
Lecture 25: Neural Networks (cont), CNNs

CPSC 425: Computer Vision 

1



Menu for Today (April 4, 2019)
Topics: 

— Backpropagation 
— Convolutional Layers

Redings: 
— Today’s Lecture:  N/A                                 

— Next Lecture:       N/A

Reminders: 
— Assignment 5: Scene Recognition with Bag of Words due today 
— Office hours: Monday (April 8, 15, 22nd) — 11:30-12:30pm 

           Tues / Thurs (April 9, 11, 16, 18, 23) — 12:30-2:00pm

— Pooling Layer 
— R-CNN  



Please fill out  
Student Evaluations  

(on Canvas)
3



4

Today’s “fun” Example: Boston Dynamics’ Spot Mini



5

Lecture 24: Re-cap

— The basic unit of computation in a neural network is a neuron. 

— A neuron accepts some number of input signals, computes their weighted 
sum, and applies an activation function (or non-linearity) to the sum. 

— Common activation functions include sigmoid and rectified linear unit (ReLU) 

inputs

weights

output

sum activation function

+b

y = f

 
NX

i=1

wixi + b

!

5

A Neuron



Neural Network

6

Example of a neural network with three inputs, a single hidden layer of four 
neurons, and an output layer of two neurons

A neural network comprises neurons connected in an acyclic graph 
The outputs of neurons can become inputs to other neurons  
Neural networks typically contain multiple layers of neurons 

Figure credit: Fei-Fei and Karpathy

Lecture 24: Re-cap



Neural Network

7

A neural network comprises neurons connected in an acyclic graph 
The outputs of neurons can become inputs to other neurons  
Neural networks typically contain multiple layers of neurons 

Figure credit: Fei-Fei and Karpathy

Lecture 24: Re-cap
Note: each neuron will have its own vector of weights and a bias, its easier to think 
of all neurons in a layer as a single entity with a matrix of weights (size = number of 
inputs x number of neurons) and a vector of biases (size = number of neurons)



Neural Network

8

A neural network comprises neurons connected in an acyclic graph 
The outputs of neurons can become inputs to other neurons  
Neural networks typically contain multiple layers of neurons 

Figure credit: Fei-Fei and Karpathy

Lecture 24: Re-cap
Note: each neuron will have its own vector of weights and a bias, its easier to think 
of all neurons in a layer as a single entity with a matrix of weights (size = number of 
inputs x number of neurons) and a vector of biases (size = number of neurons)

ŷ = f(x,W1,W2,b1,b2) = �
⇣
W

(2⇥4)
2 �

⇣
W

(4⇥3)
1 x+ b

(4)
1

⌘
+ b

(2)
2

⌘



Neural Network

9

Figure credit: Fei-Fei and Karpathy

Lecture 24: Re-cap

L(y, ŷ) = ||y � ŷ|| = ||y � f(x,W1,W2,b1,b2)||

ŷ = f(x,W1,W2,b1,b2) = �
⇣
W

(2⇥4)
2 �

⇣
W

(4⇥3)
1 x+ b

(4)
1

⌘
+ b

(2)
2

⌘

Loss:



Neural Network

10

Figure credit: Fei-Fei and Karpathy

Lecture 24: Re-cap

L(y, ŷ) = ||y � ŷ|| = ||y � f(x,W1,W2,b1,b2)||

W1,i,j = W1,i,j � �
@L(y, ŷ)
@W1,i,j

b1,i = b1,i � �
@L(y, ŷ)
@b1,i

ŷ = f(x,W1,W2,b1,b2) = �
⇣
W

(2⇥4)
2 �

⇣
W

(4⇥3)
1 x+ b

(4)
1

⌘
+ b

(2)
2

⌘

Gradient Descent 

Loss:



Backpropagation

The parameters of a neural network are learned using backpropagation, 
which computes gradients via recursive application of the chain rule from 
calculus 

11



Backpropagation

The parameters of a neural network are learned using backpropagation, 
which computes gradients via recursive application of the chain rule from 
calculus  

Suppose                    . What is the partial derivative of   with respect to   ? What 
is the partial derivative of   with respect to   ? 

12

f(x, y) = xy f
x

f y



Backpropagation

The parameters of a neural network are learned using backpropagation, 
which computes gradients via recursive application of the chain rule from 
calculus  

Suppose                    . What is the partial derivative of   with respect to   ? What 
is the partial derivative of   with respect to   ?  

13

f(x, y) = xy f
x

f y

@f

@x

= y

@f

@y

= x



The parameters of a neural network are learned using backpropagation, 
which computes gradients via recursive application of the chain rule from 
calculus  

Suppose                    .   . What is the partial derivative of   with respect to   ? 
What is the partial derivative of   with respect to   ? 

f(x, y) = x+ y

Backpropagation

14

f
x

f y



@f

@y
= 1

@f

@x

= 1

The parameters of a neural network are learned using backpropagation, 
which computes gradients via recursive application of the chain rule from 
calculus  

Suppose                    .   . What is the partial derivative of   with respect to   ? 
What is the partial derivative of   with respect to   ? 

f(x, y) = x+ y

Backpropagation

15

f
x

f y



A trickier example:

Backpropagation

16

f(x, y) = max(x, y)



That is, the (sub)gradient is 1 on the input that is larger, and 0 on the other input 

— For example, say x = 4, y = 2. Increasing y by a tiny amount does not 
change the value of f (f will still be 4), hence the gradient on y is zero.

A trickier example:

Backpropagation

17

@f

@x

= 1(x � y)
@f

@y

= 1(y � x)

f(x, y) = max(x, y)



We can compose more complicated functions and compute their gradients by 
applying the chain rule from calculus 

Backpropagation



We can compose more complicated functions and compute their gradients by 
applying the chain rule from calculus  

Suppose                                . What are the partial derivatives of   with respect 
to   ?   ?  ?  

f(x, y, z) = (x+ y)z f
x

y z

Backpropagation



We can compose more complicated functions and compute their gradients by 
applying the chain rule from calculus  

Suppose                                . What are the partial derivatives of   with respect 
to   ?   ?  ?  

For illustration we break this expression into                 and           . This is a 
sum and a product, and we have just seen how to compute partial derivatives 
for these.  

20

f(x, y, z) = (x+ y)z f
x

y z

q = x+ y f = qz

Backpropagation



We can compose more complicated functions and compute their gradients by 
applying the chain rule from calculus  

Suppose                                . What are the partial derivatives of   with respect 
to   ?   ?  ?  

For illustration we break this expression into                 and           . This is a 
sum and a product, and we have just seen how to compute partial derivatives 
for these.  

By the chain rule  

21

f(x, y, z) = (x+ y)z f
x

y z

q = x+ y f = qz

@f

@x

=
@f

@q

@q

@x

= z · 1 = z

Backpropagation



We can compose more complicated functions and compute their gradients by 
applying the chain rule from calculus  

Suppose                                . What are the partial derivatives of   with respect 
to   ?   ?  ?  

For illustration we break this expression into                 and           . This is a 
sum and a product, and we have just seen how to compute partial derivatives 
for these.  

By the chain rule  

22

f(x, y, z) = (x+ y)z f
x

y z

q = x+ y f = qz

@f

@x

=
@f

@q

@q

@x

= z · 1 = z

@f

@y
=

@f

@q

@q

@y
= z · 1 = z

@f

@z
= q

Backpropagation



23

Backpropagation
f(x, y, z) = (x+ y)z



24

Backpropagation
f(x, y, z) = (x+ y)z

+

x

y

Computational graph (a DAG) with variable ordering from topological sort, 
where each node is an input, intermediate, or output variable

q

z

⇥



25

Backpropagation

Suppose the network input is: (x, y, z) = (�2, 5,�4)

q = x+ y = 3 f = qz = �12Then: (forward pass)

f(x, y, z) = (x+ y)z

Computational graph (a DAG) with variable ordering from topological sort, 
where each node is an input, intermediate, or output variable

+

x

y

q

z

⇥



26

f(x, y, z) = (x+ y)z

Backpropagation

Suppose the network input is: (x, y, z) = (�2, 5,�4)

q = x+ y = 3 f = qz = �12Then: (forward pass)

@f

@q
= z = �4 (backward pass)

+

x

y

q

z

⇥



27

f(x, y, z) = (x+ y)z

Backpropagation

Suppose the network input is: (x, y, z) = (�2, 5,�4)

q = x+ y = 3 f = qz = �12Then: (forward pass)

@f

@x

=
@f

@q

@q

@x

=
@f

@q

· 1

@f

@q
= z = �4 (backward pass)

+

x

y

q

z

⇥



28

f(x, y, z) = (x+ y)z

Backpropagation

Suppose the network input is: (x, y, z) = (�2, 5,�4)

q = x+ y = 3 f = qz = �12Then: (forward pass)

@f

@x

=
@f

@q

@q

@x

=
@f

@q

· 1

@f

@q
= z = �4

@f

@x

= �4 (backward pass)

+

x

y

q

z

⇥



29

f(x, y, z) = (x+ y)z

Backpropagation

Suppose the network input is: (x, y, z) = (�2, 5,�4)

q = x+ y = 3 f = qz = �12Then: (forward pass)

@f

@q
= z = �4

@f

@x

= �4
@f

@y
= �4

@f

@z
= 3

@f

@x

=
@f

@q

@q

@x

=
@f

@q

· 1 @f

@y
=

@f

@q

@q

@y
=

@f

@q
· 1 @f

@z
= q

(backward pass)

+

x

y

q

z

⇥



Example: Let’s Build (world smallest) Neural Network 

30

Lets create a neural network that will be able to differentiate (classify) these patterns 
of simple 3x3 pixel images



Example: Let’s Build (world smallest) Neural Network 

31

Lets create a neural network that will be able to differentiate (classify) these patterns 
of simple 3x3 pixel images

We will need some labeled data 



Example: Let’s Build (world smallest) Neural Network 

32

Lets create a neural network that will be able to differentiate (classify) these patterns 
of simple 3x3 pixel images

Neural Network Class 1



Example: Let’s Build (world smallest) Neural Network 

33

Lets create a neural network that will be able to differentiate (classify) these patterns 
of simple 3x3 pixel images

Neural Network Class 2



Example: Let’s Build (world smallest) Neural Network 

34

Lets create a neural network that will be able to differentiate (classify) these patterns 
of simple 3x3 pixel images

Neural Network Class 3



Example: Let’s Build (world smallest) Neural Network 

35

Lets create a neural network that will be able to differentiate (classify) these patterns 
of simple 3x3 pixel images

Neural Network Class 3

What do we need to do? 

First, lets re-formulate the problem



Example: Let’s Build (world smallest) Neural Network 

36

Lets create a neural network that will be able to differentiate (classify) these patterns 
of simple 3x3 pixel images

Neural Network
p(Class 1) 
p(Class 2) 
p(Class 3)

What do we need to do? 

First, lets re-formulate the problem



Example: Let’s Build (world smallest) Neural Network 

37

Lets create a neural network that will be able to differentiate (classify) these patterns 
of simple 3x3 pixel images

Neural Network
p(Class 1) 
p(Class 2) 
p(Class 3)

Now, lets build a network!

How many inputs should the network have? How neuron outputs?



Example: Let’s Build (world smallest) Neural Network 

38

Lets create a neural network that will be able to differentiate (classify) these patterns 
of simple 3x3 pixel images

Input Layer Output Layer

What else is  
missing for us to  
train it?



Example: Let’s Build (world smallest) Neural Network 

39

Lets create a neural network that will be able to differentiate (classify) these patterns 
of simple 3x3 pixel images

Input Layer Output Layer Loss

Li = � log

 
efyi

P
j e

fyj

!



Example: Let’s Build (world smallest) Neural Network 

40

Lets create a neural network that will be able to differentiate (classify) these patterns 
of simple 3x3 pixel images

Input Layer Output Layer Loss

L1 = �log

 
e

P9
i=1 �(w1,ixi+b1)

P3
j=1 e

P9
i=1 �(w1,ixi+b1)

!



Fully Connected Layer

* slide from Marc’Aurelio Renzato 

Example: 200 x 200 image (small)  
x 40K hidden units 

Spatial correlations are generally local

Waste of resources + we don’t have 
enough data to train networks this large 

= ~ 2 Billion parameters (for one layer!)



Locally Connected Layer

Filter size: 10 x 10 

Example: 200 x 200 image (small)  
x 40K hidden units 

= ~ 4 Million parameters

* slide from Marc’Aurelio Renzato 



Locally Connected Layer

Filter size: 10 x 10 

Example: 200 x 200 image (small)  
x 40K hidden units 

= ~ 4 Million parameters

Stationarity — statistics is similar at 
different locations

* slide from Marc’Aurelio Renzato 



Convolutional Layer

* slide adopted from Marc’Aurelio Renzato 

Filter size: 10 x 10 

Example: 200 x 200 image (small)  
x 40K hidden units 

= ~ 4 Million parameters

Share the same parameters across the 
locations (assuming input is stationary)

= 100 parameters

X



Convolutional Layer

* slide from Marc’Aurelio Renzato 



Convolutional Layer

* slide from Marc’Aurelio Renzato 



Convolutional Layer

* slide from Marc’Aurelio Renzato 



Convolutional Layer

* slide from Marc’Aurelio Renzato 



Convolutional Layer

* slide from Marc’Aurelio Renzato 



Convolutional Layer

* slide from Marc’Aurelio Renzato 



Convolutional Layer

* slide from Marc’Aurelio Renzato 



Convolutional Layer

* slide from Marc’Aurelio Renzato 



Convolutional Layer

* slide from Marc’Aurelio Renzato 



Convolutional Layer

* slide from Marc’Aurelio Renzato 



Convolutional Layer

* slide from Marc’Aurelio Renzato 



Convolutional Layer

* slide from Marc’Aurelio Renzato 



Convolutional Layer

* slide from Marc’Aurelio Renzato 



Convolutional Layer

* slide from Marc’Aurelio Renzato 



Convolutional Layer

* slide from Marc’Aurelio Renzato 



Convolutional Layer

* slide from Marc’Aurelio Renzato 



Convolution Layer

?

2

4
�1 0 1
�1 0 1
�1 0 1

3

5



Convolution Layer

?

2

4
0.11 0.11 0.11
0.11 0.11 0.11
0.11 0.11 0.11

3

5



Convolutional Layer

* slide from Marc’Aurelio Renzato 

Filter size: 10 x 10 

Example: 200 x 200 image (small)  
x 40K hidden units 

Learn multiple filters

= 2000 parameters

# of filters: 20



Convolutional Layer

32 height

32 width

3 depth

32 x 32 x 3 image (note the image preserves spatial structure)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



5 x 5 x 3 filter

Convolutional Layer

32 height

32 width

3 depth

32 x 32 x 3 image 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Convolve the filter with the image 
(i.e., “slide over the image spatially, 
computing dot products”)



Convolutional Layer

32 height

32 width

3 depth

32 x 32 x 3 image 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

5 x 5 x 3 filter

Convolve the filter with the image 
(i.e., “slide over the image spatially, 
computing dot products”

Filters always extend the full depth of the input volume



Convolutional Layer

32 width

3 depth

32 x 32 x 3 image 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

1 number: the result of taking a dot product 
between the filter and a small 5 x 5 x 3 part 
of the image

W

T
x+ b,where W,x 2 R75

5 x 5 x 3 filter (      )
W

T
x+ b,where W,x 2 R75

How many parameters does the layer have? 76



Convolutional Layer

32 width

3 depth

32 x 32 x 3 image 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

convolve (slide) over all 
spatial locations

5 x 5 x 3 filter (      )
W

T
x+ b,where W,x 2 R75

28 width

1 depth

28 height

activation map



Convolutional Layer

32 width

3 depth

32 x 32 x 3 image 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

convolve (slide) over all 
spatial locations

5 x 5 x 3 filter (      )
W

T
x+ b,where W,x 2 R75

28 width

1 depth

28 height

activation map

consider another green filter



Convolutional Layer

32 width

3 depth
* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

convolutional 
layer

28 width

6 depth

28 height

activation mapIf we have 6 5x5 filter, we’ll get 6 separate activation maps:

32 height

this results in the “new image” of size 28 x 28 x 6! 



The number of neurons in a layer is determined by depth and stride parameter 
— also affected by zero-padding  

Depth: Controls number of neurons that connect to the same region of the 
input layer 
— a set of neurons connected to the same region is called a depth column 

Stride: Controls spatial density. How far apart are depth columns?  

71

Convolutional Layer



Convolutional Layer: Closer Look at Spatial Dimensions

32 width

3 depth

32 x 32 x 3 image 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

convolve (slide) over all 
spatial locations

5 x 5 x 3 filter (      )
W

T
x+ b,where W,x 2 R75

28 width

1 depth

28 height

activation map



CONV, 
ReLU 
e.g. 6 5x5x3 
filters

Convolutional Neural Network (ConvNet)

32 width

3 depth

32 height

28 width

6 depth

28 height

24 width

10 depth

24 height

CONV, 
ReLU 
e.g. 10 5x5x6 
filters

CONV, 
ReLU

With padding we can achieve no shrinking (32 -> 28 -> 24); shrinking quickly 
(which happens with larger filters) doesn’t work well in practice 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Convolutional neural networks can be seen as learning a hierarchy of filters.  

As we go deeper in the network, filters learn and respond to increasingly 
specialized structures  
— The first layers may contain simple orientation filters, middle layers may 
respond to common substructures, and final layers may respond to entire 
objects  

74

Convolutional Neural Network (ConvNet)



What filters do networks learn?

[ Zeiler and Fergus, 2013 ]



What filters do networks learn?

[ Zeiler and Fergus, 2013 ]



Pooling Layer 
Let us assume the filter is an “eye” detector  

How can we make detection spatially invariant 
(insensitive to position of the eye in the image)

* slide from Marc’Aurelio Renzato 



Pooling Layer 
Let us assume the filter is an “eye” detector  

How can we make detection spatially invariant 
(insensitive to position of the eye in the image)

By “pooling” (e.g., taking a max) response 
over a spatial locations we gain robustness 
to position variations

* slide from Marc’Aurelio Renzato 



Pooling Layer
• Makes representation smaller, more manageable and spatially invariant 
• Operates over each activation map independently 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

How many parameters?

None!



Max Pooling

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

6 8

3 4
max pool with 2 x 2 filter 

and stride of 2

activation map 

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Average Pooling

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

3.25 5.25

2 2
avg pool with 2 x 2 filter 

and stride of 2

activation map 



Object Classification

Dog 
Cat 
Couch 
Flowers 
Leopard 
…

No 
No 
No 
No 
Yes 
…

Category    Prediction

Problem: For each image predict which category it belongs to out of a fixed set 



Object Classification

Dog 
Cat 
Couch 
Flowers 
Leopard 
…

No 
No 
No 
No 
Yes 
…

Category    Prediction

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

Problem: For each image predict which category it belongs to out of a fixed set 



Object Classification

Dog 
Cat 
Couch 
Flowers 
Leopard 
…

Category    Prediction

21

…

…

𝒘𝟎

𝒘𝟏

𝒘𝟏

𝒘𝟐

𝒘𝑵−𝟏

𝒘𝑵

…LSTM LSTM LSTM LSTM

[dog: 0.95]
[frisbee: 0.83]
[outdoor: 0.82]
[grass: 0.81]
[leap: 0.45]

AttributesVisual Attributes by MIL

Visual representation by DCNN

0 1
Probability

Problem: For each image predict which category it belongs to out of a fixed set 



R-CNN
[ Girshick et al, CVPR 2014 ]

* image from Ross Girshick

Input Image



R-CNN
[ Girshick et al, CVPR 2014 ]

* image from Ross Girshick

Input Image

Regions of Interest from 
a proposal method (~2k)



R-CNN
[ Girshick et al, CVPR 2014 ]

* image from Ross Girshick

Input Image

Regions of Interest from 
a proposal method (~2k)

Warped image regions



R-CNN
[ Girshick et al, CVPR 2014 ]

* image from Ross Girshick

Input Image

Regions of Interest from 
a proposal method (~2k)

Warped image regions

Forward each region 
through a CNN



R-CNN
[ Girshick et al, CVPR 2014 ]

* image from Ross Girshick

Input Image

Regions of Interest from 
a proposal method (~2k)

Warped image regions

Forward each region 
through a CNN

Classify regions with SVM



R-CNN
[ Girshick et al, CVPR 2014 ]

* image from Ross Girshick

Input Image

Regions of Interest from 
a proposal method (~2k)

Warped image regions

Forward each region 
through a CNN

Classify regions with SVM

Linear Regression for bounding box offsets



R-CNN (Regions with CNN features) algorithm:  
— Extract promising candidate regions using an object proposals algorithm  
— Resize each proposal window to the size of the input layer of a trained    
convolutional neural network  
— Input each resized image patch to the convolutional neural network  

Implementation detail: Instead of using the classification scores of the 
network directly, the output of the final fully-connected layer can be used as an 
input feature to a trained support vector machine (SVM)  

91

R-CNN



Summary

The parameters of a neural network are learned using backpropagation, 
which computes gradients via recursive application of the chain rule  

A convolutional neural network assumes inputs are images, and constrains 
the network architecture to reduce the number of parameters  

A convolutional layer applies a set of learnable filters 

A pooling layer performs spatial downsampling 

A fully-connected layer is the same as in a regular neural network  

Convolutional neural networks can be seen as learning a hierarchy of filters 

92



Thank you! 

93



Please fill out  
Student Evaluations  

(on Canvas)
94


