
Lecture 24: Neural Networks

CPSC 425: Computer Vision

38

Warning:

Our intro to Neural Networks will be very light weight …

… if you want to know more, take my CPSC 532S

39

A Neuron

— The basic unit of computation in a neural network is a neuron.

— A neuron accepts some number of input signals, computes their weighted
sum, and applies an activation function (or non-linearity) to the sum.

— Common activation functions include sigmoid and rectified linear unit (ReLU)
40

inputs

weights

output

sum activation function

+b

A Neuron

— The basic unit of computation in a neural network is a neuron.

— A neuron accepts some number of input signals, computes their weighted
sum, and applies an activation function (or non-linearity) to the sum.

— Common activation functions include sigmoid and rectified linear unit (ReLU)
41

inputs

weights

output

sum activation function

+b

y = f

NX

i=1

wixi + b

!

image features

weights

Recall: Linear Classifier

42

f(xi,W,b) = Wxi + b

Defines a score function:

bias vector
(parameters)

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

43

Recall: Linear Classifier

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Aside: Inspiration from Biology

44

Neural nets/perceptrons are loosely inspired by biology.
But they certainly are not a model of how the brain works, or even how neurons

work.

Figure credit: Fei-Fei and Karpathy

Activation Function: Sigmoid

Common in many early neural networks
Biological analogy to saturated firing rate of neurons
Maps the input to the range [0,1]

45

Figure credit: Fei-Fei and Karpathy

Found to accelerate convergence during learning
Used in the most recent neural networks

46

Activation Function: ReLU (Rectified Linear Unit)

Figure credit: Fei-Fei and Karpathy

inputs

weights

output

sum

+b

A Neuron

47

Activation function
(e.g., Sigmoid or ReLU function of weighted sum)

A Neuron … another way to draw it …

48

inputs

weights

output

Activation function
(e.g., Sigmoid or ReLU function of weighted sum)

xN+1

A Neuron … another way to draw it …

49

(1) Combine the sum and activation function

inputs

weights

output

Activation function
(e.g., Sigmoid or ReLU function of weighted sum)

xN+1

A Neuron … another way to draw it …

50

(1) Combine the sum and activation function

(2) suppress the bias term (less clutter)

inputs

weights

output

Activation function
(e.g., Sigmoid or ReLU function of weighted sum)

xN+1 = 1

wN+1 = b

xN+1

A Neuron … another way to draw it …

51

(1) Combine the sum and activation function

(2) suppress the bias term (less clutter)

inputs

weights

output

Activation function
(e.g., Sigmoid or ReLU function of weighted sum)

xN+1 = 1

wN+1 = b

Neural Network

52

Connect a bunch of neurons together — a collection of connected neurons

‘one neuron’

Neural Network

53

Connect a bunch of neurons together — a collection of connected neurons

‘two neurons’

Neural Network

54

Connect a bunch of neurons together — a collection of connected neurons

‘three neurons’

Neural Network

55

Connect a bunch of neurons together — a collection of connected neurons

‘four neurons’

Neural Network

56

Connect a bunch of neurons together — a collection of connected neurons

‘five neurons’

Neural Network

57

Connect a bunch of neurons together — a collection of connected neurons

‘six neurons’

Neural Network

58

This network is also called a Multi-layer Perceptron (MLP)

Neural Network: Terminology

59

‘input’ layer

Neural Network: Terminology

60

‘hidden’ layer
‘input’ layer

Neural Network: Terminology

61

‘output’ layer
‘hidden’ layer

‘input’ layer

Neural Network: Terminology

62

this layer is a
‘fully connected layer’

Neural Network: Terminology

63

so is this

Neural Network

64

Example of a neural network with three inputs, a single hidden layer of four
neurons, and an output layer of two neurons

A neural network comprises neurons connected in an acyclic graph
The outputs of neurons can become inputs to other neurons
Neural networks typically contain multiple layers of neurons

Figure credit: Fei-Fei and Karpathy

Neural Network Intuition
Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping?
Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more
about what specific functions next …

Question: What does a hidden unit do?
Answer: It can be thought of as classifier or a feature.

Question: Why have many layers?
Answer: 1) More layers = more complex functional mapping

 2) More efficient due to distributed representation

* slide from Marc’Aurelio Renzato

Neural Network Intuition
Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping?
Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more
about what specific functions next …

Question: What does a hidden unit do?
Answer: It can be thought of as classifier or a feature.

Question: Why have many layers?
Answer: 1) More layers = more complex functional mapping

 2) More efficient due to distributed representation

* slide from Marc’Aurelio Renzato

Neural Network Intuition
Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping?
Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more
about what specific functions next …

Question: What does a hidden unit do?
Answer: It can be thought of as classifier or a feature.

Question: Why have many layers?
Answer: 1) More layers = more complex functional mapping

 2) More efficient due to distributed representation

* slide from Marc’Aurelio Renzato

Neural Network Intuition
Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping?
Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more
about what specific functions next …

Question: What does a hidden unit do?
Answer: It can be thought of as classifier or a feature.

Question: Why have many layers?
Answer: 1) More layers = more complex functional mapping

 2) More efficient due to distributed representation

* slide from Marc’Aurelio Renzato

Activation Function

69

Why can’t we have linear activation functions? Why have non-linear activations?

Neural Network

70

How many neurons?

71

How many neurons? 4+2 = 6

Neural Network

72

How many neurons? 4+2 = 6 How many weights?

Neural Network

73

How many neurons? 4+2 = 6 How many weights?

(3 x 4) + (4 x 2) = 20

Neural Network

74

How many neurons? 4+2 = 6 How many weights?

(3 x 4) + (4 x 2) = 20

How many learnable parameters?

Neural Network

75

How many neurons? 4+2 = 6 How many weights?

(3 x 4) + (4 x 2) = 20

How many learnable parameters?
20 + 4 + 2 = 26

bias terms

Neural Network

Modern convolutional neural networks contain 10-20 layers and on the
order of 100 million parameters

Training a neural network requires estimating a large number of parameters

76

Neural Networks

Li = � log

efyi

P
j e

fyj

!

Backpropagation
When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

77

yi fj

Li = � log

efyi

P
j e

fyj

!

Backpropagation
When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

78

yi fj

Consider neural net which takes input vector and predicts scores for 3
classes, with true class being class 3:

xi

Li = � log

efyi

P
j e

fyj

!

Backpropagation
When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

79

yi fj

Consider neural net which takes input vector and predicts scores for 3
classes, with true class being class 3:

xi

c1 = �2.85

c2 = 0.86

c3 = 0.28

f

Li = � log

efyi

P
j e

fyj

!

Backpropagation
When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

80

yi fj

Consider neural net which takes input vector and predicts scores for 3
classes, with true class being class 3:

xi

c1 = �2.85

c2 = 0.86

c3 = 0.28

f

0.058
2.36
1.32

exp

When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

Li = � log

efyi

P
j e

fyj

!

Backpropagation

81

yi fj

Consider neural net which takes input vector and predicts scores for 3
classes, with true class being class 3:

xi

c1 = �2.85

c2 = 0.86

c3 = 0.28

f

0.058
2.36
1.32

exp

Normalize to
sum to 1 0.016

0.631
0.353

When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

Li = � log

efyi

P
j e

fyj

!

Backpropagation

82

yi fj

Consider neural net which takes input vector and predicts scores for 3
classes, with true class being class 3:

xi

c1 = �2.85

c2 = 0.86

c3 = 0.28

f

0.058
2.36
1.32

exp

Normalize to
sum to 1 0.016

0.631
0.353

probability of a class

Li = � log

efyi

P
j e

fyj

!

Backpropagation
When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

83

yi fj

Consider neural net which takes input vector and predicts scores for 3
classes, with true class being class 3:

xi

c1 = �2.85

c2 = 0.86

c3 = 0.28

f

0.058
2.36
1.32

exp

Normalize to
sum to 1 0.016

0.631
0.353

probability of a class

softmax function
multi-class classifier

Li = � log

efyi

P
j e

fyj

!

Backpropagation
When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

84

yi fj

Consider neural net which takes input vector and predicts scores for 3
classes, with true class being class 3:

xi

c1 = �2.85

c2 = 0.86

c3 = 0.28

f

0.058
2.36
1.32

exp

Normalize to
sum to 1 0.016

0.631
0.353

Li = � log(0.353) = 1.04

probability of a class

Li = � log

efyi

P
j e

fyj

!

Backpropagation
When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

85

yi fj

We want to compute the gradient of the loss with respect to the network
parameters so that we can incrementally adjust the network parameters

Gradient Descent

1. Start from random value of W0,b0

2. Compute gradient of the loss with
respect to previous (initial) parameters:

r L(W,b)|W=Wk,b=bk

3. Re-estimate the parameters

Wk+1 = Wk � �
@L(W,b)

@W

����
W=Wk,b=bk

bk+1 = bk � �
@L(W,b)

@b

����
W=Wk,b=bk

Wk+1 = Wk � �
@L(W,b)

@W

����
W=Wk,b=bk

bk+1 = bk � �
@L(W,b)

@b

����
W=Wk,b=bk

For to max number of iterationsk = 0

*slide adopted from V. Ordonex

Wk+1 = Wk � �
@L(W,b)

@W

����
W=Wk,b=bk

bk+1 = bk � �
@L(W,b)

@b

����
W=Wk,b=bk

- is the learning rate

