
Lecture 23: Object Detection (cont)

CPSC 425: Computer Vision

1

Menu for Today (March 28, 2019)
Topics:

— Deformable part models
— Object Proposals

Reminders:
— Assignment 5: Scene Recognition with Bag of Words due April 4th
— Performance guidelines
— Office hours: 3-4pm today

— Grouping
— Image Segmentation

Redings:
— Today’s Lecture: Forsyth & Ponce (2nd ed.) 15.1, 15.2, 17.2

— Next Lecture: Deep Learning (N/A)

3

Today’s “fun” Example:

4

Today’s “fun” Example: DensePose

5

Today’s “fun” Example: Pose Estimation

[Vondrak et al., CVPR 2008]

One common strategy to obtain a better classifier is to combine multiple
classifiers.

A simple approach is to train an ensemble of independent classifiers, and
average their predictions.

Boosting is another approach.
— Train an ensemble of classifiers sequentially.
— Bias subsequent classifiers to correctly predict training examples that
previous classifiers got wrong.
— The final boosted classifier is a weighted combination of the individual
classifiers.

6

Lecture 22: Re-cap

7 Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 22: Re-cap

8 Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 22: Re-cap

9 Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 22: Re-cap

10

Lecture 22: Re-cap

Pedestrian Detection

11

Image window; Visualisation of HOG features; HOG features weighted by positive
weights; HOG features weighted by negative weights

Fig. 17.7 in Forsyth & Ponce (2nd ed). Original source: Dalal and Triggs, 2005.

The sliding window approach applies naturally to pedestrian detection because
pedestrians tend to take characteristic poses, (e.g. standing, walking)

12

Sliding window detectors tend to fail when the object is not well described by a
rigid template

Felzenszwalb et al., 2010

Many complex objects are better represented using a parts model

Deformable Part Model

Deformable Part Model

A deformable part model consists of a root and a set of parts
— Root: an approximate model that gives the overall location of the object
— Parts: object components that have reliable appearance but might appear
at somewhat different locations on the root for different instances

13

Felzenszwalb et al., 2010

Each part has an appearance model and a natural location relative to the root

Finding a window that looks a lot like the part close to that part’s natural
location relative to the root yields evidence that the object is present

14

Felzenszwalb et al., 2010

Deformable Part Model

15

A parts model for a bicycle, containing a root and 6 parts

Figure source: Felzenszwalb et al., 2010

Deformable Part Model

The learned root model is a set of linear weights applied to the feature
descriptor of the root window
The i-th learned part model consists of
— a set of linear weights applied to the feature descriptor of the part window
— a natural location (offset) relative to the root
— a set of distance weights

16

�(pi)

�(r)

v(pi) = (u(pi), v(pi))

d(pi) = (d(pi)
1 , d(pi)

2 , d(pi)
3 , d(pi)

4)

Figure source: Felzenszwalb et al., 2010

Deformable Part Model

Sliding Window with Deformable Part Model

The overall score of the deformable parts model at a particular window will be
the sum of several scores
— A root score compares the root to the window
— Each part has its own score, consisting of an appearance score and a
location score

Model score = Root score + Part i score

17

X

i

Denote by the feature descriptor of a part window at offset relative
to the root.

Denote by the difference from the part’s natural
offset relative to the root.

The score for part i at offset is given by: 

18

S

(pi)(x, y;�(pi)
,d(pi)

,v(pi)) = �

(pi)
�(x, y)

�
⇣
d

(pi)
1 dx+ d

(pi)
2 dy + d

(pi)
3 (dx)2 + d

(pi)
4 (dy)2

⌘

S

(pi)(x, y;�(pi)
,d(pi)

,v(pi)) = �

(pi)
�(x, y)

�
⇣
d

(pi)
1 dx+ d

(pi)
2 dy + d

(pi)
3 (dx)2 + d

(pi)
4 (dy)2

⌘

�(x, y)

(x, y)

(dx, dy) = (u(pi)
, v

(pi))� (x, y)

(x, y)

Sliding Window with Deformable Part Model

Denote by the feature descriptor of a part window at offset relative
to the root.

Denote by the difference from the part’s natural
offset relative to the root.

The score for part i at offset is given by: 

The final part i score is the best score found over all possible offsets

19

S

(pi)(x, y;�(pi)
,d(pi)

,v(pi)) = �

(pi)
�(x, y)

�
⇣
d

(pi)
1 dx+ d

(pi)
2 dy + d

(pi)
3 (dx)2 + d

(pi)
4 (dy)2

⌘

S

(pi)(x, y;�(pi)
,d(pi)

,v(pi)) = �

(pi)
�(x, y)

�
⇣
d

(pi)
1 dx+ d

(pi)
2 dy + d

(pi)
3 (dx)2 + d

(pi)
4 (dy)2

⌘

�(x, y)

(x, y)

(dx, dy) = (u(pi)
, v

(pi))� (x, y)

(x, y)

(x, y)

max(x,y)S
(pi)(x, y;�(pi)

,d(pi)
,v(pi))Part i score =

Sliding Window with Deformable Part Model

Learning a Deformable Part Model

Learning the model can be tricky. Why?

20

Learning a Deformable Part Model

Learning the model can be tricky. Why?

A class model can consist of multiple component models representing different
canonical views
— e.g. a front and lateral model of a bicycle

We do not know which component model should respond to which training
example

21

Learning a Deformable Part Model

Learning the model can be tricky. Why?

A class model can consist of multiple component models representing different
canonical views
— e.g. a front and lateral model of a bicycle

We do not know which component model should respond to which training
example

We also do not know the locations of the parts in the training examples

22

However, notice that if the component and the part locations for each training
example are given (fixed), we can simply train a linear SVM as usual

23

Learning a Deformable Part Model

However, notice that if the component and the part locations for each training
example are given (fixed), we can simply train a linear SVM as usual

This observation leads to the following iterative strategy:
— Assume components and part locations are given (fixed). Compute
appearance and offset models.
— Assume appearance and offset models are given (fixed). Re-estimate
components and part locations.

24

Learning a Deformable Part Model

Deformable Part Models: Hard Negative Mining

Sliding window detectors must search over an immense number of windows 
— Even a small false positive rate becomes noticeable

As a result, we want to train on as many negative examples as possible, but
remain computationally feasible

Hard negative mining: As we train the classifier, apply it to the negative
examples (e.g. ‘not a bicycle’) and keep track of ones that get a strong
response (e.g. are mistakenly detected as bicycles). Include these in the next
round of training.

25

Deformable Part Model: Examples

26

Figure source: Felzenszwalb et al., 2010

Deformable Part Model: Examples

27

Figure source: Felzenszwalb et al., 2010

28

Recall: Sliding Window

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

29

Image credit: KITTI Vision Benchmark

Recall: Sliding Window

Train an image classifier as described previously. ‘Slide’ a fixed-sized
detection window across the image and evaluate the classifier on each
window.

30

Image credit: KITTI Vision Benchmark

This is a lot of possible windows! And most will not contain the object we are
looking for.

Object Proposals

Object proposal algorithms generate a short list of regions that have generic
object-like properties
— These regions are likely to contain some kind of foreground object instead of
background texture

The object detector then considers these candidate regions only, instead of
exhaustive sliding window search

31

32

First introduced by Alexe et al., who asked ‘what is an object?’ and defined an
‘objectness’ score based on several visual cues

Object Proposals

Figure credit: Alexe et al., 2012

33

First introduced by Alexe et al., who asked ‘what is an object?’ and defined an
‘objectness’ score based on several visual cues

Object Proposals

Figure credit: Alexe et al., 2012

This work argued that objects typically
— are unique within the image and stand out as salient
— have a contrasting appearance from surroundings and/or
— have a well-defined closed boundary in space

34

Multiscale Saliency
— Favors regions with a unique appearance within the image

High scale Low scale

Failure Case

Successful Case

Object Proposals

Figure credit: Alexe et al., 2012

35

Colour Contrast
— Favors regions with a contrasting colour appearance from immediate
surroundings

Failure CaseSuccessful Cases

Figure credit: Alexe et al., 2012

Object Proposals

36 Figure credit: Alexe et al., 2012

Superpixels Straddling
— Favors regions with a well-defined closed boundary
— Measures the extent to which superpixels (obtained by image segmentation)
contain pixels both inside and outside of the window

Object Proposals

37

Object Proposals

Figure credit: Alexe et al., 2012

Superpixels Straddling
— Favors regions with a well-defined closed boundary
— Measures the extent to which superpixels (obtained by image segmentation)
contain pixels both inside and outside of the window

Failure CaseSuccessful Cases

38

Speeding up [11] HOG pedestrian detector [18] Deformable part model detector
[33] Bag of words detector

Table credit: Alexe et al., 2012

Object Proposals

Summary

Detection scores in the deformable part model are based on both appearance
and location

The deformable part model is trained iteratively by alternating the steps
	 1. Assume components and part locations given; compute appearance and

offset models
	 2. Assume appearance and offset models given; compute components and

part locations

An object proposal algorithm generates a short list of regions with generic
object-like properties that can be evaluated by an object detector in place of an
exhaustive sliding window search

39

