
Lecture 4: Image Filtering (continued)

CPSC 425: Computer Vision

(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Menu for Today (January 15, 2019)
Topics:

— Gaussian and Pillbox filters
— Separability

Redings:
— Today’s Lecture: none
— Next Lecture: [Optional] Forsyth & Ponce (2nd ed.) 4.4

Reminders:
— Assignment 1: Image Filtering and Hybrid Images due January 25th

— The Convolution Theorem
— Non-linear filters

2

3

Today’s “fun” Example: Rolling Shutter

4

Today’s “fun” Example: Rolling Shutter

Quiz 0 — Test Quiz

A) True
B) False

5

I am in class today:

— The correlation of and is:

Lecture 3: Re-cap

6

— Visual interpretation: Superimpose the filter on the image at ,
perform an element-wise multiply, and sum up the values

— Convolution is like correlation except filter “flipped”

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

 if then correlation = convolution.F (X,Y) = F (�X,�Y)

6

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

Ways to handle boundaries
– Ignore/discard. Make the computation undefined for top/bottom k rows and left/right-most k columns
– Pad with zeros. Return zero whenever a value of I is required beyond the image bounds
– Assume periodicity. Top row wraps around to the bottom row; leftmost column wraps around to

rightmost column.

Simple examples of filtering:
— copy, shift, smoothing, sharpening

Linear filter properties:
— superposition, scaling, shift invariance

Characterization Theorem: Any linear, shift-invariant operation can be
expressed as a convolution

7

Lecture 3: Re-cap

Example 6: Smoothing with a Gaussian

8

Idea: Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

Forsyth & Ponce (2nd ed.)
Figure 4.2

Standard Deviation

Example 6: Smoothing with a Gaussian

9

Idea: Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

Forsyth & Ponce (2nd ed.)
Figure 4.2

10

Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp

� 1
2�2G�(�1, 0) =

1

2⇡�2
exp

� 1
2�2

G�(0, 1) =
1

2⇡�2
exp

� 1
2�2

G�(0,�1) =

1

2⇡�2
exp

� 1
2�2

G�(1, 1) =
1

2⇡�2
exp

� 2
2�2

G�(1,�1) =

1

2⇡�2
exp

� 2
2�2G�(�1,�1) =

1

2⇡�2
exp

� 2
2�2

G�(�1, 1) =
1

2⇡�2
exp

� 2
2�2

11

Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp

� 1
2�2G�(�1, 0) =

1

2⇡�2
exp

� 1
2�2

G�(0, 1) =
1

2⇡�2
exp

� 1
2�2

G�(0,�1) =

1

2⇡�2
exp

� 1
2�2

G�(1, 1) =
1

2⇡�2
exp

� 2
2�2

G�(1,�1) =

1

2⇡�2
exp

� 2
2�2G�(�1,�1) =

1

2⇡�2
exp

� 2
2�2

G�(�1, 1) =
1

2⇡�2
exp

� 2
2�2

With :

12

Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp

� 1
2�2G�(�1, 0) =

1

2⇡�2
exp

� 1
2�2

G�(0, 1) =
1

2⇡�2
exp

� 1
2�2

G�(0,�1) =

1

2⇡�2
exp

� 1
2�2

G�(1, 1) =
1

2⇡�2
exp

� 2
2�2

G�(1,�1) =

1

2⇡�2
exp

� 2
2�2G�(�1,�1) =

1

2⇡�2
exp

� 2
2�2

G�(�1, 1) =
1

2⇡�2
exp

� 2
2�2

0.059 0.097 0.059

0.097 0.159 0.097

0.059 0.097 0.059

With :

13

Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp

� 1
2�2G�(�1, 0) =

1

2⇡�2
exp

� 1
2�2

G�(0, 1) =
1

2⇡�2
exp

� 1
2�2

G�(0,�1) =

1

2⇡�2
exp

� 1
2�2

G�(1, 1) =
1

2⇡�2
exp

� 2
2�2

G�(1,�1) =

1

2⇡�2
exp

� 2
2�2G�(�1,�1) =

1

2⇡�2
exp

� 2
2�2

G�(�1, 1) =
1

2⇡�2
exp

� 2
2�2

0.059 0.097 0.059

0.097 0.159 0.097

0.059 0.097 0.059

What happens if is larger?� = 1

With :

14

Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp

� 1
2�2G�(�1, 0) =

1

2⇡�2
exp

� 1
2�2

G�(0, 1) =
1

2⇡�2
exp

� 1
2�2

G�(0,�1) =

1

2⇡�2
exp

� 1
2�2

G�(1, 1) =
1

2⇡�2
exp

� 2
2�2

G�(1,�1) =

1

2⇡�2
exp

� 2
2�2G�(�1,�1) =

1

2⇡�2
exp

� 2
2�2

G�(�1, 1) =
1

2⇡�2
exp

� 2
2�2

What happens if is larger?� = 1

— More blur

With :

15

Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp

� 1
2�2G�(�1, 0) =

1

2⇡�2
exp

� 1
2�2

G�(0, 1) =
1

2⇡�2
exp

� 1
2�2

G�(0,�1) =

1

2⇡�2
exp

� 1
2�2

G�(1, 1) =
1

2⇡�2
exp

� 2
2�2

G�(1,�1) =

1

2⇡�2
exp

� 2
2�2G�(�1,�1) =

1

2⇡�2
exp

� 2
2�2

G�(�1, 1) =
1

2⇡�2
exp

� 2
2�2

0.059 0.097 0.059

0.097 0.159 0.097

0.059 0.097 0.059

What happens if is larger?� = 1

What happens if is smaller?� = 1

With :

16

Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp

� 1
2�2G�(�1, 0) =

1

2⇡�2
exp

� 1
2�2

G�(0, 1) =
1

2⇡�2
exp

� 1
2�2

G�(0,�1) =

1

2⇡�2
exp

� 1
2�2

G�(1, 1) =
1

2⇡�2
exp

� 2
2�2

G�(1,�1) =

1

2⇡�2
exp

� 2
2�2G�(�1,�1) =

1

2⇡�2
exp

� 2
2�2

G�(�1, 1) =
1

2⇡�2
exp

� 2
2�2

What happens if is larger?� = 1

What happens if is smaller?� = 1

— Less blur

Forsyth & Ponce (2nd ed.) Figure 4.1 (left and right)

17

Example 6: Smoothing with a Gaussian

Box vs. Gaussian Filter

18

7x7 Gaussian

7x7 box

original

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Fun: How to get shadow effect?

19

University of
British

Columbia

Adopted from: Ioannis (Yannis) Gkioulekas (CMU)

Fun: How to get shadow effect?

20

Blur with a Gaussian kernel, then compose the blurred image with the original
(with some offset)

Adopted from: Ioannis (Yannis) Gkioulekas (CMU)

University of
British

Columbia

With :

21

Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp

� 1
2�2G�(�1, 0) =

1

2⇡�2
exp

� 1
2�2

G�(0, 1) =
1

2⇡�2
exp

� 1
2�2

G�(0,�1) =

1

2⇡�2
exp

� 1
2�2

G�(1, 1) =
1

2⇡�2
exp

� 2
2�2

G�(1,�1) =

1

2⇡�2
exp

� 2
2�2G�(�1,�1) =

1

2⇡�2
exp

� 2
2�2

G�(�1, 1) =
1

2⇡�2
exp

� 2
2�2

0.059 0.097 0.059

0.097 0.159 0.097

0.059 0.097 0.059

What is the problem with this filter?

With :

22

Example 6: Smoothing with a Gaussian
Quantized an truncated 3x3 Gaussian filter:

� = 1

G�(0, 0) =
1

2⇡�2 G�(1, 0) =
1

2⇡�2
exp

� 1
2�2G�(�1, 0) =

1

2⇡�2
exp

� 1
2�2

G�(0, 1) =
1

2⇡�2
exp

� 1
2�2

G�(0,�1) =

1

2⇡�2
exp

� 1
2�2

G�(1, 1) =
1

2⇡�2
exp

� 2
2�2

G�(1,�1) =

1

2⇡�2
exp

� 2
2�2G�(�1,�1) =

1

2⇡�2
exp

� 2
2�2

G�(�1, 1) =
1

2⇡�2
exp

� 2
2�2

0.059 0.097 0.059

0.097 0.159 0.097

0.059 0.097 0.059

What is the problem with this filter?

truncated too much

does not sum to 1

23

σ σσσ σσσσ

68%

99.99%

99.7%

95%

Gaussian: Area Under the Curve

With :

24

Example 6: Smoothing with a Gaussian

� = 1 0.059 0.097 0.059

0.097 0.159 0.097

0.059 0.097 0.059

Better version of the Gaussian filter:

In general, you want the Gaussian filter to capture , for => 7x7 filter

— sums to 1 (normalized)
— captures ±2�

±3� � = 1

Efficient Implementation: Separability

A 2D function of x and y is separable if it can be written as the product of two
functions, one a function only of x and the other a function only of y

Both the 2D box filter and the 2D Gaussian filter are separable

Both can be implemented as two 1D convolutions:
— First, convolve each row with a 1D filter
— Then, convolve each column with a 1D filter
— Aside: or vice versa

The 2D Gaussian is the only (non trivial) 2D function that is both separable and
rotationally invariant.

25

Separability: Box Filter Example

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 30 60 90 90 90 60 30
0 30 60 90 90 90 60 30
0 30 30 60 60 90 60 30
0 30 60 90 90 90 60 30
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
30 30 30 30 0 0 0 0
0 0 0 0 0 0 0 0

1 1 11

3

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image

filter

0 10 20 30 30 30 20 10
0 20 40 60 60 60 40 20
0 30 50 80 80 90 60 30
0 30 50 80 80 90 60 30
0 20 30 50 50 60 40 20
0 10 20 30 30 30 20 10
10 10 10 10 0 0 0 0
10 30 10 10 0 0 0 0

1
1
1

1

3

filter

1 1 1
1 1 1
1 1 1

1

9

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

filter
F (X,Y) = F (X)F (Y) 0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20
0 30 50 80 80 90 60 30
0 30 50 80 80 90 60 30
0 20 30 50 50 60 40 20
0 10 20 30 30 30 20 10
10 10 10 10 0 0 0 0
10 30 10 10 0 0 0 0

I 0(X,Y)
output

F (X,Y) = F (X)F (Y) F (X,Y) = F (X)F (Y)

Se
pa

ra
bl

e
St

an
da

rd
 (3

x3
)

27

Efficient Implementation: Separability
For example, recall the 2D Gaussian:

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

=

✓
1p
2⇡�

exp

� x

2

2�2

◆✓
1p
2⇡�

exp

� y

2

2�2

◆

The 2D Gaussian can be expressed as a product of two functions, one a
function of x and another a function of y

28

Efficient Implementation: Separability
For example, recall the 2D Gaussian:

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

=

✓
1p
2⇡�

exp

� x

2

2�2

◆✓
1p
2⇡�

exp

� y

2

2�2

◆

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

=

✓
1p
2⇡�

exp

� x

2

2�2

◆✓
1p
2⇡�

exp

� y

2

2�2

◆

The 2D Gaussian can be expressed as a product of two functions, one a
function of x and another a function of y

function of x function of y

29

Efficient Implementation: Separability
For example, recall the 2D Gaussian:

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

=

✓
1p
2⇡�

exp

� x

2

2�2

◆✓
1p
2⇡�

exp

� y

2

2�2

◆

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

=

✓
1p
2⇡�

exp

� x

2

2�2

◆✓
1p
2⇡�

exp

� y

2

2�2

◆

The 2D Gaussian can be expressed as a product of two functions, one a
function of x and another a function of y

In this case the two functions are (identical) 1D Gaussians

function of x function of y

30

At each pixel, , there are multiplications

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

There are pixels in

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

Total: multiplicationsm2 ⇥ n2

Naive implementation of 2D Gaussian:

Efficient Implementation: Separability

31

At each pixel, , there are multiplications

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

There are pixels in

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

Total: multiplicationsm2 ⇥ n2

Naive implementation of 2D Gaussian:

Separable 2D Gaussian:

Efficient Implementation: Separability

Total: multiplications2m⇥ n2

32

At each pixel, , there are multiplications

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

There are pixels in

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

Total: multiplicationsm2 ⇥ n2

At each pixel, , there are multiplications
I(X,Y)

F (X,Y)
n⇥ n
m⇥m
m = 5

There are pixels in

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

2m

Naive implementation of 2D Gaussian:

Separable 2D Gaussian:

Efficient Implementation: Separability

The scaling constant, , ensures that the area of the filter is one

33

Example 7: Smoothing with a Pillbox

Let the radius (i.e., half diameter) of the filter be

In a contentious domain, a 2D (circular) pillbox filter, , is defined as:

f(x, y) =

1

⇡r

2

⇢
1 if x

2
+ y

2 r

2

0 otherwise

f(x, y) =

1

⇡r

2

⇢
1 if x

2
+ y

2 r

2

0 otherwise

1

⇡r2

r

= +

Recall that the 2D Gaussian is the only (non trivial) 2D function that is both
separable and rotationally invariant.

A 2D pillbox is rotationally invariant but not separable.

There are occasions when we want to convolve an image with a 2D pillbox. Thus,
it worth exploring possibilities for efficient implementation.

34

Example 7: Smoothing with a Pillbox

35

Example 7: Smoothing with a Pillbox

= +

A 2D box filter can be expressed as the sum of a 2D pillbox and some “extra
corner bits”

= −

36

Example 7: Smoothing with a Pillbox

Therefore, a 2D pillbox filter can be expressed as the difference of a 2D box
filter and those same “extra corner bits”

Implementing convolution with a 2D pillbox filter as the difference between
convolution with a box filter and convolution with the “extra corner bits” filter
allows us to take advantage of the separability of a box filter

Further, we can postpone scaling the output to a single, final step so that
convolution involves filters containing all 0’s and 1’s 
— This means the required convolutions can be implemented without any
multiplication at all

37

Example 7: Smoothing with a Pillbox

= −

38

Example 7: Smoothing with a Pillbox

Original 11 x 11 Pillbox

Speeding Up Convolution (The Convolution Theorem)

Let z be the product of two numbers, x and y, that is,

Taking logarithms of both sides, one obtains

Therefore.

Interpretation: At the expense of two ln() and one exp() computations,
multiplication is reduced to admission

39

z = xy

ln z = lnx+ ln y

z = exp

ln z

= exp

(ln x+ln y)

Speeding Up Convolution (The Convolution Theorem)

Let z be the product of two numbers, x and y, that is,

Taking logarithms of both sides, one obtains

Therefore.

Interpretation: At the expense of two ln() and one exp() computations,
multiplication is reduced to admission

40

z = xy

ln z = lnx+ ln y

z = exp

ln z

= exp

(ln x+ln y)

Speeding Up Convolution (The Convolution Theorem)

Let z be the product of two numbers, x and y, that is,

Taking logarithms of both sides, one obtains

Therefore.

Interpretation: At the expense of two ln() and one exp() computations,
multiplication is reduced to admission

41

z = xy

ln z = lnx+ ln y

z = exp

ln z

= exp

(ln x+ln y)

Speeding Up Convolution (The Convolution Theorem)

Let z be the product of two numbers, x and y, that is,

Taking logarithms of both sides, one obtains

Therefore.

Interpretation: At the expense of two ln() and one exp() computations,
multiplication is reduced to admission

42

z = xy

ln z = lnx+ ln y

z = exp

ln z

= exp

(ln x+ln y)

Speeding Up Rotation

Another analogy: 2D rotation of a point by an angle about the origin

The standard approach, in Euclidean coordinates, involves a matrix
multiplication

Suppose we transform to polar coordinates

Rotation becomes addition, at expense of one polar coordinate transform and
one inverse polar coordinate transform

43

x

0

y

0

�
=

cos↵ � sin↵

sin↵ cos↵

�
x

y

�

(x, y) ! (⇢, ✓) ! (⇢, ✓ + ↵) ! (x0
, y

0)

(x, y) ! (⇢, ✓) ! (⇢, ✓ + ↵) ! (x0
, y

0)

44

Speeding Up Convolution (The Convolution Theorem)

Gonzales & Woods (3rd ed.) Figure 2.39

Similarly, some image processing operations become cheaper in a
transform domain

45

Speeding Up Convolution (The Convolution Theorem)

Convolution Theorem:

Let

then

where , , and are Fourier transforms of ,

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)
i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)
i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

and

At the expense of two Fourier transforms and one inverse Fourier transform,
convolution can be reduced to (complex) multiplication

What follows is for fun

(you will NOT be tested on this)

46

Fourier Transform (you will NOT be tested on this)

47

Fourier’s claim: Add enough of these to get any periodic signal you want!

Basic building block:

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Fourier Transform (you will NOT be tested on this)

48

Fourier’s claim: Add enough of these to get any periodic signal you want!

amplitude

angular
frequency

variable
phase

sinusoid

Basic building block:

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

??

49

How would you generate this function?

= +

Fourier Transform (you will NOT be tested on this)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

?

50

How would you generate this function?

?

Fourier Transform (you will NOT be tested on this)

= +

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

51

How would you generate this function?

? ?

Fourier Transform (you will NOT be tested on this)

= +

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

52

How would you generate this function?

? ?

Fourier Transform (you will NOT be tested on this)

= +

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

53

+

square wave

≈

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

??

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

54

=

+? ?

square wave

≈

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

55

=

+

square wave

≈

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

56

=

+

square wave

≈

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

57

=

+

square wave

≈

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

How would you
express this

mathematically?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

58

=

square wave

Fourier Transform (you will NOT be tested on this)

How would you generate this function?

infinite sum of sine waves

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Fourier Transform (you will NOT be tested on this)

59

Fourier’s claim: Add enough of these to get any periodic signal you want!

Basic building block:

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

60

Fourier Transform (you will NOT be tested on this)

Image from: Numerical Simulation and Fractal Analysis of Mesoscopic Scale Failure in Shale Using Digital Images

61

amplitude phase

Fourier Transform (you will NOT be tested on this)

Forsyth & Ponce (2nd ed.) Figure 4.6

62

amplitude phase

Fourier Transform (you will NOT be tested on this)

Forsyth & Ponce (2nd ed.) Figure 4.6

cheetah phase
with zebra
amplitude

zebra phase
with cheetah

amplitude

What preceded was for fun

(you will NOT be tested on it)

63

64

Speeding Up Convolution (The Convolution Theorem)

Convolution Theorem:

Let

then

where , , and are Fourier transforms of ,

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)
i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)
i

0(x, y) = f(x, y)⌦ i(x, y)

I 0(w
x

, w

y

) = F(w
x

, w

y

) I(w
x

, w

y

)

and

At the expense of two Fourier transforms and one inverse Fourier transform,
convolution can be reduced to (complex) multiplication

Cost of FFT/IFFT for image:
Cost of FFT/IFFT for filter:
Cost of convolution:

65

Speeding Up Convolution (The Convolution Theorem)

At each pixel, , there are multiplications

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

There are pixels in

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

Total: multiplicationsm2 ⇥ n2

General implementation of convolution:

O(m2
logm)

O(n2
log n)

Convolution if FFT space:

O(n2)

Linear Filters: Properties (recall Lecture 3)

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))⌦ k F1 F2 F I(X,Y)

(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

Let denote convolution. Let be a digital image

Superposition: Let and be digital filters

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

Scaling: Let be digital filter and let be a scalar

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

Shift Invariance: Output is local (i.e., no dependence on absolute position)

An operation is linear if it satisfies both superposition and scaling
66

— Convolution is symmetric. That is,

Linear Filters: Additional Properties

67

Let denote convolution. Let be a digital image. Let F and G be
digital filters
⌦ k F1 F2 F I(X,Y)

(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

G⌦ (F ⌦ I(X,Y)) = (G⌦ F)⌦ I(X,Y)

(G⌦ F)⌦ I(X,Y) = (F ⌦G)⌦ I(X,Y)

— Convolution is associative. That is,

Convolving with filter F and then convolving the result with filter G can
be achieved in single step, namely convolving with filter G⌦ F = F ⌦G

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

(G⌦ F)⌦ I(X,Y) = (G⌦ F)⌦ I(X,Y)

Note: Correlation, in general, is not associative.

Example: Two Box Filters

68

3x3 Box 3x3 Box

filter = boxfilter(3)  
signal.correlate2d(filter, filter,′ full′)

69

Example: Two Box Filters

1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

0 0

0 0

0 0

0 0

0 0

0 0

Treat one filter as padded “image”

3x3 Box

3x3 Box

Output

=
1

81
⌦

1

1

9
1

9

70

Example: Two Box Filters

1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

0 0

0 0

0 0

0 0

0 0

0 0

3x3 Box

3x3 Box

Output

=
1

81
⌦

1 2

1

9
1

9

Treat one filter as padded “image”

71

Example: Two Box Filters

1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

0 0

0 0

0 0

0 0

0 0

0 0

3x3 Box

3x3 Box

Output

=
1

81
⌦

1 2

1

9
1

9

3

Treat one filter as padded “image”

72

Example: Two Box Filters

1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

0 0

0 0

0 0

0 0

0 0

0 0

3x3 Box

3x3 Box

Output

=
1

81
⌦

1 2

1

9
1

9

3 2 1

2 4 6

Treat one filter as padded “image”

73

Example: Two Box Filters

1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

0 0

0 0

0 0

0 0

0 0

0 0

3x3 Box

3x3 Box

Output

=
1

81
⌦

1 2

1

9
1

9

3 2 1

2 4 6 4 2

Treat one filter as padded “image”

3 6 9 6 3

2 4 6 4 2

1 2 3 2 1

74

Example: Two Box Filters

1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

0 0

0 0

0 0

0 0

0 0

0 0

3x3 Box

3x3 Box

Output

=
1

81
⌦

1 2

1

9
1

9

3 2 1

2 4 6 4 2

Treat one filter as padded “image”

3 6 9 6 3

2 4 6 4 2

1 2 3 2 1

75

3x3 Box 3x3 Box 3x3 Box

Example: Two Box Filters

filter = boxfilter(3)  
temp = signal.correlate2d(filter, filter,′ full′)
signal.correlate2d(filter, temp,′ full′)

Example: Separable Gaussian Filter

76

⌦1 464 1
1

16

1

4
6

4

1

1

16

1 464 1

=
1

256

1 464 1

4 16 24 16 4

4 16 24 16 4

6 24 36 24 6

Example: Separable Gaussian Filter

77

0

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

0 0

0 0

0 0

0 0
⌦1 464 1

0 0

0

0 0 0 0 0
0 0 0 0 0

1

16

1

4
6

4

1

1

16

1

=
1

256

Example: Separable Gaussian Filter

78

0

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

0 0

0 0

0 0

0 0
⌦1 464 1

0 0

0

0 0 0 0 0
0 0 0 0 0

1

16

1

4
6

4

1

1

16

1 464 1

=
1

256

4 16

Example: Separable Gaussian Filter

79

0

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

0 0

0 0

0 0

0 0
⌦1 464 1

0 0

0

0 0 0 0 0
0 0 0 0 0

1

16

1

4
6

4

1

1

16

1 464 1

=
1

256

1 464 1

4 16 24 16 4

4 16 24 16 4

6 24 36 24 6

Example: Separable Gaussian Filter

80

0

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

0 0

0 0

0 0

0 0
⌦1 464 1

0 0

0

0 0 0 0 0
0 0 0 0 0

1

16

1

4
6

4

1

1

16

1 464 1

=
1

256

1 464 1

4 16 24 16 4

4 16 24 16 4

6 24 36 24 6

Pre-Convolving Filters

81

Convolving two filters of size and results in filter of size:m⇥m n⇥ n

⇣
n+ 2

jm
2

k⌘
⇥
⇣
n+ 2

jm
2

k⌘

m1 + 2

KX

k=2

jmk

2

k!
⇥

m1 + 2

KX

k=2

jmk

2

k!

More broadly for a set of filters of sizes the resulting filter will
have size:

mk ⇥mkK

Gaussian: An Additional Property

82

G�1(x)⌦G�2(x) = G

p
�2
1+�2

2
(x)

G�(x) G

p
2�(x)

Let denote convolution. Let and be be two 1D Gaussians⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

G�1(x)⌦G�2(x) = G

p
�2
1+�2

2
(x)G�1(x)⌦G�2(x) = G

p
�2
1+�2

2
(x)

Convolution of two Gaussians is another Gaussian

Special case: Convolving with twice is equivalent to

Summary

We covered two additional linear filters: Gaussian, pillbox

Separability (of a 2D filter) allows for more efficient implementation (as two
1D filters)

The Convolution Theorem: In Fourier space, convolution can be reduced to
(complex) multiplication

83

