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Lecture 3: Image Formation (continued)

( unless otherwise stated slides are taken or adopted fromm Bob Woodham, Jim Little and Fred Tung )



Menu for Today (January 10, 2019)

Topics: (continue) Image Formation

— Human eye (as camera)

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 4.1, 4.5
— Next Lecture: none

Reminders:

— Complete Assignment 0 (ungraded) by Friday, January 11
— Assignment 1: Image Filtering and Hybrid Images (will be out January 11)
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Today’s “fun” Example:

Developed by the French company Varioptic, the lenses consist of an oil-
based and a water-based fluid sandwiched between glass discs. Electric
charge causes the boundary between oil and water to change shape, altering
the lens geometry and therefore the lens focal length

The intended applications are:
auto-focus and image
stabilization. No moving parts.
Fast response. Minimal power
consumption.

Video Source: https://www.youtube.com/watch?v=2c6ICdDFOY8

3


https://www.youtube.com/watch?v=2c6lCdDFOY8

Today’s “fun” Example:

Electrostatic field between the column of water and the electron (other side of
oower supply attached to the pipe) — see full video for complete explanation

Video Source: https://www.youtube.com/watch?v=NjLJ77luBdM
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https://www.youtube.com/watch?v=NjLJ77IuBdM

Today’s “fun” Example:

As one example, in 2010, Cognex signed a licence agreement with Varioptic to
add auto-focus capabillity to it DataMan line of industrial ID readers (press
release May 29, 2012)

Video Source: https://www.youtube.com/watch?v=EU8[ Xxip1NM
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https://www.youtube.com/watch?v=EU8LXxip1NM

Lecture 2: Re-cap

We take a “physics-based” approach to image formation
— Jreat camera as an instrument that takes measurements of the 3D world

Basic abstraction is the pinhole camera

Lenses overcome limitations of the pinhole model while trying to preserve it as
a useful abstraction

When maximum accuracy required, It IS necessary to model additional details
of each particular camera (and camera setting)

— Aside: This Is called camera calibration



Lecture 2: Re-cap Pinhole Camera Abstraction

Pinhole Camera Abstraction

Image pinhole iImage object
plane plane



Lecture 2: Re-cap Projection

L _
3D object point P = | y | projects to 2D image point P’ = .| where

Perspective

Weak Perspective

Orthographic




Lecture 2: Re-cap

— It pinhole Is too big then many directions
are averaged, blurring the image

| mm

— |If pinhole Is too small then diffraction
becomes a factor, also blurring the image

— Generally, pinhole cameras are dark,
pbecause only a very small set of rays from a
particular scene point hits the image plane

().6mm .35 mm

— PInhole cameras are slow, because only a
very small amount of light from a particular
scene point hits the iImage plane per unit time

0.15 mm 0.07 mm

Image Credit: Credit: E. Hecht. “Optics,” Addison-Wesley, 1987



Lecture 2: Re-cap Lenses

The role of a lens is to capture more light while preserving, as much as
possible, the abstraction of an ideal pinhole camera.
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Lecture 2: Re-cap Lenses
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Lecture 2: Re-cap Snell’s Law

M1 SIN vy = Mo SIN
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Lecture 2: Re-cap hin Lens Equation
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Lecture 2: Re-cap
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* image credit: https://catlikecoding.com/unity/tutorials/advanced-rendering/depth-of-field/circle-of-confusion/lens-camera.png
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https://catlikecoding.com/unity/tutorials/advanced-rendering/depth-of-field/circle-of-confusion/lens-camera.png

Lecture 2: Re-cap hin Lens Equation
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Lecture 2: Re-cap

Another way of looking at the focal length of a lens. The iIncoming rays, parallel
to the optical axis, converge to a single point a distance f behind the lens.
This Is where we want to place the image plane.

Image lens

plane
10



Lecture 2: Re-cap

Chromatic aberration
— Index of refraction depends on wavelength, A, of light
— Light of different colours follows different paths

— Therefore, not all colours can be In equal focus

Scattering at the lens surface

— Some light is reflected at each lens surface

There are other geometric phenomena/distortions
— pincushion distortion
— arrel distortion

— elc
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Human tye

— The eye has an iris (like a camera)

— Focusing is done by changing
shape of lens

— When the eye is properly focused,
ight from an object outside the eye IS
imaged on the retina

— [he retina contains light receptors
called rods and cones

18
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retina = film / digital sensor

Slide adopted from: Steve Seitz



Human tye

— The eye has an iris (like a camera)

— Focusing is done by changing
shape of lens

— When the eye is properly focused,
ight from an object outside the eye IS
imaged on the retina

— [he retina contains light receptors
called rods and cones
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Two-types of Light Sensitive Receptors

Rods
/5-150 million rod-shaped receptors W ,.
not involved in color vision, gray-scale vision only
operate at night
highly sensitive, can responding to a single photon
vield relatively poor spatial detall

Cones
o-7 million cone-shaped receptors
color vision cone
operate in high light
less sensitive rod
vield higher resolution
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Slide adopted from: James Hays
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Human eye

Density of rods and cones

Slide adopted from: James Hays
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|_ecture Summary

— We discussed a “physics-based” approach to image formation. Basic
abstraction is the pinhole camera.

— Lenses overcome limitations of the pinhole model while trying to preserve
't as a useful abstraction

— Projection equations: perspective, weak perspective, orthographic
— Thin lens equation
— Some “aberrations and distortions” persist (e.g. spherical aberration, vignetting)

— he human eye functions much like a camera
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THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 3:

mage Filtering

( unless otherwise stated slides are taken or adopted fromm Bob Woodham, Jim Little and Fred Tung )



Menu for Today (January 10, 2019)

Topics: Image Filtering (also topic for next week)

— Image as a function — Correlation / Convolution
— Linear filters — Filter examples: Box, Gaussian

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 4.1, 4.5
— Next Lecture: none

Reminders:

— Complete Assignment 0 (ungraded) by Friday, January 11
— Assignment 1: Image Filtering and Hybrid Images (will be out January 11)
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Image as a 2D Function

A (grayscale) image is a 2D function

grayscale image

What Is the range of the
image function’? domain: (X,Y) € ([1, width], [1, hight])
I(X,Y) € (0,255 € Z

o5 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Adding two Images

Since images are functions, we can perform operations on them, e.g., average
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Adding two Images

[(X)Y) G(X,Y)

T I 2 Question:
a=>0b
a>b
a<b

I(X,Y)+ G(X,Y)

h —

27



Adding two Images

Red pixel in camera man image = 98
Red pixel In moon image = 200

Question:
08 200
| — 49 4+ 100 = 149 a=2>b
2 2
a<b

08 +200  |298] 255

= 127
2 2 2

28



Adding two Images

[(X)Y) G(X,Y)
T I 2 Question:
a=>b
a > b
b<a

I(X,Y)+ G(X,Y)

h —
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Adding two Images

't Is often convenient to convert iImages to
doubles when doing processing

In Python

from PIL import Image

img = Image.open('cameraman.png') <—

import numpy as np

imgArr = np.asfarray(img)
T —————

# Or do this
import matplotlib.pyplot as plt
camera = plt.imread/'cameraman.png')
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What types of transformations can we do”

I(X,Y)
Filtering l Warping
7(x, V)
changes range of image function changes domain of image function

3 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



What types of filtering can we do”

Point Operation

H . o

Neighborhood Operation

H H o

Slide Credit: loannis (Yannis) Gkioulekas (CMU)




Examples of Point Processing

darken

I(X,Y)

invert

lower contrast non-linear lower contrast

3 ./i"
I[(X,Y) (X, Y)\ "3
I(X,Y)— 128 : 5
( ) 5 ( o E > X 259
lighten raise contrast non-linear raise contrast
(ks
-~ » ‘mj“\‘ ~F »
’: \ é’
> P
I(X,Y)
I(X,Y)+ 128 I(X,Y) x2 T X 255

33

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Examples of Point Processing

darken

I(X,Y)

invert

lower contrast non-linear lower contrast

-~ ~ -
=
oA
— 0 e
I(X,Y) (X, )\ /3
I(X,Y)— 128 ! y
( ) 5 ( o E > X 259
lighten raise contrast non-linear raise contrast
-~ - M}r\* ~F =
: Y-
> s %
I(X,Y)\"
I(X,Y)+ 128 I(X,Y) x2 T X 255

34

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



What types of transformations can we do”

I(X,Y)
Filtering l Warping
7(x, V)
changes range of image function changes domain of image function

35 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



| Inear Filters

Let I(X,Y) be an n X n digital image (for convenience we let width = height)

Let F(X,Y)be another m x m digital image (our “filter” or “kernel”)
)

Filter

Image

For convenience we will assume m Is odd. (Here, m = 95)
30



| Inear Filters

™m

Lot k= |~
A

Compute a new image, I'(X,Y), as follows

I'X,Y) =

output

j=—k1=—k

k k

> N F(ILJ)I(X

filter

i Y

image (signal)

I
N 4 O — N

2-10 1 2
]

Intuition: each pixel in the output Image is a linear combination of the same

pixel and its neighboring pixels in the original image
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| Inear Filters

For a give X and Y, superimpose the
filter on the image centered at (X, Y")

338




| Inear Filters

For a give X and Y, superimpose the
filter on the image centered at (X, Y")

Compute the new pixel value, I'(X,Y),
as the sum of m X m values, where each
value is the product of the original pixel
value in I(X, YY) and the corresponding
values In the filter
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| Inear Filters

The computation Is repeated for each
(X,Y)

40




Linear Filter Example

| I(X,Y)

Image
| oo Pl lelele]l [ITI1ITTILILITL[
F(X,Y) ool LTI LT
filter o o fofsofsofsofofsofo 0| [ [ [ [ L 1 [ [
1 o0 o [o [sofsofsofsofsofo [o| [ [ [ | | [ [ ||
5 o Jo [o [sofoisofsofolo 0| [T | [ [ I | [ [
o0 Jo [o [sofsofsofsofsoo [o| [ [ [ L L | [ [
ofofofofofofoololo] [ L1 L1 1L L[]
ofofofofofofolofolo]l [ L1 L1111
ofofsofo o fofofofofo|l [ L L1 L L1111
umumumumum HEEEEEEEEEE

I'(X,Y) = Z ZFJJ (X +1i,Y +j)

1=—ki1=—k

output filter image (signal)

A Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

| I(X,Y)

Image
| oo Pl lelele]l [ITI1ITTILILITL[
FX,Y) Pploflefofololoflo] [CRI T T
filter o o fofsofsofsofofsofo 0| [ [ [ [ L 1 [ [
1 o0 o [o [sofsofsofsofsofo [o| [ [ [ | | [ [ ||
5 o Jo [o [sofoisofsofolo 0| [T | [ [ I | [ [
o0 Jo [o [sofsofsofsofsoo [o| [ [ [ L L | [ [
ofofofofofofoololo] [ L1 L1 1L L[]
ofofofofofofolofolo]l [ L1 L1111
ofofsofo o fofofofofo|l [ L L1 L L1111
umumumumum HEEEEEEEEEE

I'(X,Y) = Z ZFJJ (X +1i,Y +j)

1=—ki1=—k

output filter image (signal)

49 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

F(X,Y)

filter

I'X,Y) =

output

image I(X,Y)

Z ZFJJ (X 4+, Y + )

1=—ki1=—k

43

filter

image (signal)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

F(X,Y)

filter

I'X,Y) =

output

image I(X,Y)

Z ZFJJ (X 4+, Y + )

1=—ki1=—k

44

filter

image (signal)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

image I(X’ Y)

F(X,Y)

filter

I'X,Y) = Z ZF]J (X +14,Y + )

1=—ki1=—k

output filter image (signal)

A5 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

F(X,Y)

filter

I'X,Y) =

output

image I(X,Y)

N
HE N

Z ZFJJ (X 4+, Y + )

1=—ki1=—k

40

filter

image (signal)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

F(X,Y)

filter

I'X,Y) =

output

image I(X,Y)

N
HEE

Z ZFJJ (X 4+, Y + )

1=—ki1=—k

47

filter

image (signal)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

F(X,Y)

filter

I'X,Y) =

output

image I(X,Y)

N
HEE

Z ZFJJ (X 4+, Y + )

1=—ki1=—k

48

filter

image (signal)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

image I(X’ Y)

F(X,Y)

filter

N
B

I'X,Y) = Z ZF]J (X +14,Y + )

1=—ki1=—k

output filter image (signal)

49 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

filter image (signal)

50 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

| I(X,Y) I’(X,Y)
Image output

\ oo Pl [ L1111
F(X,Y) [ fofofofofofofofofo]  [lo ]zl s0fa0] |
filter 0 [0 [o Pofsofofelsolo fo| [ 1L 1T 1T T [ [ [
1 o0 [o Jo [sofsofsofsofsofo [0 | [ [ | [ [ | [ [ [ [
: 0 Jo Jo ofafsofofsofo o | [ [ L L I [ [
o0 [0 Jo [sofsofsefsofsofo o | [ L [ L L | [ [
ofofofofofofolofolol [T 1111
ofofofofofofofofolol [T 1111
0 [0 [50fo [0 [0 [0 [0 [o [0 =lllll====

I'(X,Y) = Z ZFJJ (X +1i,Y +j)

1=—ki1=—k

output filter image (signal)

51 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

I'X,Y) = Z ZF]J (X +14,Y + )
1=—ki1=—k

output filter image (signal)

59 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

. I(X,Y)

Image
\ ool oo o] [T T IT 11111
F(X,Y) [ fofefofofofofo[o o [10[2030[30 30 2010
filter o o [o 500500 500 o~ ol T[T
| o o [o 50505050500 [0 EEEEEEEEE
5 0 Jo o [0 J@Rfso[s0 0o [o_ EEEEEEEEE
o [0 [0 [so]so]se]s0]5e]o o EEEEEEEEE
EEEEEEEEE
EEEEEEEEE
EEEEEEEEE
EEE

I'X,Y) = Z ZF]J (X +14,Y + )

1=—ki1=—k

output filter image (signal)

53 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

N
o

N
EEEEEEE

N
EEEEEEEENCE

I'X,Y) = Z ZF]J (X +14,Y + )
1=—ki1=—k

output filter image (signal)

54 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

0O

el B
AEEEENCCN

N
EEEEEEE
N
EEEEEEEENCE

image (signal)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

| 1(X,Y)
Image
| oo fofoooele] [T T[]
F(X,)Y) lofofofofofolofolo| [ o]0

filter

N
EEEEERG

ol B
HEEEERROE

ol B
HEEEEEEROCE

N
HEEEEEERCER

I'X,Y)y= % » FIJ)I(X+iY +j)

j=—ki=—k

output filter image (signal)

56 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

| 1(X,Y)
Image
| oo fofoooele] [T T[]
F(X,)Y) lofofofofofolofolo| [ o]0

filter

N
EEEERE0

ol B
HEEEERROE

ol B
HEEEEEEROCE

N
HEEEEEERCER

I'X,Y)y= % » FIJ)I(X+iY +j)

j=—ki=—k

output filter image (signal)

57 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

el B ol B
o= - ol O
N N
HEESEE8E880E8R

image (signal)

58 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

el B ol B
o] O ol O

N N
HEE58880E8R

N
s[s|8]8[8]8

I'X,Y) = Z ZF]J (X +14,Y + )
1=—ki1=—k

output filter image (signal)

59 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



L inear Filter Example

| 0 foJofoofofolofolo
F(X,Y) Jofofofofofofooo o
filter 0 [0 o [so]sofso]s0fs0lo Jo

e

S EEEEEEE

o0

filter

_

_

_

_
80[80 9060 [30]
of4020]
_

_

_

_

image (signal)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



| Inear Filters

k k

I'X,Y)y= % » FIJ)I(X+iY +j)

1=—ki1=—k

output filter image (signal)

For a give X and Y, superimpose the filter on the image centered at (X, Y)

Compute the new pixel value, I'(X,Y), as the sum of m x m values, where
each value is the product of the original pixel value in I(X,Y') and the
corresponding values In the filter

o1



| Inear Filters

Let's do some accounting ...
k k

I'X,Y)y= % » FIJ)I(X+iY +j)

output Jj=—ki=—k

filter image (signal)

At each pixel, (X,Y), there are m x m multiplications

There are

n X n pixels in (X,Y)

Total:

When m is fixed, small constant, this is O(n

02

2 2

X n° multiplications

). But when m =~ n thisis O(m

4).



| Inear Filters: Boundary Effects

03



| Inear Filters: Boundary c=ffects

Three standard ways to deal with boundaries:

1. lgnore these locations: Make the computation undefined for the top and
bottom & rows and the leftmost and rightmost & columns

o4



| Inear Filters: Boundary c=ffects

Three standard ways to deal with boundaries:

1. lgnore these locations: Make the computation undefined for the top and
bottom & rows and the leftmost and rightmost & columns

2. Pad the image with zeros: Return zero whenever a value of | is required
at some position outside the defined limits of Xand Y

09



| Inear Filters: Boundary Effects

o O

o O

O O O O O O O o oo o o

O O O O OO oo o o o o
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| Inear Filters: Boundary c=ffects

Three standard ways to deal with boundaries:

1. lgnore these locations: Make the computation undefined for the top and
bottom & rows and the leftmost and rightmost & columns

2. Pad the image with zeros: Return zero whenever a value of | is required
at some position outside the defined limits of Xand Y

3. Assume periodicity: The top row wraps around to the bottom row; the
leftmost column wraps around to the rightmost column

o/



| Inear Filters: Boundary Effects

03



| Inear Filters: Boundary Effects
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A short exercise ...

70



Example 1: WWarm up

Original Filter Result

[a



Example 1: WWarm up

Original Filter Result
(no change)

(2



Example 2.

Original Filter Result
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Example 2.

Original Filter Result
(sift left by 1 pixel)
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Example 3.

1111
1
o | 1]1]1
111 -
Original Filter Result

(filter sums to 1)
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Example 3.

1111
1
g | 1[1]1
1111
Original Filter Result
(filter sums to 1) (blur with a box filter)
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Example 4.

Original

Filter
(filter sums to 1)

la4

Result



Example 4.

0O/ 0|0 111 1
1
0 0 9 1111
O|0]|O0 1111
Original Filter Result

(filter sums to 1) (sharpening)

/8



[gle

Sharpen

Example 4

After

Before
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Example 4: Sharpening

¥

3 i
T 4 A L AN

: N\, . e
:
o [ @ %
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Before After

80 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filters: Correlation vs. Convolution

Definition: Correlation

81



Linear Filters: Correlation vs. Convolution

Definition: Correlation

k k
I'X,Y)= ) » F@,)I(X+4,Y +j)
1=—k1=—k
Definition: Convolution
k k

I'(X,Y) = Z > F(i, ) I(X —i,Y — j)

82



Linear Filters: Correlation vs. Convolution

Definition: Correlation

I'X,Y)= ) » F@,)I(X+4,Y +j)

j=—ki=—Fk

d

b

k

d

e

9

N

Filter

k

83

+ 40

Output
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Linear Filters: Correlation vs. Convolution

Definition: Correlation

Definition: Convolution

I'X,Y)= ) » F@,)I(X+4,Y +j)

j=—ki=—Fk

I'X,Y)y= % » F(i,)I(X—iY —j)

j=—ki=—k

d

b

C

k

k

d

e

f

9

N

Filter

k

k

84

+ 60

Output

1 CBEJ

=09a+8b+ 7C
€ 5563 L

- 2h + 1]
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Linear Filters: Correlation vs. Convolution

Definition: Correlation

Definition: Convolution

(rotated by 180)

Filter

Y

¢

I'X,Y)= ) » F@,)I(X+4,Y +j)

j=—ki=—Fk

I'X,Y)y= % » F(i,)I(X—iY —j)

j=—ki=—k

}

o

P

d

b

C

k

k

O

9

e

d

e

f

9

N

Filter

k

k

89

+ 60

Output

1 CBEJ

=09a+8b+ 7C
€ 5563 L

- 2h + 1]
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Linear Filters: Correlation vs. Convolution

Definition: Correlation

k k
I'X,Y)= ) » F(@i,j)I(X+i,Y +j)
j=—ki=—k
Definition: Convolution
k k
I'X,Y)y= > > F@i,j)I(X —4iY —j)
j=—ki=—k
ok k
=D > Fli,—)I(X +i,Y
j=—ki=—k

Note: if F(X,Y) = F(—X, —Y) then correlation = convolution.

380



Preview: \Why convolutions are important’

Who has heard of Convolutional Neural Networks (CNNs)?

What about Deep Learning?

POOLING CONVOLUTION + RELU POOLING FLATTEN FULLY p SOFTMAX

|| j \ CONNECTE j
Y Y
HIDDEN LAYERS CLASSIFICATION

Basic operations in CNNs are convolutions (with learned linear filters) followed
oy non-linear functions.

Note: [his results in non-linear filters.
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L inear rilters: Properties

L et ® denote convolution. Let I(X,Y) be a digital image

Superposition: Let I} and F, be digital filters

(Fi+F)eIX,Y)=FRoI(X,Y)+FoI(X,Y)
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L inear rilters: Properties

L et ® denote convolution. Let I(X,Y) be a digital image

Superposition: Let I} and F, be digital filters

(Fi+F)eIX,Y)=FRoI(X,Y)+FoI(X,Y)

Scaling: Let F be digital filter and let &£ lbe a scalar
(kF)QI(X,Y)=F® (kI(X,Y)) =k(F®I(X,Y))

Shift Invariance: Output is local (i.e., no dependence on absolute position)
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Linear Filters: Shift Invariance

Output does not depend on absolute position
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L inear rilters: Properties

L et ® denote convolution. Let I(X,Y) be a digital image

Superposition: Let I} and F, be digital filters
(F1+F)I(X,)Y)=FIX,)Y)+ F,1(X,Y)
Scaling: Let F be digital filter and let &£ lbe a scalar
(kF)@ [(X,)Y)=F @ (kI(X,Y)) = k(F @ I(X,Y))
Shift Invariance: Output is local (i.e., no dependence on absolute position)

An operation Is linear If it satisfies both superposition and scaling
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Linear Systems: Characterization Theorem

Any linear, shift invariant operation can be expressed as convolution
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Example 5: Smoothing with a Box Filter

Image Credit: loannis (Yannis) Gkioulekas (CMU)

Filter has equal positive values that some up to 1

Replaces each pixel with the average of itself and its local neighlborhood

— Box filter is also referred to as average filter or mean filter
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Example 5: Smoothing with a Box Filter

Forsyth & Ponce (2nd ed.) Figure 4.1 (left and middle)
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Example 5: Smoothing with a Box Filter

What happens if we increase the width (size) of the box filter”?
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Example 5: Smoothing with a Box Filter

3X3

Ox9

35x35

Gonzales & Woods (3rd ed.) Figure 3.3
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Example 6: Smoothing with a Gaussian

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Image in which the center point iIs 1 and every other point is O
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Example 6: Smoothing with a Gaussian

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Image in which the center point iIs 1 and every other point is O

01]0(0]10]O0
1111 0[010|0|O
%111 010111010
1|1 | 1 010101010
010101010

Filter

Image
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Example 6: Smoothing with a Gaussian

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Image in which the center point iIs 1 and every other point is O

0|o|o0|0]|O 0o|ofo|0]|O
1111 0|o0|o0|0]|O 0lglsls]|O
%111 o|lo|1|0]|o0 0|glsls|O
11111 0|0|0|0]|O 0|glslslO
0|o0|o0|0]|O 0|ofo0|0]|O

Filter

Image Result
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Example 6: Smoothing with a Gaussian

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Image in which the center point iIs 1 and every other point is O

Smoothing with a (circular) pillbox is a better model for defocus (in geometric optics)
The Gaussian is a good general smoothing model

— for phenomena (that are the sum of other small effects)
— whenever the Central Limit Theorem applies
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Example 6: Smoothing with a Gaussian

Idea: \Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

1 x? 4 y?
GO’ (aj? y) — ) 52 CXP 207

Forsyth & Ponce (2nd ed.)
Figure 4.2
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Summary

— The correlation of F(X ,‘Y) and I(X,Y)is:
k k

— Visual interpretation: Superimpose the filter ' on the image I at (X, Y),
oerform an element-wise multiply, and sum up the values

— Convolution is like correlation except filter "flipped”
f F(X,Y)=F(—X,—-Y)then correlation = convolution.

— Characterization Theorem: Any linear, spatially invariant operation can be
expressed as a convolution
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