
Lecture 3: Image Formation (continued)

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )



Menu for Today (January 10, 2019)

Redings: 

— Today’s Lecture:  Forsyth & Ponce (2nd ed.) 4.1, 4.5 
— Next Lecture:       none

2

Topics: (continue) Image Formation 

— Human eye (as camera) 

Reminders: 

— Complete Assignment 0 (ungraded) by Friday, January 11 
— Assignment 1: Image Filtering and Hybrid Images (will be out January 11) 
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Video Source: https://www.youtube.com/watch?v=2c6lCdDFOY8

Today’s “fun” Example:
Developed by the French company Varioptic, the lenses consist of an oil-
based and a water-based fluid sandwiched between glass discs. Electric 
charge causes the boundary between oil and water to change shape, altering 
the lens geometry and therefore the lens focal length  

The intended applications are: 
auto-focus and image 
stabilization. No moving parts. 
Fast response. Minimal power 
consumption. 

https://www.youtube.com/watch?v=2c6lCdDFOY8
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Video Source: https://www.youtube.com/watch?v=NjLJ77IuBdM

Electrostatic field between the column of water and the electron (other side of 
power supply attached to the pipe) — see full video for complete explanation

Today’s “fun” Example:Today’s “fun” Example:

https://www.youtube.com/watch?v=NjLJ77IuBdM
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Video Source: https://www.youtube.com/watch?v=EU8LXxip1NM

Today’s “fun” Example:
As one example, in 2010, Cognex signed a licence agreement with Varioptic to 
add auto-focus capability to it DataMan line of industrial ID readers (press 
release May 29, 2012) 

https://www.youtube.com/watch?v=EU8LXxip1NM


We take a “physics-based” approach to image formation 
— Treat camera as an instrument that takes measurements of the 3D world  

Basic abstraction is the pinhole camera  

Lenses overcome limitations of the pinhole model while trying to preserve it as 
a useful abstraction  

When maximum accuracy required, it is necessary to model additional details 
of each particular camera (and camera setting)  
— Aside: This is called camera calibration  
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Lecture 2: Re-cap
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Lecture 2: Re-cap Projection 
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— If pinhole is too big then many directions 
are averaged, blurring the image  

— If pinhole is too small then diffraction 
becomes a factor, also blurring the image  

— Generally, pinhole cameras are dark, 
because only a very small set of rays from a 
particular scene point hits the image plane  

— Pinhole cameras are slow, because only a 
very small amount of light from a particular 
scene point hits the image plane per unit time 

Image Credit: Credit: E. Hecht. “Optics,” Addison-Wesley, 1987 9

Lecture 2: Re-cap



The role of a lens is to capture more light while preserving, as much as 
possible, the abstraction of an ideal pinhole camera.
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Lecture 2: Re-cap Lenses
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Lecture 2: Re-cap Lenses
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n1 sin↵1 = n2 sin↵2

Lecture 2: Re-cap Snell’s Law



Forsyth & Ponce (1st ed.) Figure 1.9 
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Lecture 2: Re-cap Thin Lens Equation
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Lecture 2: Re-cap

* image credit: https://catlikecoding.com/unity/tutorials/advanced-rendering/depth-of-field/circle-of-confusion/lens-camera.png

https://catlikecoding.com/unity/tutorials/advanced-rendering/depth-of-field/circle-of-confusion/lens-camera.png


Forsyth & Ponce (1st ed.) Figure 1.9 
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Lecture 2: Re-cap Thin Lens Equation
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Another way of looking at the focal length of a lens. The incoming rays, parallel 
to the optical axis, converge to a single point a distance f behind the lens. 
This is where we want to place the image plane. 
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Lecture 2: Re-cap



Chromatic aberration 
— Index of refraction depends on wavelength, λ, of light                                  
— Light of different colours follows different paths 
— Therefore, not all colours can be in equal focus  

Scattering at the lens surface 
— Some light is reflected at each lens surface  

There are other geometric phenomena/distortions   
— pincushion distortion 
— barrel distortion 
— etc 
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Lecture 2: Re-cap



Human Eye

— The eye has an iris (like a camera)  

— Focusing is done by changing 
shape of lens  

— When the eye is properly focused, 
light from an object outside the eye is 
imaged on the retina 

— The retina contains light receptors 
called rods and cones 

pupil = pinhole / aperture

retina = film / digital sensor

Slide adopted from: Steve Seitz
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Human Eye

pupil = pinhole / aperture

retina = film / digital sensor

Slide adopted from: Steve Seitz
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— The eye has an iris (like a camera)  

— Focusing is done by changing 
shape of lens  

— When the eye is properly focused, 
light from an object outside the eye is 
imaged on the retina 

— The retina contains light receptors 
called rods and cones 



Two-types of Light Sensitive Receptors

Cones 
   6-7 million cone-shaped receptors 
   color vision 
   operate in high light 
   less sensitive  
   yield higher resolution  
   

cone

rod

Rods  
   75-150 million rod-shaped receptors 
   not involved in color vision, gray-scale vision only 

operate at night 
   highly sensitive, can responding to a single photon 

 yield relatively poor spatial detail 

Slide adopted from: James Hays
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Lecture Summary

— We discussed a “physics-based” approach to image formation. Basic 
abstraction is the pinhole camera.  

— Lenses overcome limitations of the pinhole model while trying to preserve 
it as a useful abstraction  

— Projection equations: perspective, weak perspective, orthographic  

— Thin lens equation  

— Some “aberrations and distortions” persist (e.g. spherical aberration, vignetting) 

— The human eye functions much like a camera 
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Lecture 3: Image Filtering

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )



Menu for Today (January 10, 2019)
Topics: Image Filtering (also topic for next week) 

— Image as a function  
— Linear filters

Redings: 

— Today’s Lecture:  Forsyth & Ponce (2nd ed.) 4.1, 4.5  
— Next Lecture:       none

Reminders: 

— Complete Assignment 0 (ungraded) by Friday, January 11 
— Assignment 1: Image Filtering and Hybrid Images (will be out January 11) 

— Correlation / Convolution 
— Filter examples: Box, Gaussian
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Image as a 2D Function
A (grayscale) image is a 2D function

What is the range of the 
image function?

grayscale image

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I(X,Y )

domain: (X,Y ) 2 ([1, width], [1, hight])

I(X,Y ) 2 [0, 255] 2 Z
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Adding two Images
Since images are functions, we can perform operations on them, e.g., average

I(X,Y ) G(X,Y )
I(X,Y )

2
+

G(X,Y )

2I(X,Y ) G(X,Y )
I(X,Y )

2
+

G(X,Y )

2

I(X,Y ) G(X,Y )
I(X,Y )

2
+

G(X,Y )

2
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Adding two Images

b =
I(X,Y ) +G(X,Y )

2

a =
I(X,Y )

2
+

G(X,Y )

2

a = b

a > b

b < a

Question:
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a > ba > b



Adding two Images

a = b

a > b

b < a

Question:
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a > ba > b

98

2
+

200

2
= 49 + 100 = 149

Red pixel in camera man image = 98 
Red pixel in moon image = 200

98 + 200

2
=

b298c
2

=
255

2
= 127



Adding two Images

b =
I(X,Y ) +G(X,Y )

2

a =
I(X,Y )

2
+

G(X,Y )

2

a = b

a > b

b < a

Question:
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Adding two Images

It is often convenient to convert images to 
doubles when doing processing  
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I(X,Y )

What types of transformations can we do? 

changes range of image function changes domain of image function

Filtering Warping

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I(X,Y )

I 0(X,Y )

I 0(X,Y )
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What types of filtering can we do?
Point Operation

Neighborhood Operation

point processing

“filtering”

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)32



✓
I(X,Y )

255

◆1/3

⇥ 255

Examples of Point Processing 
original lower contrast non-linear lower contrastdarken

invert raise contrast non-linear raise contrastlighten

✓
I(X,Y )

255

◆2

⇥ 255I(X,Y )⇥ 2I(X,Y ) + 128255� I(X,Y )

I(X,Y )

2
I(X,Y )� 128I(X,Y )

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)33
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I(X,Y )

What types of transformations can we do? 

changes range of image function changes domain of image function

Filtering Warping

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

I(X,Y )

I 0(X,Y )

I 0(X,Y )
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Let               be another             digital image (our “filter” or “kernel”)

Linear Filters
Let              be an           digital image (for convenience we let width = height)I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5For convenience we will assume      is odd. (Here,            )

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Filter

Image
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Compute a new image,              , as follows 

Linear Filters
k =

jm
2

k
Let  

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

Intuition: each pixel in the output image is a linear combination of the same 
pixel and its neighboring pixels in the original image 

-2 -1 0 1 2
-2
-1
0
1
2

i =

j =
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Linear Filters

Y

X

For a give     and   , superimpose the 
filter on the image centered at I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5
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Linear Filters

Y

X

Compute the new pixel value,              , 
as the sum of             values, where each 
value is the product of the original pixel 
value in              and the corresponding 
values in the filter

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y )

For a give     and   , superimpose the 
filter on the image centered at I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5
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Linear Filters

X

Y

The computation is repeated for each
I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

40



Linear Filter Example

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y )image output

filter

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)41



Linear Filter Example
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Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)42



Linear Filter Example
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Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)43



Linear Filter Example
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Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)44



Linear Filter Example
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Linear Filter Example
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Linear Filter Example
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Linear Filter Example
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Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)48



Linear Filter Example
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Linear Filter Example
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Linear Filter Example
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Linear Filter Example
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Linear Filter Example
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Compute the new pixel value,              , as the sum of             values, where 
each value is the product of the original pixel value in              and the 
corresponding values in the filter

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y )

For a give     and   , superimpose the filter on the image centered at I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

Linear Filters
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Let’s do some accounting … 

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

Linear Filters

At each pixel,           , there are              multiplications

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

There are                                               pixels in 

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Total:                                                     multiplicationsm2 ⇥ n2

O(n2) O(m4)m ⇡ nWhen     is fixed, small constant, this is           . But when             this is            .O(m4)
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Linear Filters: Boundary Effects 
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1.  Ignore these locations: Make the computation undefined for the top and  
     bottom k rows and the leftmost and rightmost k columns  

	2.  Pad the image with zeros: Return zero whenever a value of I is required    
      at some position outside the defined limits of X and Y  

	3.  Assume periodicity: The top row wraps around to the bottom row; the  
      leftmost column wraps around to the rightmost column  

Linear Filters: Boundary Effects 
Three standard ways to deal with boundaries: 
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Linear Filters: Boundary Effects 
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Linear Filters: Boundary Effects 
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Linear Filters: Boundary Effects 



A short exercise … 
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Example 1: Warm up
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Original Filter Result

?
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Example 1: Warm up

00
0
0 0 0

0
0

1

Original Filter Result
(no change)
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Example 2:
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0 1

Original Filter Result

?
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Example 2:
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Original Filter Result
(sift left by 1 pixel)
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1 1 1
1 1 1
1 1 1

1
9

Example 3:

Original Filter Result
(filter sums to 1)

?
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1 1 1
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1
9

Example 3:

Original Filter Result
(blur with a box filter)(filter sums to 1)
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Example 4:
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Original Filter
(filter sums to 1)

Result

?
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Example 4:
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Original Filter
(filter sums to 1)

Result
(sharpening)
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Example 4: Sharpening

Before After
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Example 4: Sharpening

Before After
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Linear Filters: Correlation vs. Convolution 

Definition: Correlation

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (i, j)I(X + i, Y + j)

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (i, j)I(X � i, Y � j)

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (�i,�j)I(X + i, Y + j)
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Linear Filters: Correlation vs. Convolution 

Definition: Correlation
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Definition: Convolution
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82



Linear Filters: Correlation vs. Convolution 

Definition: Correlation
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Filter Image Output

= 1a + 2b + 3c  
       + 4d + 5e + 6f 
       + 7g + 8h + 9i



Linear Filters: Correlation vs. Convolution 
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7 8 9
Filter Image Output

= 9a + 8b + 7c  
       + 6d + 5e + 4f 
       + 3g + 2h + 1i



Linear Filters: Correlation vs. Convolution 
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= 9a + 8b + 7c  
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Filter  
(rotated by 180)



Note: if                                       then correlation = convolution.

Linear Filters: Correlation vs. Convolution 

Definition: Correlation

Definition: Convolution
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F (X,Y ) = F (�X,�Y )
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Preview: Why convolutions are important?

Basic operations in CNNs are convolutions (with learned linear filters) followed 
by non-linear functions.  
Note: This results in non-linear filters.

Who has heard of Convolutional Neural Networks (CNNs)? 
What about Deep Learning? 
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Linear Filters: Properties
⌦ k F1 F2 F I(X,Y )

(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))⌦ k F1 F2 F I(X,Y )

(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

Let     denote convolution. Let              be a digital image 

Superposition: Let      and      be digital filters 
⌦ k F1 F2 F I(X,Y )

(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))



Linear Filters: Properties

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))⌦ k F1 F2 F I(X,Y )

(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

Let     denote convolution. Let              be a digital image 

Superposition: Let      and      be digital filters 

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

Scaling: Let     be digital filter and let     be a scalar  
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Shift Invariance: Output is local (i.e., no dependence on absolute position)
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Linear Filters: Shift Invariance

Y

X X

Y

Output does not depend on absolute position 
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Linear Filters: Properties
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Shift Invariance: Output is local (i.e., no dependence on absolute position)

An operation is linear if it satisfies both superposition and scaling 
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Linear Systems: Characterization Theorem 

Any linear, shift invariant operation can be expressed as convolution
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Example 5: Smoothing with a Box Filter

1 1 1
1 1 1
1 1 1

1
9

Filter has equal positive values that some up to 1 

Replaces each pixel with the average of itself and its local neighborhood  
— Box filter is also referred to as average filter or mean filter   

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Example 5: Smoothing with a Box Filter

Forsyth & Ponce (2nd ed.) Figure 4.1 (left and middle) 
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What happens if we increase the width (size) of the box filter? 

Example 5: Smoothing with a Box Filter
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Example 5: Smoothing with a Box Filter
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Original 3x3

9x9

35x35

5x5

15x15

Gonzales & Woods (3rd ed.) Figure 3.3 



Example 6: Smoothing with a Gaussian

Smoothing with a box doesn’t model lens defocus well 
— Smoothing with a box filter depends on direction 
— Image in which the center point is 1 and every other point is 0  
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Example 6: Smoothing with a Gaussian

Smoothing with a box doesn’t model lens defocus well 
— Smoothing with a box filter depends on direction 
— Image in which the center point is 1 and every other point is 0 

Image
Filter
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Example 6: Smoothing with a Gaussian

Smoothing with a box doesn’t model lens defocus well 
— Smoothing with a box filter depends on direction 
— Image in which the center point is 1 and every other point is 0 

Image
Filter

Result



Example 6: Smoothing with a Gaussian

Smoothing with a box doesn’t model lens defocus well 
— Smoothing with a box filter depends on direction 
— Image in which the center point is 1 and every other point is 0  

Smoothing with a (circular) pillbox is a better model for defocus (in geometric optics)  

The Gaussian is a good general smoothing model 
— for phenomena (that are the sum of other small effects)  
— whenever the Central Limit Theorem applies 
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Example 6: Smoothing with a Gaussian

102

Idea: Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

Forsyth & Ponce (2nd ed.)  
Figure 4.2



Summary
— The correlation of               and             is: 

  

— Visual interpretation: Superimpose the filter    on the image   at           , 
perform an element-wise multiply, and sum up the values  

— Convolution is like correlation except filter “flipped”  

— Characterization Theorem: Any linear, spatially invariant operation can be 
expressed as a convolution  
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I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (i, j)I(X + i, Y + j)

I 0(X,Y ) =
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F (i, j)I(X � i, Y � j)

I 0(X,Y ) =
kX

j=�k

kX
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F (�i,�j)I(X + i, Y + j)

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5 I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5          if                                       then correlation = convolution.F (X,Y ) = F (�X,�Y )


