

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

(unless otherwise stated slides are taken or adopted from **Bob Woodham, Jim Little** and **Fred Tung**)

Lecture 4: Image Filtering (continued)

Menu for Today (January 15, 2019)

Topics:

- Gaussian and Pillbox filters
- Separability

Redings:

- Today's Lecture: none
- Next Lecture: [Optional] Forsyth & Ponce (2nd ed.) 4.4

Reminders:

Assignment 1: Image Filtering and Hybrid Images due January 25th

The Convolution Theorem - **Non-linear** filters

Today's "fun" Example: Rolling Shutter

Today's "fun" Example: Rolling Shutter

Rolling shutter effect

Quiz 0 — Test Quiz

I am in class today:

A) TrueB) False

5

Lecture 3: Re-cap

- The correlation of F(X, Y) and I(X, Y) is:

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$

output image (signal)

- Visual interpretation: Superimpose the filter F on the image I at (X, Y), perform an element-wise multiply, and sum up the values

 Convolution is like correlation except filter "flipped" if F(X, Y) = F(-X, -Y) then correlation = convolution.

Lecture 3: Re-cap

Ways to handle **boundaries**

- **Ignore/discard**. Make the computation undefined for top/bottom k rows and left/right-most k columns
- Pad with zeros. Return zero whenever a value of I is required beyond the image bounds
- Assume periodicity. Top row wraps around to the bottom row; leftmost column wraps around to rightmost column.
- Simple **examples** of filtering:
- copy, shift, smoothing, sharpening
- Linear filter **properties**:
- superposition, scaling, shift invariance

Characterization Theorem: Any linear, shift-invariant operation can be expressed as a convolution

Idea: Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

 $G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$

Forsyth & Ponce (2nd ed.) Figure 4.2

Idea: Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x}{2}}$$

Standard Deviation

Forsyth & Ponce (2nd ed.) Figure 4.2

 2σ

Quantized an truncated 3x3 Gaussian filter:

$G_{\sigma}(-1,1)$	$G_{\sigma}(0,1)$	$G_{\sigma}(1,1)$
$G_{\sigma}(-1,0)$	$G_{\sigma}(0,0)$	$G_{\sigma}(1,0)$
$G_{\sigma}(-1,-1)$	$G_{\sigma}(0,-1)$	$G_{\sigma}(1,-1)$

Quantized an truncated **3x3 Gaussian** filter:

$$G_{\sigma}(-1,1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(1,1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(1,0) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(1,0) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(1,-1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(1,-1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,-1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(1,-1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} = \frac{1}{2\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \exp^{-\frac{2}{2\sigma^{2}}} = \frac{$$

Quantized an truncated **3x3 Gaussian** filter:

$$G_{\sigma}(-1,1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(1,1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(1,0) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(1,0) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(1,-1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(1,-1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,-1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(1,-1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} = \frac{1}{2\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \exp^{-\frac{2}{2\sigma^{2}}} = \frac{$$

With $\sigma = 1$:

0.059	0.097	0.059
0.097	0.159	0.097
0.059	0.097	0.059

Quantized an truncated **3x3 Gaussian** filter:

$$G_{\sigma}(-1,1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,1)$$
$$G_{\sigma}(-1,0) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(0,-1)$$
$$G_{\sigma}(-1,-1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,-1)$$

With $\sigma = 1$:

0.059	0.097	0.059
0.097	0.159	0.097
0.059	0.097	0.059

What happens if σ is larger?

Quantized an truncated **3x3 Gaussian** filter:

$$G_{\sigma}(-1,1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,1)$$
$$G_{\sigma}(-1,0) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(0,-1)$$
$$G_{\sigma}(-1,-1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,-1)$$

With $\sigma = 1$:

What happens if σ is larger? — More blur

Quantized an truncated **3x3 Gaussian** filter:

$$G_{\sigma}(-1,1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,1)$$
$$G_{\sigma}(-1,0) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(0,-1)$$
$$G_{\sigma}(-1,-1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,-1)$$

With $\sigma = 1$:

0.059	0.097	0.059
0.097	0.159	0.097
0.059	0.097	0.059

What happens if σ is larger?

What happens if σ is smaller?

Quantized an truncated **3x3 Gaussian** filter:

$$G_{\sigma}(-1,1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,1)$$
$$G_{\sigma}(-1,0) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(0,-1)$$
$$G_{\sigma}(-1,-1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,-1)$$

With $\sigma = 1$:

What happens if σ is larger?

What happens if σ is smaller?

Less blur ____

Forsyth & Ponce (2nd ed.) Figure 4.1 (left and right)

Box vs. Gaussian Filter

original

7x7 Gaussian

7x7 box

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Fun: How to get shadow effect?

University of British Columbia

Adopted from: Ioannis (Yannis) Gkioulekas (CMU)

Fun: How to get shadow effect?

University of British Columbia

Blur with a Gaussian kernel, then compose the blurred image with the original (with some offset)

Adopted from: Ioannis (Yannis) Gkioulekas (CMU)

Quantized an truncated **3x3 Gaussian** filter:

$$G_{\sigma}(-1,1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,1)$$
$$G_{\sigma}(-1,0) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(0,-1)$$
$$G_{\sigma}(-1,-1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,-1)$$

With $\sigma = 1$:

0.059	0.097	0.059
0.097	0.159	0.097
0.059	0.097	0.059

What is the problem with this filter?

Quantized an truncated **3x3 Gaussian** filter:

$$G_{\sigma}(-1,1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,1)$$
$$G_{\sigma}(-1,0) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(0,-1)$$
$$G_{\sigma}(-1,-1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,-1)$$

With $\sigma = 1$:

0.059	0.097	0.059
0.097	0.159	0.097
0.059	0.097	0.059

What is the problem with this filter?

does not sum to 1

truncated too much

Gaussian: Area Under the Curve

With $\sigma = 1$:

0.059	0.097	0.059
0.097	0.159	0.097
0.059	0.097	0.059

Better version of the Gaussian filter:

- sums to 1 (normalized)
- captures $\pm 2\sigma$

In general, you want the Gaussian filter to capture $\pm 3\sigma$, for $\sigma = 1 => 7 \times 7$ filter

<u>1</u> 273	1	4	7	4	1
	4	16	26	16	4
	7	26	41	26	7
	4	16	26	16	4
	1	4	7	4	1

A 2D function of x and y is **separable** if it can be written as the product of two functions, one a function only of x and the other a function only of y

Both the 2D box filter and the 2D Gaussian filter are separable

Both can be implemented as two 1D convolutions:

- First, convolve each row with a 1D filter
- Then, convolve each column with a 1D filter
- Aside: or vice versa

The 2D Gaussian is the only (non trivial) 2D function that is both separable and rotationally invariant.

Separability: Box Filter Example

Standard (3x3)

parabl

F(X,Y) = F(X)F(Y)filter $\frac{1}{9} \frac{1}{1} \frac{1}{1} \frac{1}{1}$

I(X, Y)

image

_										
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	90	90	90	90	90	0	0
	0	0	0	90	90	90	90	90	0	0
	0	0	0	90	0	90	90	90	0	0
	0	0	0	90	90	90	90	90	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	90	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0

F(X)filter

0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	30	60	90	90	90	60	30	
0	30	60	90	90	90	60	30	
0	30	30	60	60	90	60	30	
0	30	60	90	90	90	60	30	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
30	30	30	30	0	0	0	0	
0	0	0	0	0	0	0	0	

0	10	20	30	30	30	20	10
0	20	40	60	60	60	40	20
0	30	50	80	80	90	60	30
0	30	50	80	80	90	60	30
0	20	30	50	50	60	40	20
0	10	20	30	30	30	20	10
10	10	10	10	0	0	0	0
10	30	10	10	0	0	0	0

output I'(X,Y)

0	10	20	30	30	30	20	10
0	20	40	60	60	60	40	20
0	30	50	80	80	90	60	30
0	30	50	80	80	90	60	30
0	20	30	50	50	60	40	20
0	10	20	30	30	30	20	10
10	10	10	10	0	0	0	0
10	30	10	10	0	0	0	0

For example, recall the 2D Gaussian:

 $G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2+y^2}{2\sigma^2}}$

The 2D Gaussian can be expressed as a product of two functions, one a function of x and another a function of y

For example, recall the 2D Gaussian

function of x and another a function of y

$$\tfrac{x^2+y^2}{2\sigma^2}$$

$$p^{-\frac{x^2}{2\sigma^2}} \int \left(\frac{1}{\sqrt{2\pi\sigma}} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

of x function of y

The 2D Gaussian can be expressed as a product of two functions, one a

For example, recall the 2D Gaussian:

The 2D Gaussian can be expressed as a product of two functions, one a function of x and another a function of y

In this case the two functions are (identical) 1D Gaussians

$$\frac{x^2 + y^2}{2\sigma^2}$$

Naive implementation of 2D Gaussian:

There are

Total:

At each pixel, (X, Y), there are $m \times m$ multiplications

 $n \times n$ pixels in (X, Y)

$m^2 \times n^2$ multiplications

Naive implementation of 2D Gaussian:

There are

Total:

Separable 2D Gaussian:

At each pixel, (X, Y), there are $m \times m$ multiplications

 $n \times n$ pixels in (X, Y)

$m^2 \times n^2$ multiplications

Naive implementation of 2D Gaussian:

There are

Total:

Separable 2D Gaussian:

There are

Total:

At each pixel, (X, Y), there are $m \times m$ multiplications $n \times n$ pixels in (X, Y)

$m^2 \times n^2$ multiplications

At each pixel, (X, Y), there are 2m multiplications $n \times n$ pixels in (X, Y)

 $2m \times n^2$ multiplications

Let the radius (i.e., half diameter) of the filter be r

In a contentious domain, a 2D (circular) pillbox filter, f(x, y), is defined as:

$$f(x,y) = \frac{1}{\pi r^2} \left\{ \right.$$

The scaling constant, $\frac{1}{\pi r^2}$, ensures that the area of the filter is one

- $\begin{array}{ll} 1 & \text{if} \ x^2 + y^2 \leq r^2 \\ 0 & \text{otherwise} \end{array}$

Recall that the 2D Gaussian is the only (non trivial) 2D function that is both separable and rotationally invariant.

A 2D pillbox is rotationally invariant but not separable.

it worth exploring possibilities for efficient implementation.

There are occasions when we want to convolve an image with a 2D pillbox. Thus,

corner bits"

A 2D box filter can be expressed as the sum of a 2D pillbox and some "extra

Therefore, a 2D pillbox filter can be expressed as the difference of a 2D box filter and those same "extra corner bits"

Example 7: Smoothing with a Pillbox

Implementing convolution with a 2D pillbox filter as the difference between convolution with a box filter and convolution with the "extra corner bits" filter allows us to take advantage of the separability of a box filter

Further, we can postpone scaling the output to a single, final step so that convolution involves filters containing all 0's and 1's — This means the required convolutions can be implemented without any multiplication at all

Example 7: Smoothing with a Pillbox

Original

11 x 11 Pillbox

Let z be the product of two numbers, x and y, that is,

z = xy

Let z be the product of two numbers, x and y, that is,

Taking logarithms of both sides, one obtains

- z = xy
- $\ln z = \ln x + \ln y$

Let z be the product of two numbers, x and y, that is,

Taking logarithms of both sides, one obtains

Therefore.

 $z = \exp^{\ln z}$

- z = xy
- $\ln z = \ln x + \ln y$

$$z = \exp^{(\ln x + \ln y)}$$

Let z be the product of two numbers, x and y, that is,

Taking logarithms of both sides, one obtains

Therefore.

 $z = \exp^{\ln z}$

Interpretation: At the expense of two ln() and one exp() computations, multiplication is reduced to admission

- z = xy
- $\ln z = \ln x + \ln y$

$$z = \exp^{(\ln x + \ln y)}$$

Speeding Up Rotation

Another analogy: **2D rotation of a point by an angle** α about the origin

The standard approach, in Euclidean coordinates, involves a matrix multiplication

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Suppose we transform to polar coordinates

$$(x,y) \to (\rho,\theta)$$
 –

one inverse polar coordinate transform

- $\rightarrow (\rho, \theta + \alpha) \rightarrow (x', y')$
- Rotation becomes addition, at expense of one polar coordinate transform and

Similarly, some image processing operations become cheaper in a transform domain

Gonzales & Woods (3rd ed.) Figure 2.39

Convolution **Theorem**:

 $i'(x,y) = f(x,y) \otimes i(x,y)$ Let

then $\mathcal{I}'(w_x, w_y) = \mathcal{F}(w_x, w_y) \mathcal{I}(w_x, w_y)$

f(x,y) and i(x,y)

convolution can be reduced to (complex) multiplication

- where $\mathcal{I}'(w_x, w_y)$, $\mathcal{F}(w_x, w_y)$, and $\mathcal{I}(w_x, w_y)$ are Fourier transforms of i'(x, y),

At the expense of two Fourier transforms and one inverse Fourier transform,

What follows is for fun (you will **NOT** be tested on this)

Basic building block:

Fourier's claim: Add enough of these to get <u>any</u> periodic signal you want!

 $A\sin(\omega x + \phi)$

Basic building block:

Fourier's claim: Add enough of these to get <u>any</u> periodic signal you want!

How would you generate this function?

How would you generate this function?

 $\sin(2\pi x)$

How would you generate this function?

How would you generate this function?

How would you generate this function?

square wave

How would you generate this function?

How would you generate this function?

 $= A \sum_{k=1}^{\infty} \frac{1}{k} \sin(2\pi kx)$

infinite sum of sine waves

Basic building block:

Fourier's claim: Add enough of these to get <u>any</u> periodic signal you want!

 $A\sin(\omega x + \phi)$

Image from: Numerical Simulation and Fractal Analysis of Mesoscopic Scale Failure in Shale Using Digital Images

amplitude phase Forsyth & Ponce (2nd ed.) Figure 4.6

amplitude Forsyth & Ponce (2nd ed.) Figure 4.6

cheetah phase with zebra amplitude

zebra phase with cheetah amplitude

phase

What preceded was for fun (you will **NOT** be tested on it)

Convolution **Theorem**:

 $i'(x,y) = f(x,y) \otimes i(x,y)$ Let

then $\mathcal{I}'(w_x, w_y) = \mathcal{F}(w_x, w_y) \mathcal{I}(w_x, w_y)$

f(x,y) and i(x,y)

convolution can be reduced to (complex) multiplication

- where $\mathcal{I}'(w_x, w_y)$, $\mathcal{F}(w_x, w_y)$, and $\mathcal{I}(w_x, w_y)$ are Fourier transforms of i'(x, y),

At the expense of two Fourier transforms and one inverse Fourier transform,

General implementation of **convolution**:

There are

Total:

Convolution if FFT space:

Cost of convolution: $\mathcal{O}(n^2)$

At each pixel, (X, Y), there are $m \times m$ multiplications

 $n \times n$ pixels in (X, Y)

$m^2 \times n^2$ multiplications

Cost of FFT/IFFT for image: $\mathcal{O}(n^2 \log n)$ Cost of FFT/IFFT for filter: $\mathcal{O}(m^2 \log m)$

Linear Filters: Properties (recall Lecture 3)

Let \otimes denote convolution. Let I(X, Y) be a digital image

Superposition: Let F_1 and F_2 be digital filters

Scaling: Let F be digital filter and let k be a scalar

Shift Invariance: Output is local (i.e., no dependence on absolute position)

An operation is **linear** if it satisfies both **superposition** and **scaling**

- $(F_1 + F_2) \otimes I(X, Y) = F_1 \otimes I(X, Y) + F_2 \otimes I(X, Y)$
- $(kF) \otimes I(X,Y) = F \otimes (kI(X,Y)) = k(F \otimes I(X,Y))$

Linear Filters: Additional Properties

Let \otimes denote convolution. Let I(X, Y) be a digital image. Let F and G be digital filters

- Convolution is **associative**. That is,

— Convolution is **symmetric**. That is,

Convolving I(X, Y) with filter F and then convolving the result with filter G can be achieved in single step, namely convolving I(X, Y) with filter $G \otimes F = F \otimes G$

Note: Correlation, in general, is **not associative**.

$G \otimes (F \otimes I(X, Y)) = (G \otimes F) \otimes I(X, Y)$

$(G \otimes F) \otimes I(X, Y) = (G \otimes F) \otimes I(X, Y)$

filter = boxfilter(3)
signal.correlate2d(filter, filter, ' full')

3x3 **Box**

3x3 **Box**

1	1
1	1
1	1

=

1	2	3	2	1
2	4	6	4	2
3	6	9	6	3
2	4	6	4	2
1	2	3	2	1

Treat one filter as padded "image"

3x3 **Box**

Treat one filter as padded "image"

3x3 **Box**

Treat one filter as padded "image"

3x3 **Box**

Treat one filter as padded "image"

3x3 **Box**

3x3 **Box**

###
Example: Two Box Filters

Treat one filter as padded "image"

3x3 **Box**

3x3 **Box**

1

1

1

1

1

	1	2	3	2	1	
1	2	4	6	4	2	
$\frac{1}{01}$	3	6	9	6	3	
81	2	4	6	4	2	
	1	2	3	2	1	

Output

Example: Two Box Filters

Treat one filter as padded "image"

3x3 **Box**

1 1 1 1 1 1 1 1 1

3x3 **Box**

$=\frac{1}{81}$

1	2	3	2	1
2	4	6	4	2
3	6	9	6	3
2	4	6	4	2
1	2	3	2	1

Output

Example: Two Box Filters

filter = boxfilter(3)
temp = signal.correlate2d(filter, filter, ' full')
signal.correlate2d(filter, temp, ' full')

3x3 **Box**

 $\frac{1}{256}$

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1

 $\frac{1}{16}$

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
1	4	6	4	1
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

 $\frac{1}{16}$

 \bigotimes

 $\frac{1}{256}$

1		

() $\left(\right)$ 0 0 0 0 0 $\left(\right)$ 0 0 0 $\left(\right)$ \mathbf{O} 1 1 6 4 1 4 16 0 0 0 0 $\left(\right)$ 0 0 0 $\left(\right)$ ()() $\left(\right)$ $\left(\right)$ 0 \mathbf{O} \mathbf{O}

 $\frac{1}{16}$

 \bigotimes

 $=\frac{1}{256}$

1	4	6	4	1
4	16			

 $\left(\right)$ $\left(\right)$ $\left(\right)$ $\mathbf{0}$ $\left(\right)$ \mathbf{O} $\left(\right)$ $\left(\right)$ $\left(\right)$ $\left(\right)$ \mathbf{O} \mathbf{O}

 $\frac{1}{16}$

 \bigotimes

 $\frac{1}{256}$

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1

() $\left(\right)$ \mathbf{O} \mathbf{O} $\left(\right)$ $\left(\right)$ \mathbf{O} $\left(\right)$ \mathbf{O} ()() \mathbf{O} \mathbf{O}

 $\frac{1}{16}$

 \bigotimes

 $\overline{256}$

Pre-Convolving Filters

Convolving two filters of size $m \times m$ and $n \times n$ results in filter of size:

$$\left(n+2\left\lfloor\frac{m}{2}\right\rfloor\right) \times \left(n+2\left\lfloor\frac{m}{2}\right\rfloor\right)$$

More broadly for a set of K filters of sizes $m_k \times m_k$ the resulting filter will have size:

$$\left(m_1 + 2\sum_{k=2}^{K} \left\lfloor \frac{m_k}{2} \right\rfloor\right) \times \left(m_1 + 2\sum_{k=2}^{K} \left\lfloor \frac{m_k}{2} \right\rfloor\right)$$

Gaussian: An Additional Property

Let \otimes denote convolution. Let $G_{\sigma_1}(x)$ and $G_{\sigma_2}(x)$ be be two 1D Gaussians

 $G_{\sigma_1}(x) \otimes G_{\sigma_2}(x)$

Convolution of two Gaussians is another Gaussian

Special case: Convolving with $G_{\sigma}(x)$ twice is equivalent to $G_{\sqrt{2}\sigma}(x)$

$$x) = G_{\sqrt{\sigma_1^2 + \sigma_2^2}}(x)$$

Summary

We covered two additional linear filters: Gaussian, pillbox

Separability (of a 2D filter) allows for 1D filters)

The Convolution Theorem: In **Fourier** space, convolution can be reduced to (complex) multiplication

Separability (of a 2D filter) allows for more efficient implementation (as two