the image)

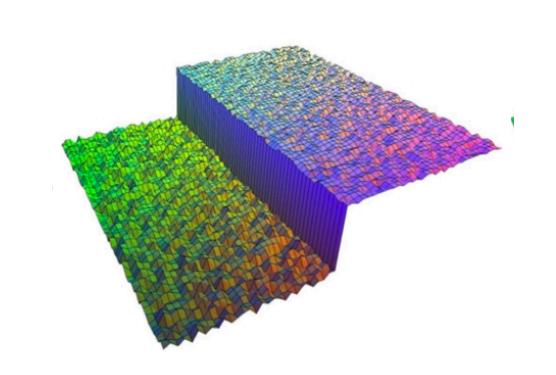
Range * Domain Kernel

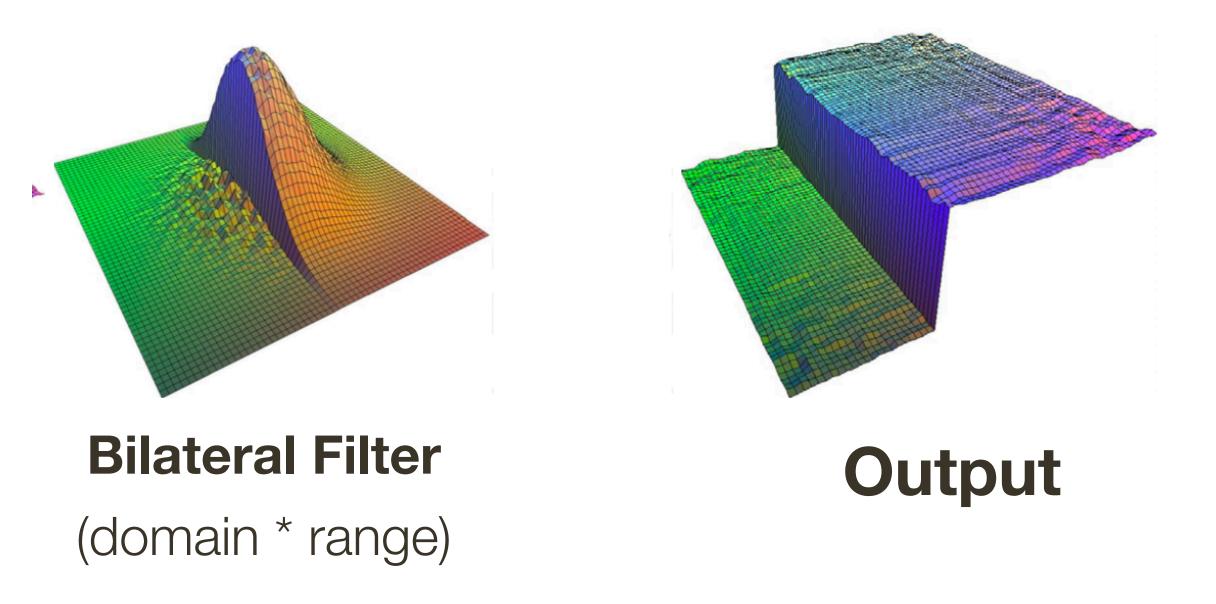


Bilateral Filter









Images from: Durand and Dorsey, 2002

Bilateral Filter Application: Denoising

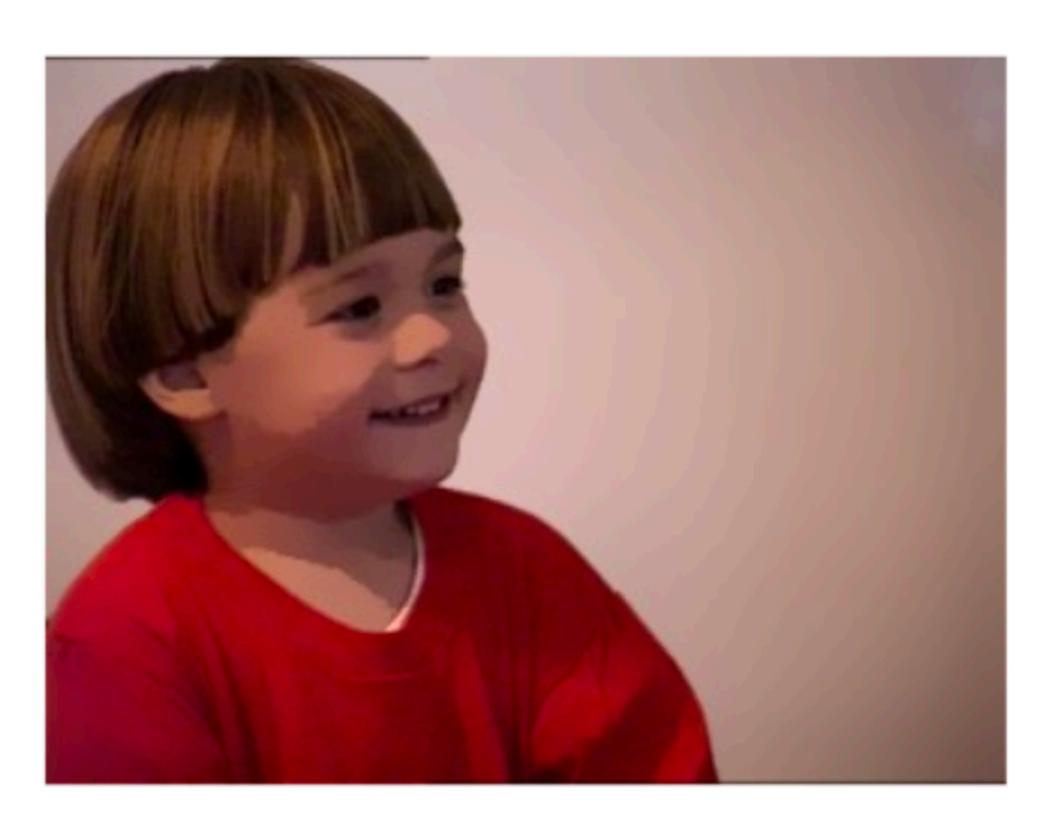
Noisy Image

Gaussian Filter

Bilateral Filter

Bilateral Filter Application: Cartooning

Original Image



After 5 iterations of Bilateral Filter

Bilateral Filter Application: Flash Photography

Non-flash images taken under low light conditions often suffer from excessive **noise** and **blur**

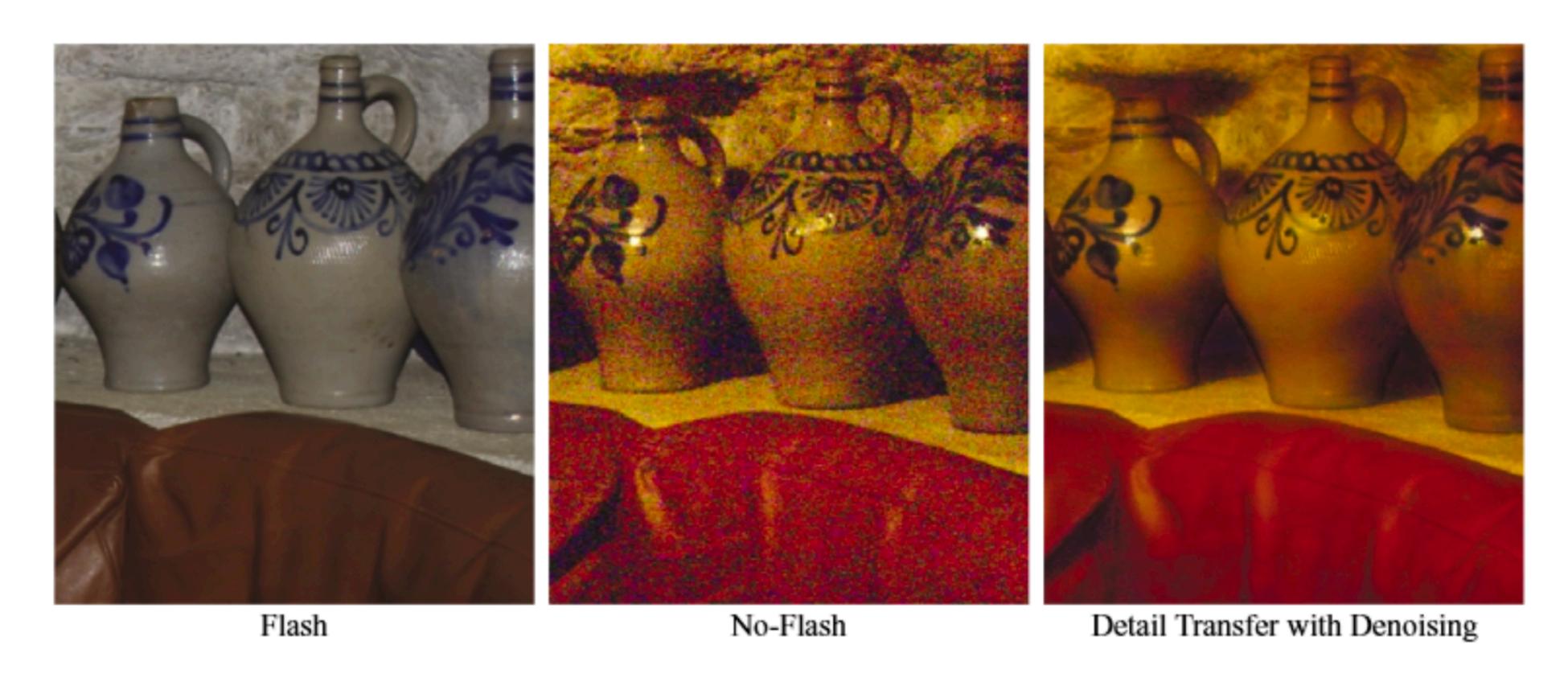
But there are problems with flash images:

- colour is often unnatural
- there may be strong shadows or specularities

Idea: Combine flash and non-flash images to achieve better exposure and colour balance, and to reduce noise

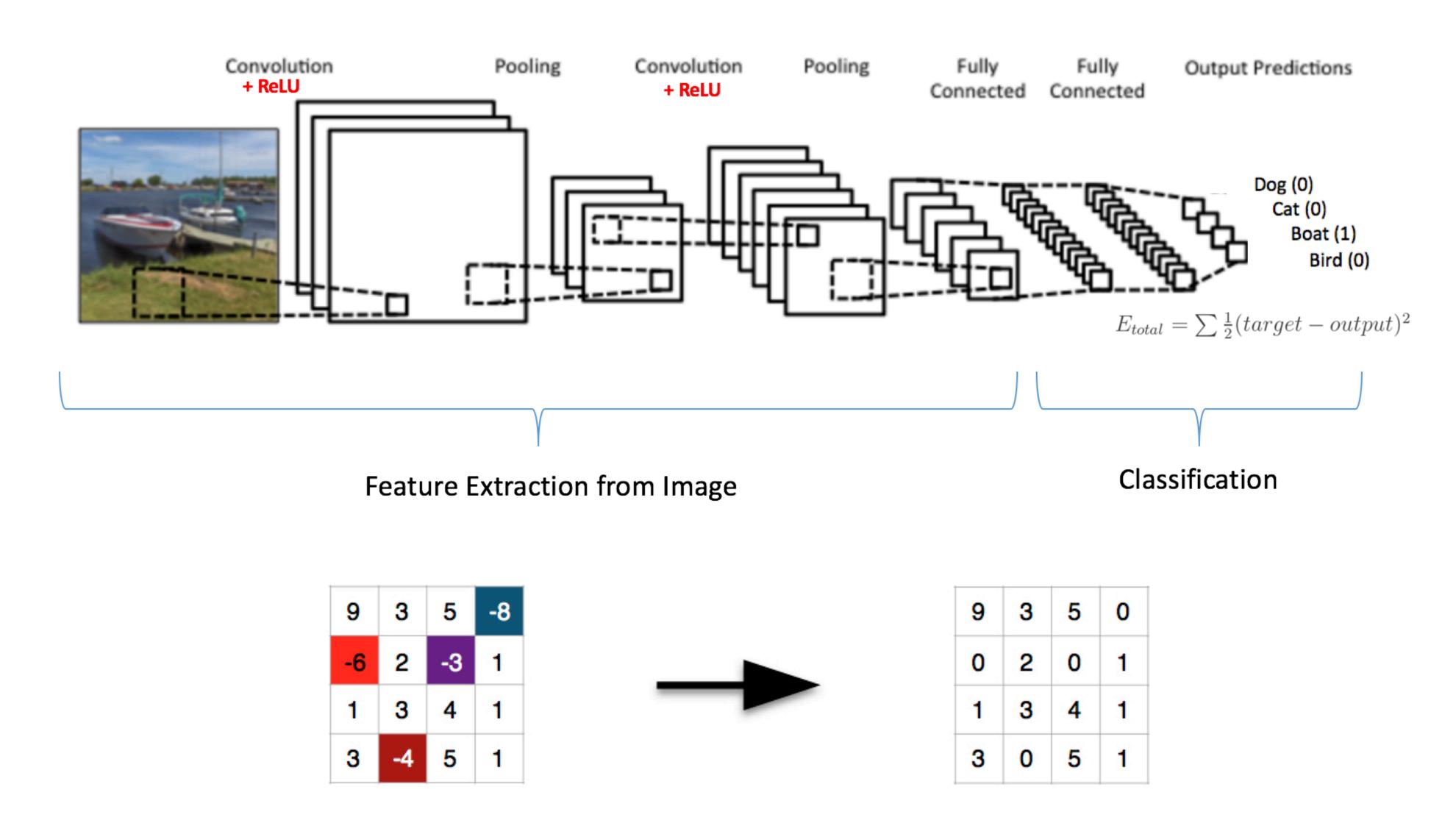
Bilateral Filter Application: Flash Photography

System using 'joint' or 'cross' bilateral filtering:



'Joint' or 'Cross' bilateral: Range kernel is computed using a separate guidance image instead of the input image

Aside: Linear Filter with ReLU



Result of: Linear Image Filtering

After Non-linear ReLU

Summary

We covered two three non-linear filters: Median, Bilateral, ReLU

Separability (of a 2D filter) allows for more efficient implementation (as two 1D filters)

Convolution is associative and symmetric

Convolution of a Gaussian with a Gaussian is another Gaussian

The **median filter** is a non-linear filter that selects the median in the neighbourhood

The **bilateral filter** is a non-linear filter that considers both spatial distance and range (intensity) distance, and has edge-preserving properties