
Lecture 23: Object Detection (cont)

CPSC 425: Computer Vision 
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Menu for Today (March 28, 2019)
Topics: 

— Deformable part models 
— Object Proposals

Reminders: 
— Assignment 5: Scene Recognition with Bag of Words due April 4th 
— Performance guidelines 
— Office hours: 3-4pm today 

— Grouping 
— Image Segmentation 

Redings: 
— Today’s Lecture:  Forsyth & Ponce (2nd ed.) 15.1, 15.2, 17.2                            

— Next Lecture:       Deep Learning (N/A)
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Today’s “fun” Example:
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Today’s “fun” Example: DensePose
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Today’s “fun” Example: Pose Estimation

[ Vondrak et al., CVPR 2008 ]



One common strategy to obtain a better classifier is to combine multiple 
classifiers.  

A simple approach is to train an ensemble of independent classifiers, and 
average their predictions.  

Boosting is another approach. 
— Train an ensemble of classifiers sequentially. 
— Bias subsequent classifiers to correctly predict training examples that 
previous classifiers got wrong. 
— The final boosted classifier is a weighted combination of the individual 
classifiers. 
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Lecture 22: Re-cap



7 Image Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Lecture 22: Re-cap



Pedestrian Detection
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Image window; Visualisation of HOG features; HOG features weighted by positive 
weights; HOG features weighted by negative weights

Fig. 17.7 in Forsyth & Ponce (2nd ed). Original source: Dalal and Triggs, 2005.

The sliding window approach applies naturally to pedestrian detection because 
pedestrians tend to take characteristic poses, (e.g. standing, walking)
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Sliding window detectors tend to fail when the object is not well described by a 
rigid template

Felzenszwalb et al., 2010

Many complex objects are better represented using a parts model

Deformable Part Model



Deformable Part Model

A deformable part model consists of a root and a set of parts  
— Root: an approximate model that gives the overall location of the object 
— Parts: object components that have reliable appearance but might appear 
at somewhat different locations on the root for different instances  
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Felzenszwalb et al., 2010



Each part has an appearance model and a natural location relative to the root 

Finding a window that looks a lot like the part close to that part’s natural 
location relative to the root yields evidence that the object is present 
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Felzenszwalb et al., 2010

Deformable Part Model
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A parts model for a bicycle, containing a root and 6 parts

Figure source: Felzenszwalb et al., 2010

Deformable Part Model



The learned root model is a set of linear weights       applied to the feature 
descriptor of the root window  
The i-th learned part model consists of 
— a set of linear weights         applied to the feature descriptor of the part window 
— a natural location (offset) relative to the root  
— a set of distance weights   
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Deformable Part Model



Sliding Window with Deformable Part Model

The overall score of the deformable parts model at a particular window will be 
the sum of several scores  
— A root score compares the root to the window  
— Each part has its own score, consisting of an appearance score and a 
location score  

Model score = Root score +       Part i score  
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Denote by             the feature descriptor of a part window at offset          relative 
to the root.  

Denote by                                                  the difference from the part’s natural 
offset relative to the root.  

The score for part i at offset          is given by: 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Sliding Window with Deformable Part Model



Denote by             the feature descriptor of a part window at offset          relative 
to the root.  

Denote by                                                  the difference from the part’s natural 
offset relative to the root.  

The score for part i at offset          is given by: 

The final part i score is the best score found over all possible offsets 
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Learning a Deformable Part Model

Learning the model can be tricky. Why?  
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Learning a Deformable Part Model

Learning the model can be tricky. Why?  

A class model can consist of multiple component models representing different 
canonical views 
— e.g. a front and lateral model of a bicycle  

We do not know which component model should respond to which training 
example  
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Learning a Deformable Part Model

Learning the model can be tricky. Why?  

A class model can consist of multiple component models representing different 
canonical views 
— e.g. a front and lateral model of a bicycle  

We do not know which component model should respond to which training 
example  

We also do not know the locations of the parts in the training examples  
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However, notice that if the component and the part locations for each training 
example are given (fixed), we can simply train a linear SVM as usual  
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Learning a Deformable Part Model



However, notice that if the component and the part locations for each training 
example are given (fixed), we can simply train a linear SVM as usual  

This observation leads to the following iterative strategy:  
— Assume components and part locations are given (fixed). Compute 
appearance and offset models.  
— Assume appearance and offset models are given (fixed). Re-estimate 
components and part locations.  
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Learning a Deformable Part Model



Deformable Part Models: Hard Negative Mining

Sliding window detectors must search over an immense number of windows 
— Even a small false positive rate becomes noticeable  

As a result, we want to train on as many negative examples as possible, but 
remain computationally feasible  

Hard negative mining: As we train the classifier, apply it to the negative 
examples (e.g. ‘not a bicycle’) and keep track of ones that get a strong 
response (e.g. are mistakenly detected as bicycles). Include these in the next 
round of training.  
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Deformable Part Model: Examples
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Figure source: Felzenszwalb et al., 2010



Deformable Part Model: Examples
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Figure source: Felzenszwalb et al., 2010
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Recall: Sliding Window

Train an image classifier as described previously. ‘Slide’ a fixed-sized 
detection window across the image and evaluate the classifier on each 
window.  
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Image credit: KITTI Vision Benchmark 



Recall: Sliding Window

Train an image classifier as described previously. ‘Slide’ a fixed-sized 
detection window across the image and evaluate the classifier on each 
window.  
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Image credit: KITTI Vision Benchmark 

This is a lot of possible windows! And most will not contain the object we are 
looking for.



Object Proposals

Object proposal algorithms generate a short list of regions that have generic 
object-like properties  
— These regions are likely to contain some kind of foreground object instead of 
background texture  

The object detector then considers these candidate regions only, instead of 
exhaustive sliding window search  
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First introduced by Alexe et al., who asked ‘what is an object?’ and defined an 
‘objectness’ score based on several visual cues 

Object Proposals

Figure credit: Alexe et al., 2012
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First introduced by Alexe et al., who asked ‘what is an object?’ and defined an 
‘objectness’ score based on several visual cues 

Object Proposals

Figure credit: Alexe et al., 2012

This work argued that objects typically 
— are unique within the image and stand out as salient  
— have a contrasting appearance from surroundings and/or 
— have a well-defined closed boundary in space
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Multiscale Saliency 
— Favors regions with a unique appearance within the image 

High scale Low scale

Failure Case

Successful Case

Object Proposals

Figure credit: Alexe et al., 2012
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Colour Contrast 
— Favors regions with a contrasting colour appearance from immediate 
surroundings

Failure CaseSuccessful Cases

Figure credit: Alexe et al., 2012

Object Proposals



36 Figure credit: Alexe et al., 2012

Superpixels Straddling 
— Favors regions with a well-defined closed boundary 
— Measures the extent to which superpixels (obtained by image segmentation) 
contain pixels both inside and outside of the window

Object Proposals
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Object Proposals

Figure credit: Alexe et al., 2012

Superpixels Straddling 
— Favors regions with a well-defined closed boundary 
— Measures the extent to which superpixels (obtained by image segmentation) 
contain pixels both inside and outside of the window

Failure CaseSuccessful Cases
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Speeding up [11] HOG pedestrian detector [18] Deformable part model detector 
[33] Bag of words detector

Table credit: Alexe et al., 2012

Object Proposals



Summary

Detection scores in the deformable part model are based on both appearance 
and location  

The deformable part model is trained iteratively by alternating the steps  
	  1.  Assume components and part locations given; compute appearance and 

offset models  
	  2.  Assume appearance and offset models given; compute components and 

part locations  

An object proposal algorithm generates a short list of regions with generic 
object-like properties that can be evaluated by an object detector in place of an 
exhaustive sliding window search 
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