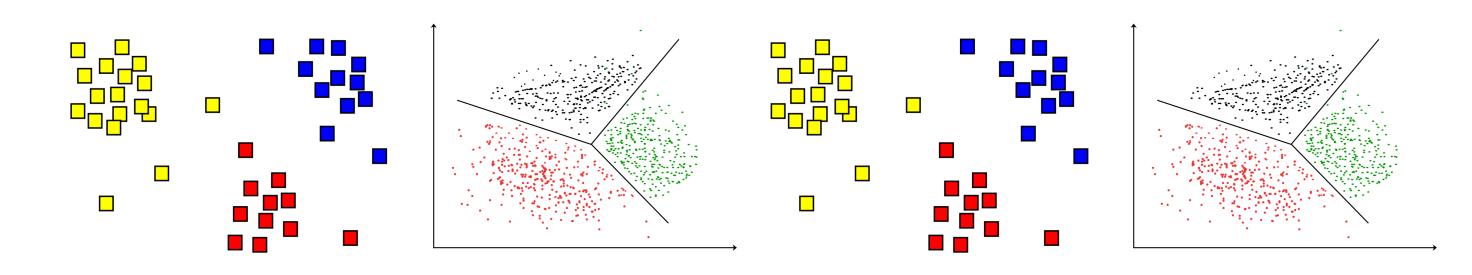


THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision



Lecture 29: Image Classification

47

Menu for Today (November 16, 2018)

Topics:

- Scene Classification
- Bag of Words Representation

Redings:

- Today's Lecture: Forsyth & Ponce (2nd ed.) 16.1.3, 16.1.4, 16.1.9
- Next Lecture:

Reminders:

Decision Tree - Boosting

Forsyth & Ponce (2nd ed.) 17.1–17.2

Assignment 5: Scene Recognition with Bag of Words due last day of classes

Image Classification

We next discuss **image classification**, where we pass a whole image into a classifier and obtain a class label as output.

What Makes Image Classification Hard?

Intra-class variation, viewpoint, illumination, clutter, and occlusion (among others!)

Figure source: Jianxiong Xiao. Original credit: ?

Image Classification

applied to classify natural scenes (e.g. beach, forest, harbour, library).

Why might classifying scenes be useful?

In addition to images containing single objects, the same techniques can be

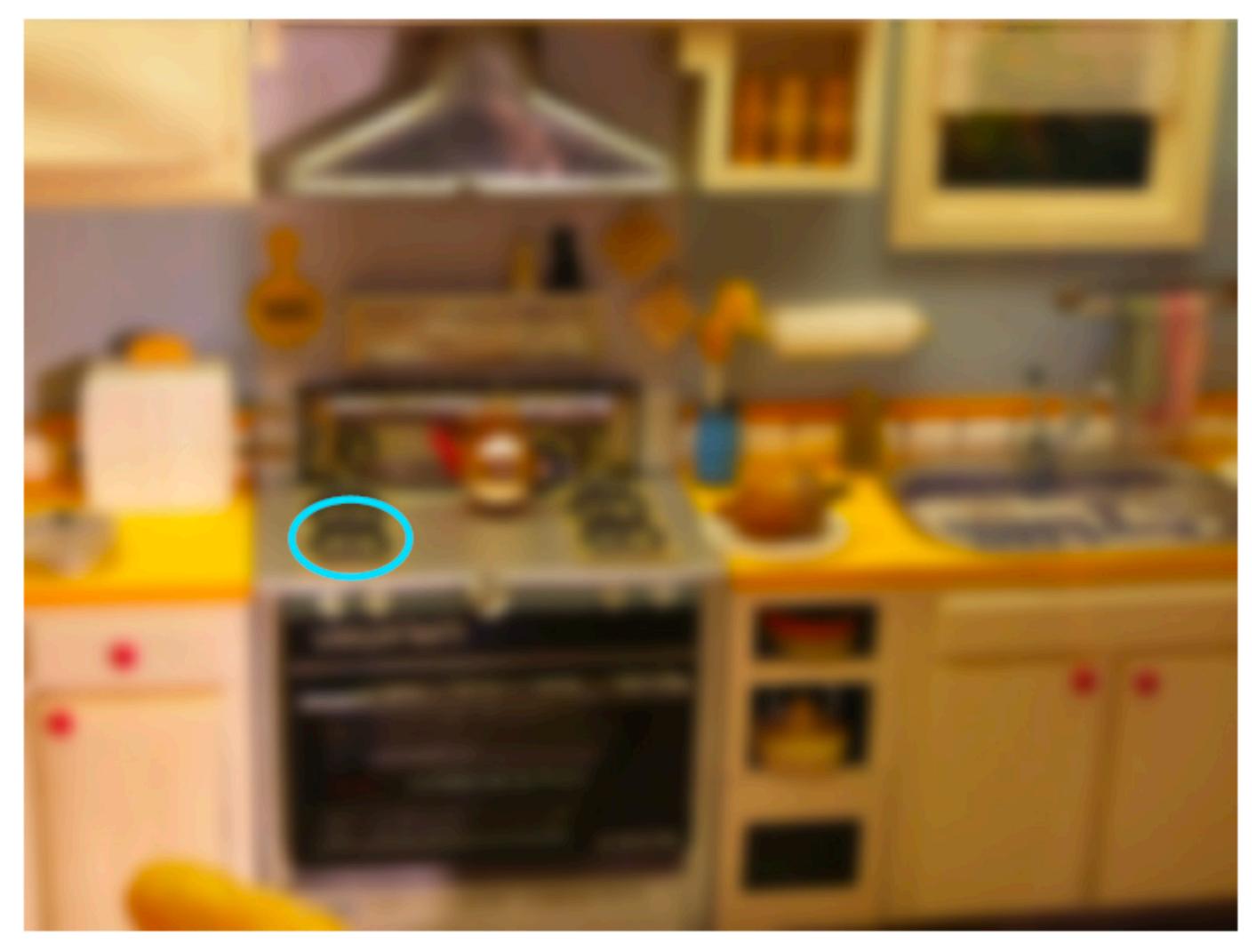
Image Classification

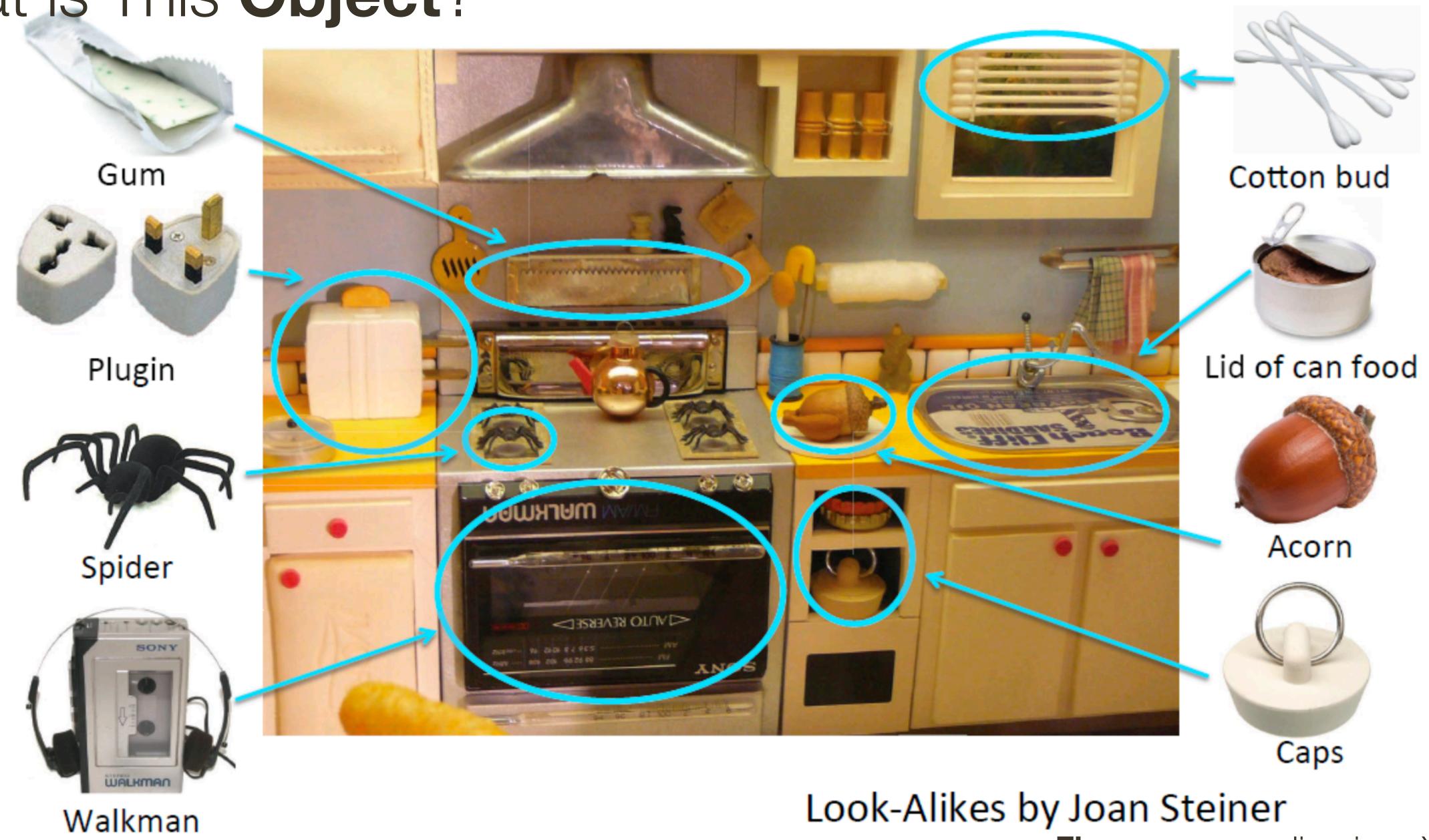
applied to classify natural scenes (e.g. beach, forest, harbour, library).

Why might classifying scenes be useful?

Visual perception is influenced by expectation. Our expectations are often conditioned on the **context**.

- In addition to images containing single objects, the same techniques can be





Visual Words

Many algorithms for image classification accumulate evidence on the basis of **visual words**.

To classify a text document (e.g. as an article on sports, entertainment, business, politics) we might find patterns in the occurrences of certain words.

Vector Space Model

G. Salton. 'Mathematics and Information Retrieval' Journal of Documentation, 1979

working with collaborators for the robotic device to its at Harvard University, the achieve natural motions in beh University of Southern the ankle.

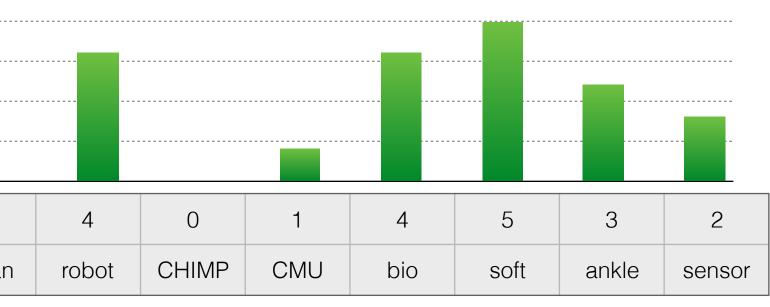
0

Tartan

http://www.fodey.com/generators/newspaper/snippet.asp

California, MIT and

1	6	2	1	0	0	0	1
Tartan	robot	CHIMP	CMU	bio	soft	ankle	sensor



Vector Space Model

A document (datapoint) is a vector of counts over each word (feature)

 $n(\cdot)$ counts the number of occurrences

What is the similarity between two documents?

 $\boldsymbol{v}_d = [n(w_{1,d}) \ n(w_{2,d}) \ \cdots \ n(w_{T,d})]$

just a histogram over words

Vector Space Model

A document (datapoint) is a vector of counts over each word (feature)

 $n(\cdot)$ counts the number of occurrences

What is the similarity between two documents?

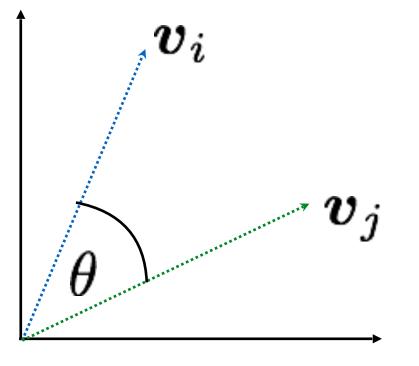
Use any distance you want but the cosine distance is fast and well designed for high-dimensional vector spaces:

$$egin{aligned} d(oldsymbol{v}_i,oldsymbol{v}_j) &= \cos heta \ &= rac{oldsymbol{v}_i \cdot oldsymbol{v}_i}{\|oldsymbol{v}_i\|} \end{aligned}$$

 $oldsymbol{v}_d = [n(w_{1,d}) \quad n(w_{2,d}) \quad \cdots \quad n(w_{T,d})]$

just a histogram over words

 \boldsymbol{v}_{i} $oldsymbol{v}_i \| \| oldsymbol{v}_j \|$

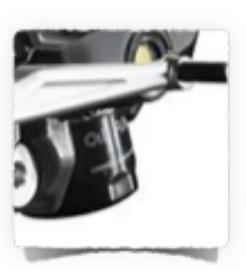


Visual Words

In images, the equivalent of a word is a local image patch. The local image patch is described using a descriptor such as SIFT.

We construct a vocabulary or codebook of local descriptors, containing representative local descriptors.

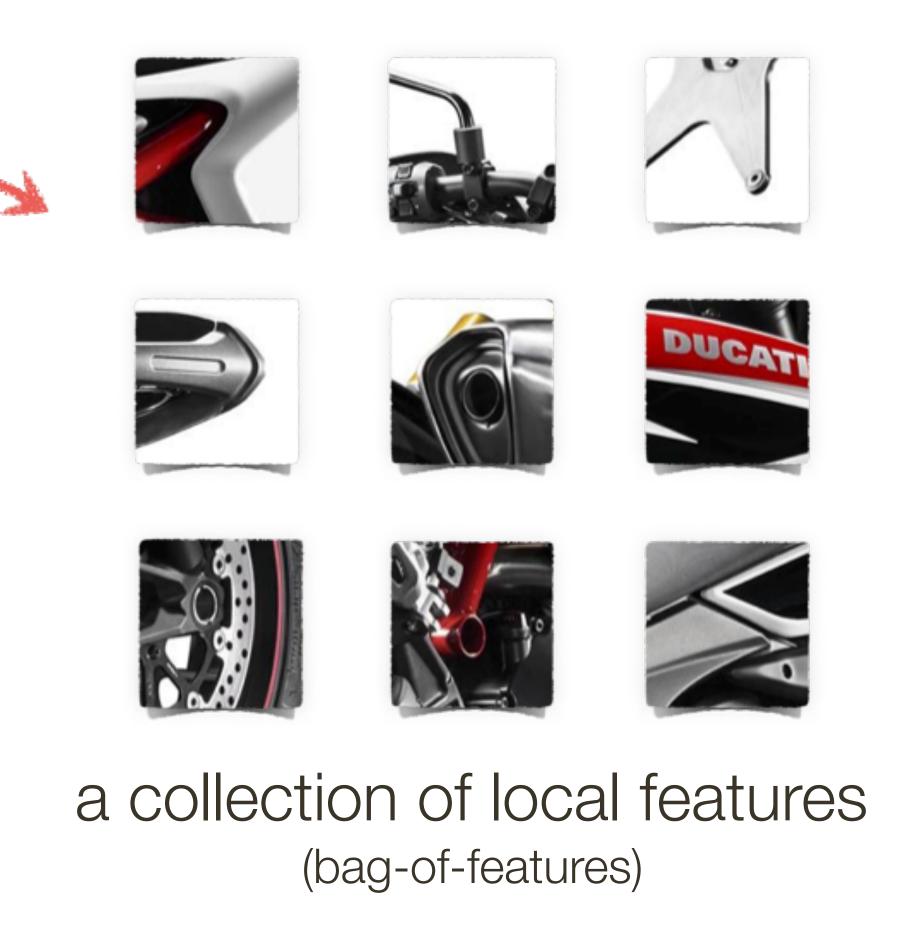
What **Objects** do These Parts Belong To?





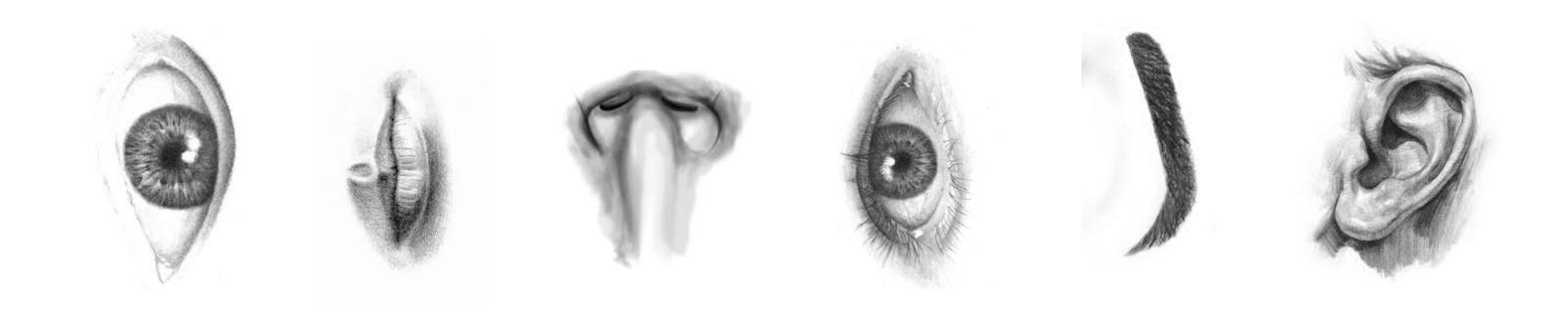
Some local feature are very informative

An object as



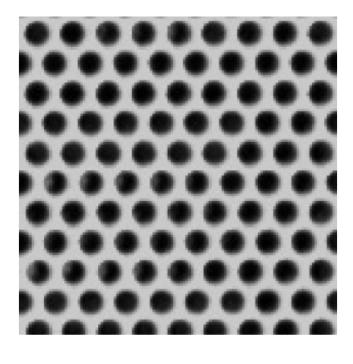
- deals well with occlusion
- scale invariant
- rotation invariant

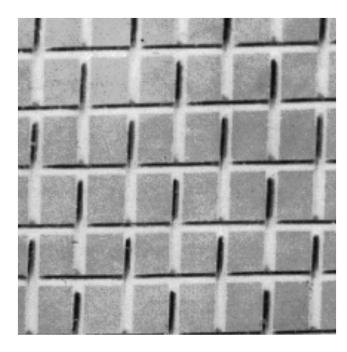
(not so) Crazy Assumption

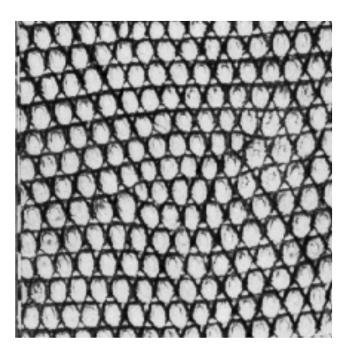


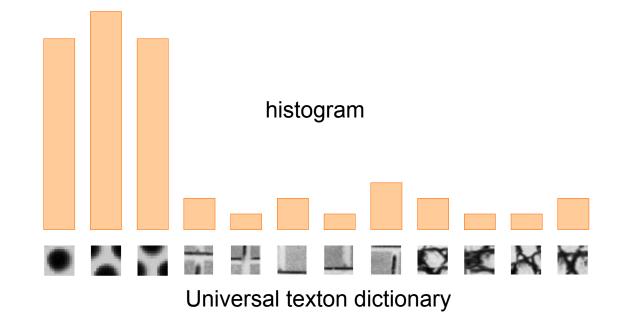
spatial information of local features can be ignored for object recognition (i.e., verification)

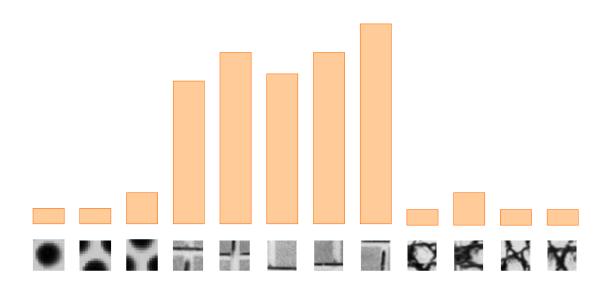
Recall: Texture Representation

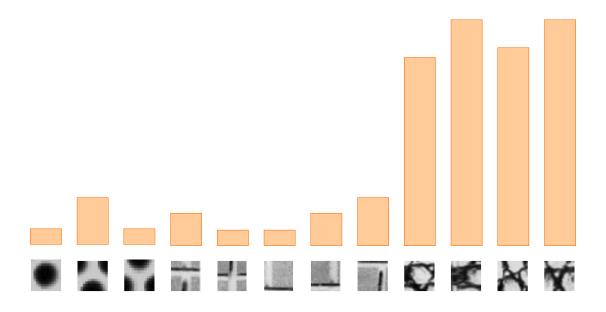












Visual Words

patch is described using a descriptor such as SIFT.

We construct a **vocabulary** or **codebook** of local descriptors, containing representative local descriptors.

SIFT descriptors, say 1 million, how can we choose a small number of 'representative' SIFT codewords, say 1000?

- In images, the equivalent of a word is a local image patch. The local image

Question: How might we construct such a codebook? Given a large sample of

Standard **Bag-of-Words** Pipeline (for image classification)

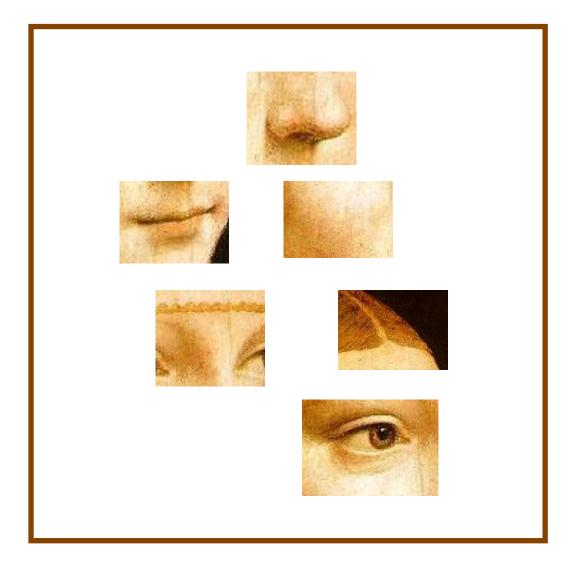
Dictionary Learning: Learn Visual Words using clustering

Encode: build Bags-of-Words (BOW) vectors for each image

Classify: Train and test data using BOWs

1. Dictionary Learning: Learn Visual Words using Clustering

1. extract features (e.g., SIFT) from images

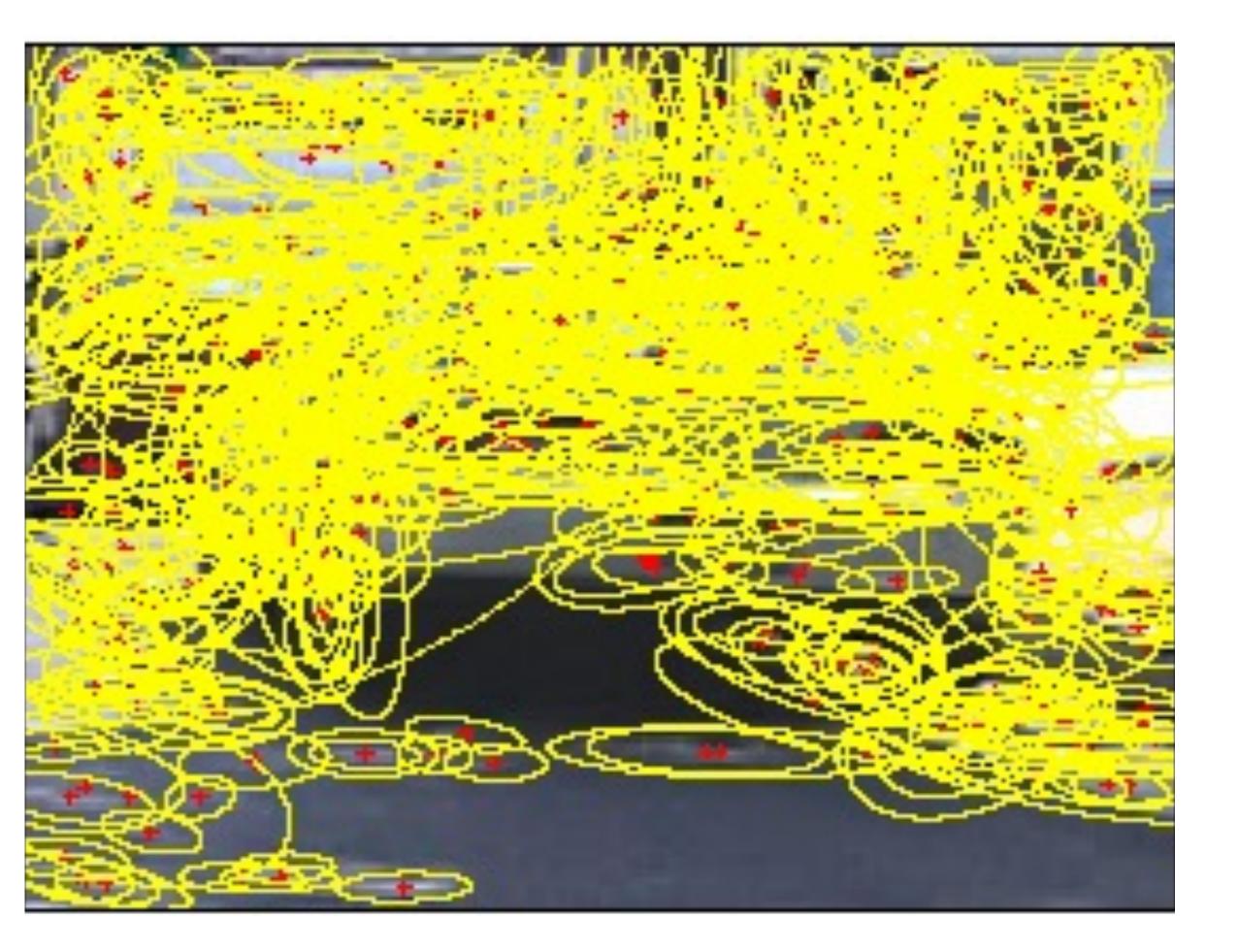


1. Dictionary Learning: Learn Visual Words using Clustering

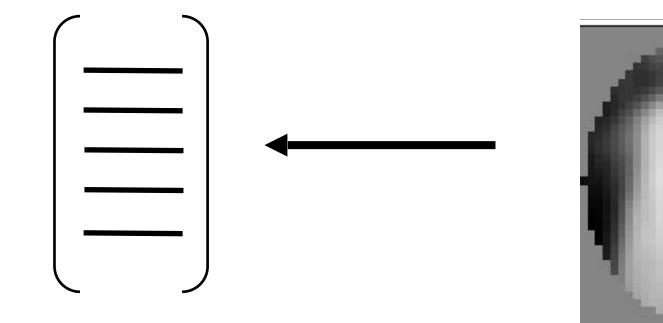
2. Learn visual dictionary (e.g., K-means clustering)

What **Features** Should We Extract?

- Regular grid Vogel & Schiele, 2003 Fei-Fei & Perona, 2005
- Interest point detector Csurka et al. 2004 Fei-Fei & Perona, 2005 Sivic et al. 2005
- Other methods Random sampling (Vidal-Naquet & Ullman, 2002) Segmentation-based patches (Barnard et al. 2003)



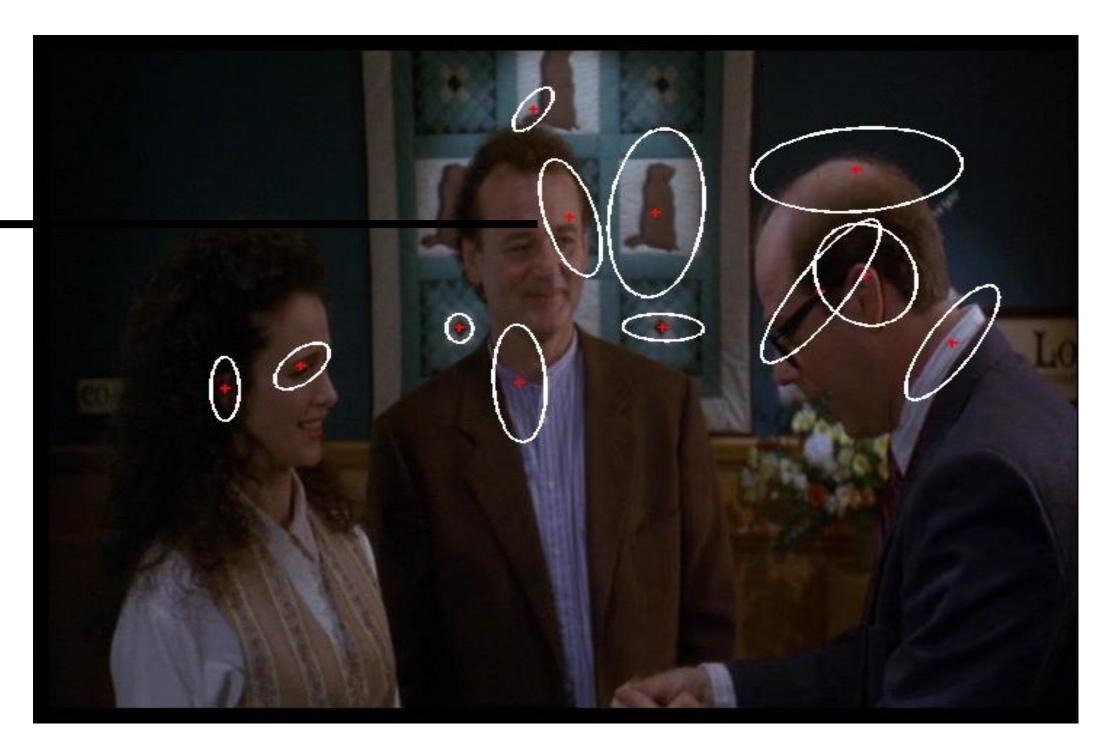
Extracting SIFT Patches



Compute SIFT descriptor

Normalize patch

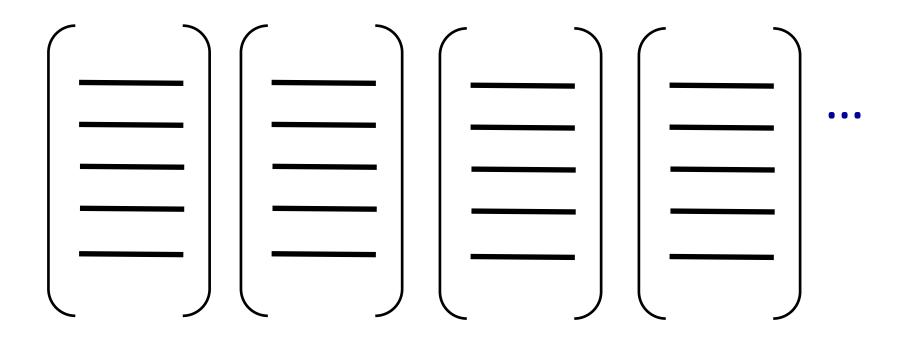
[Lowe'99]

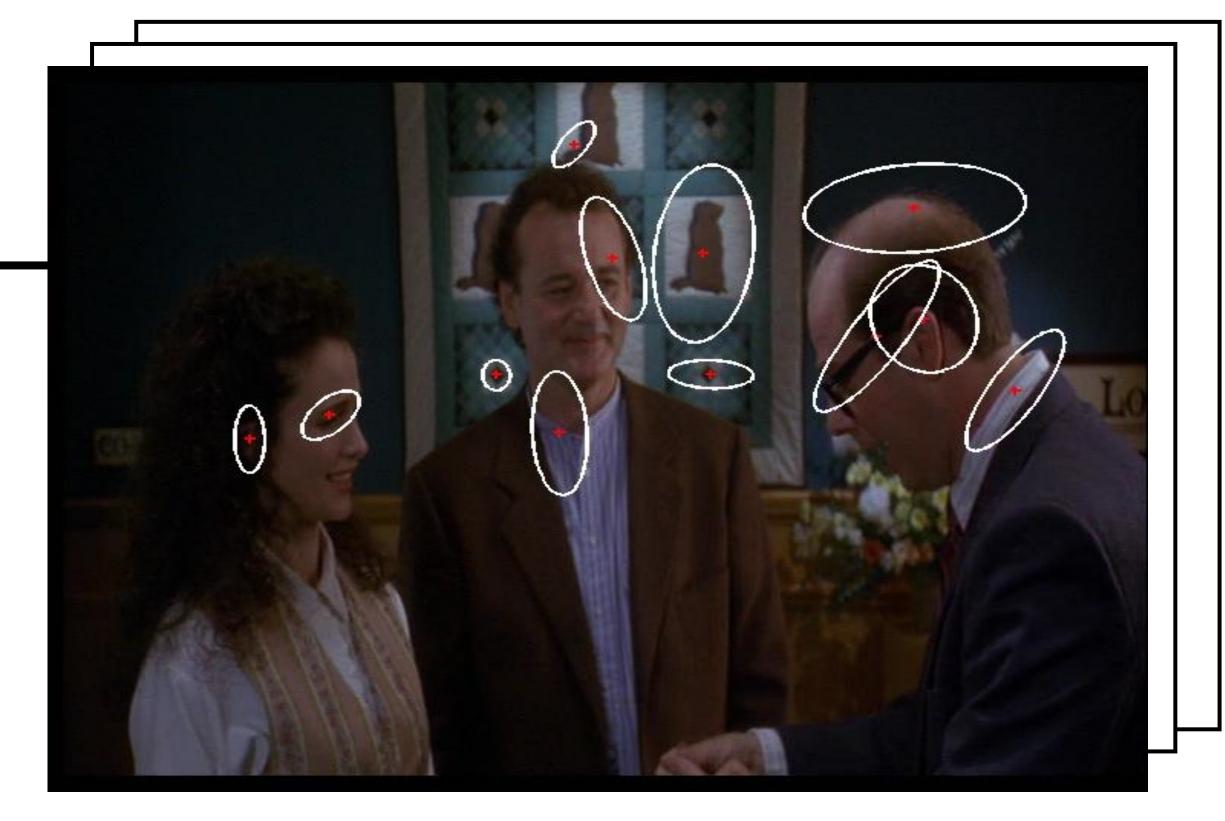


Detect patches

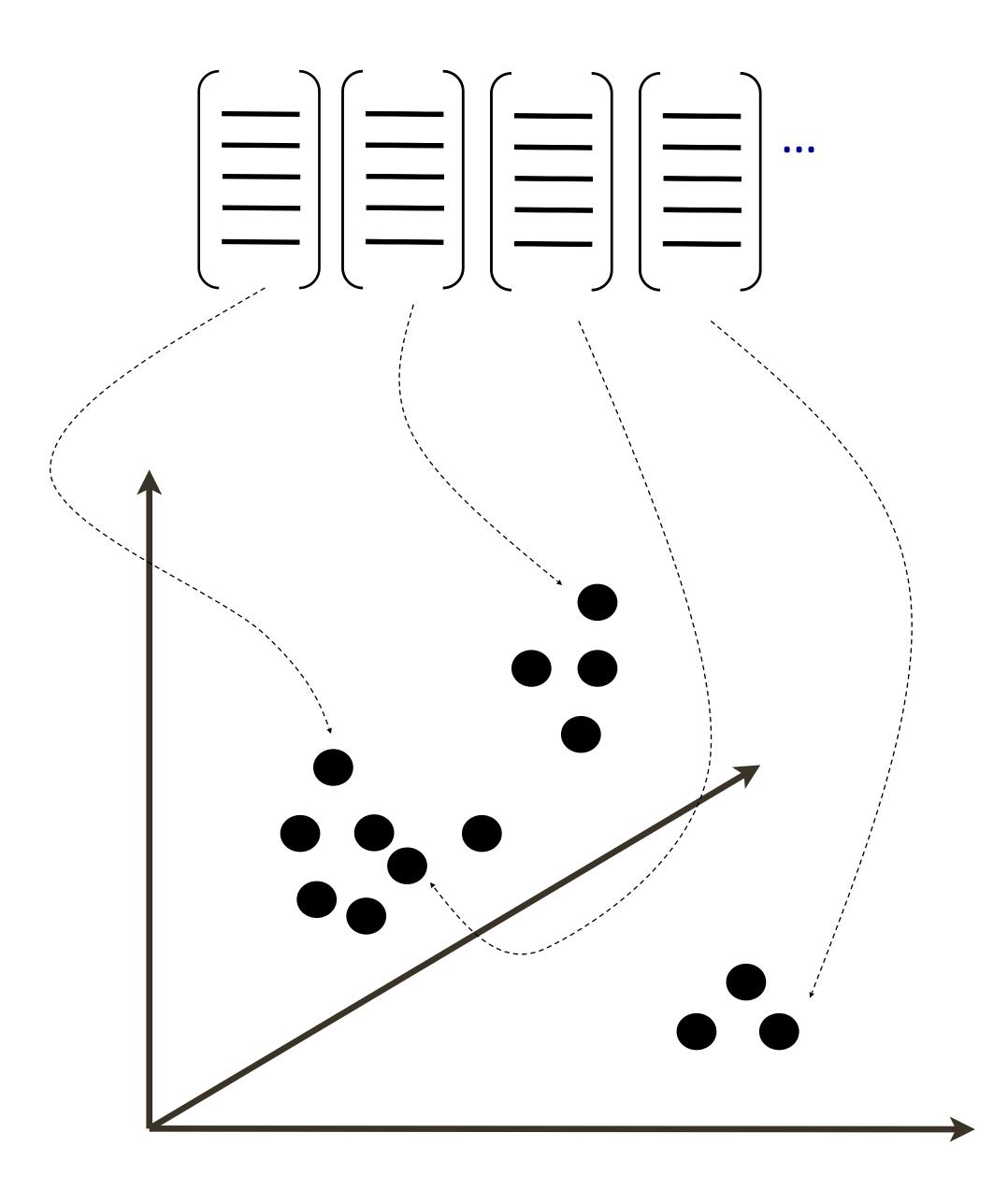
[Mikojaczyk and Schmid '02] [Mata, Chum, Urban & Pajdla, '02] [Sivic & Zisserman, '03]

Extracting SIFT Patches

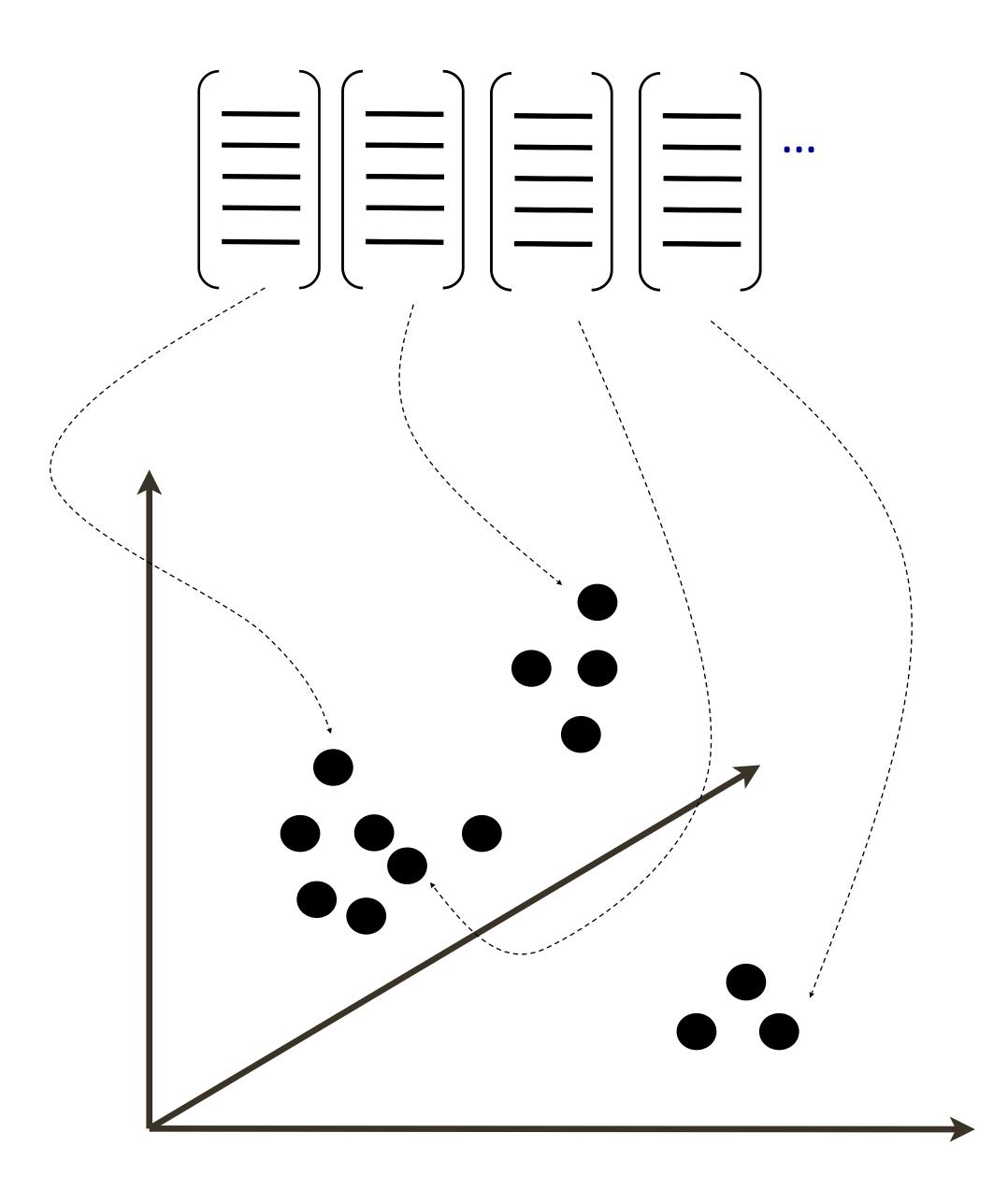


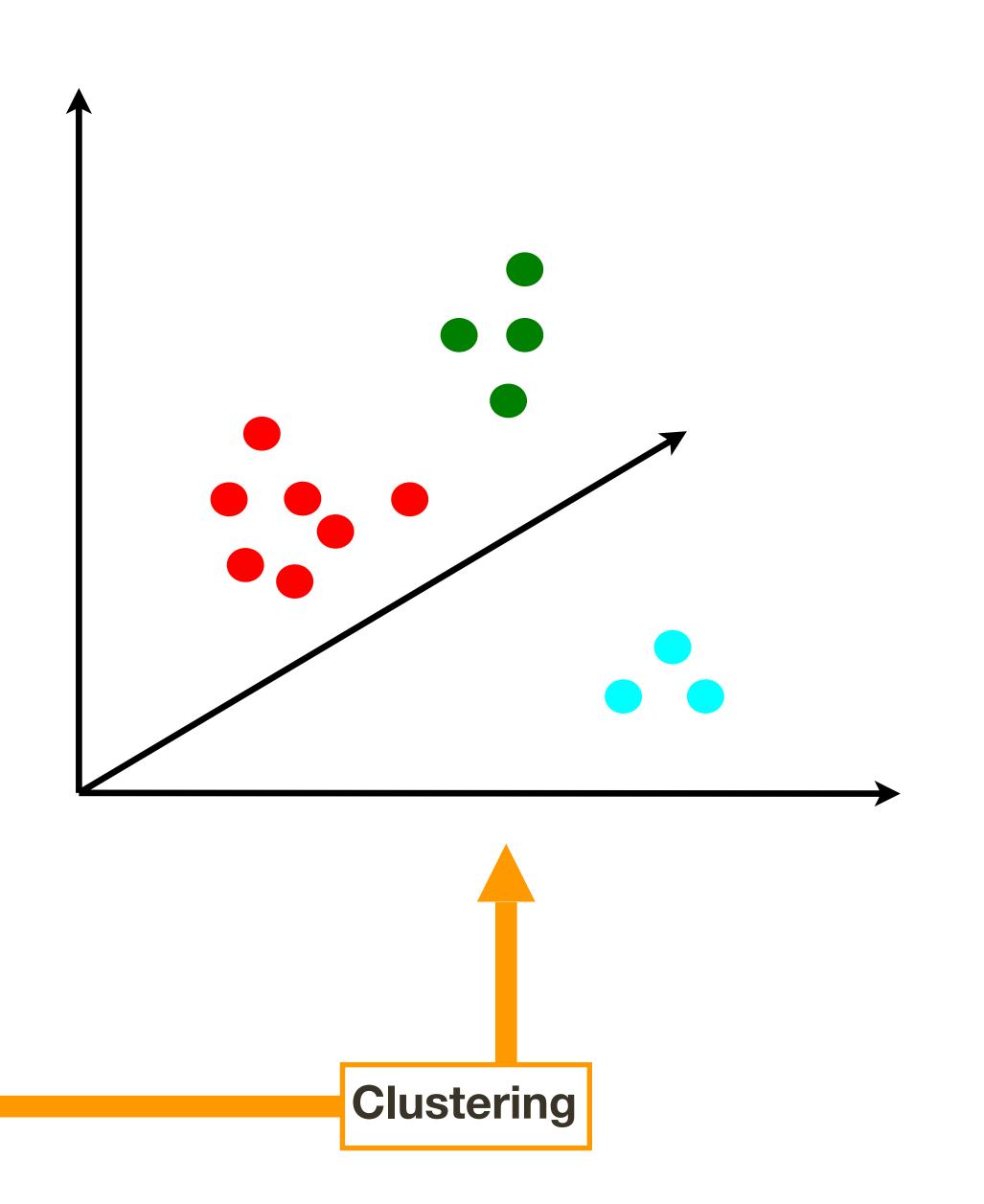


Creating **Dictionary**

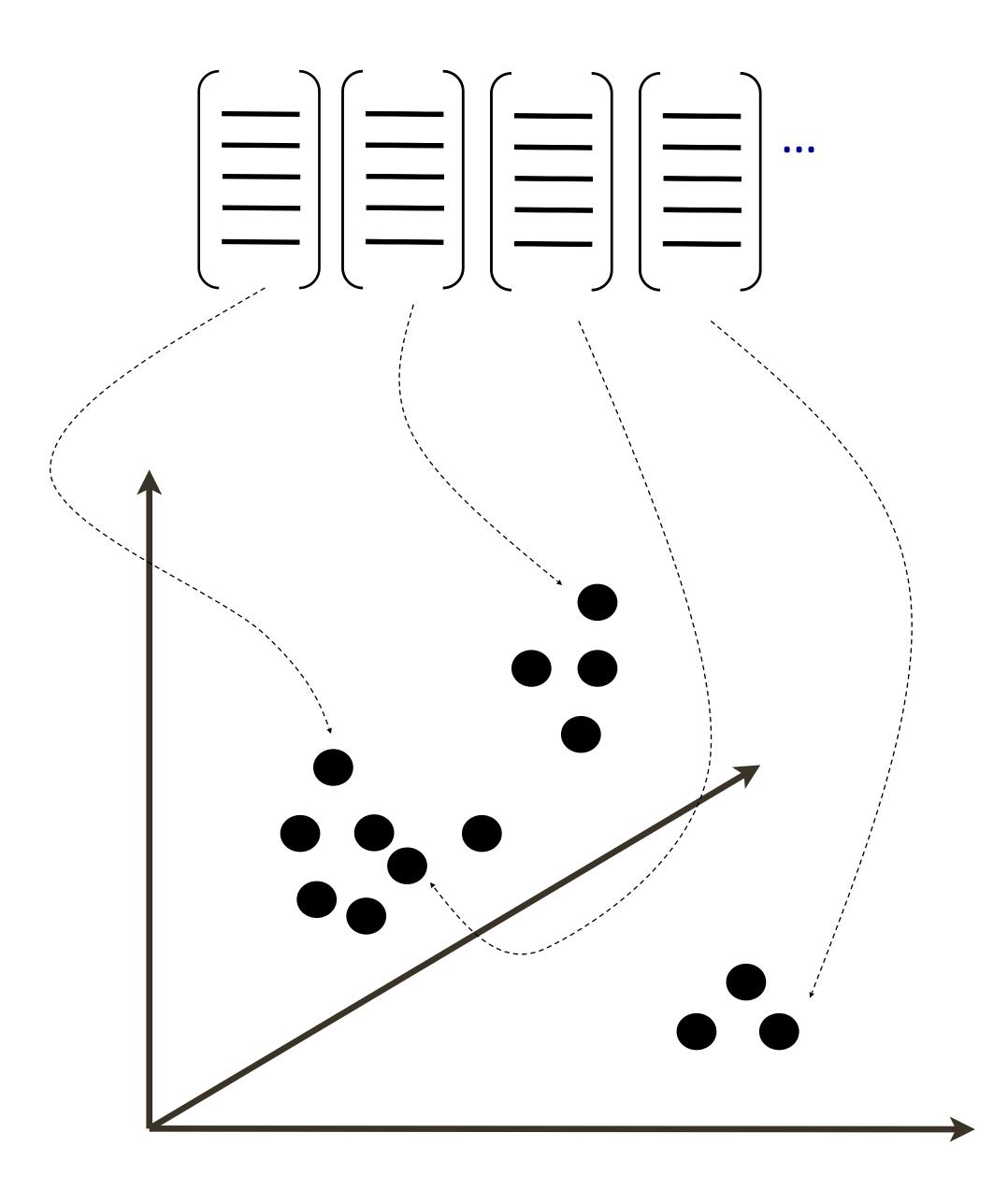


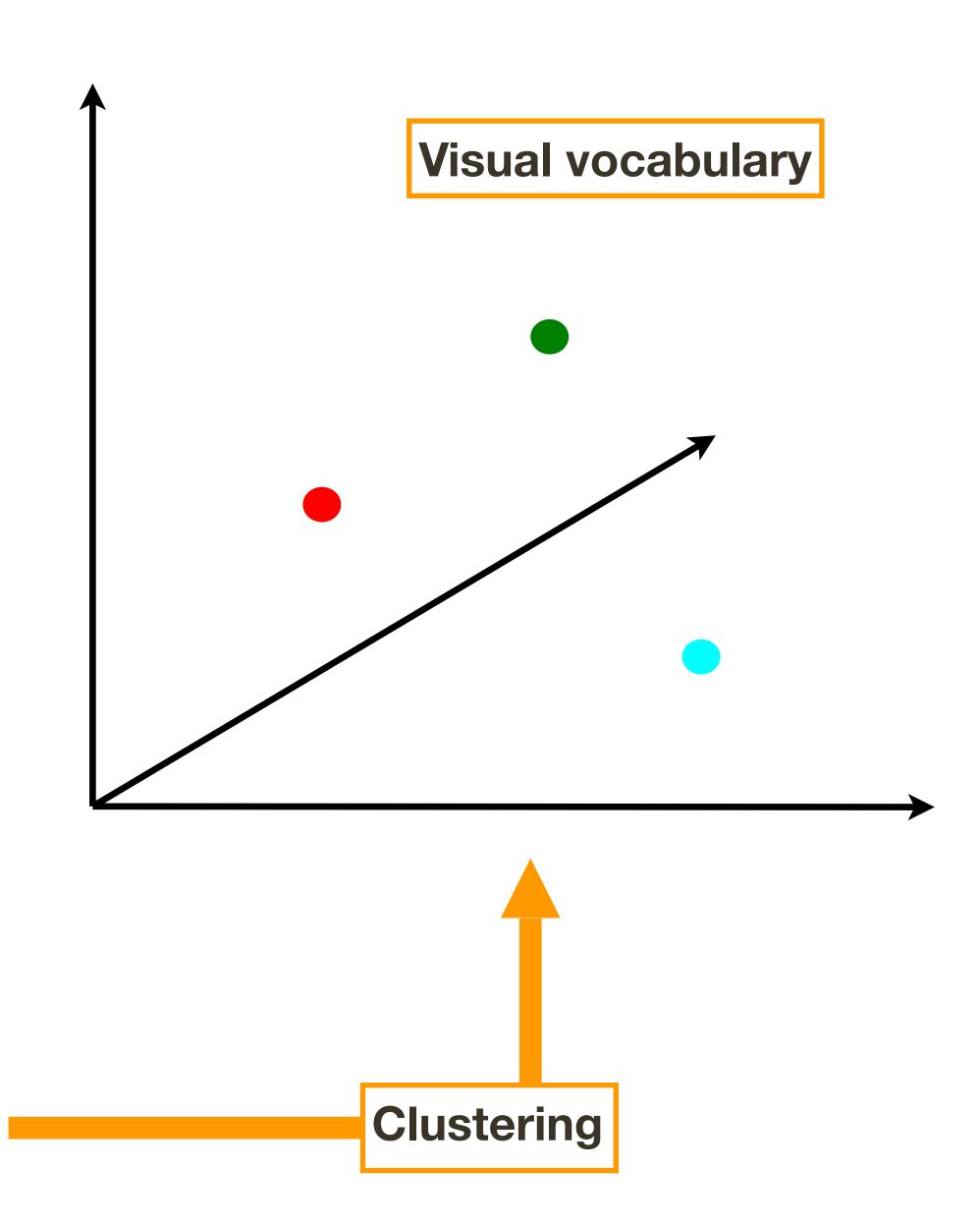
Creating **Dictionary**





Creating **Dictionary**





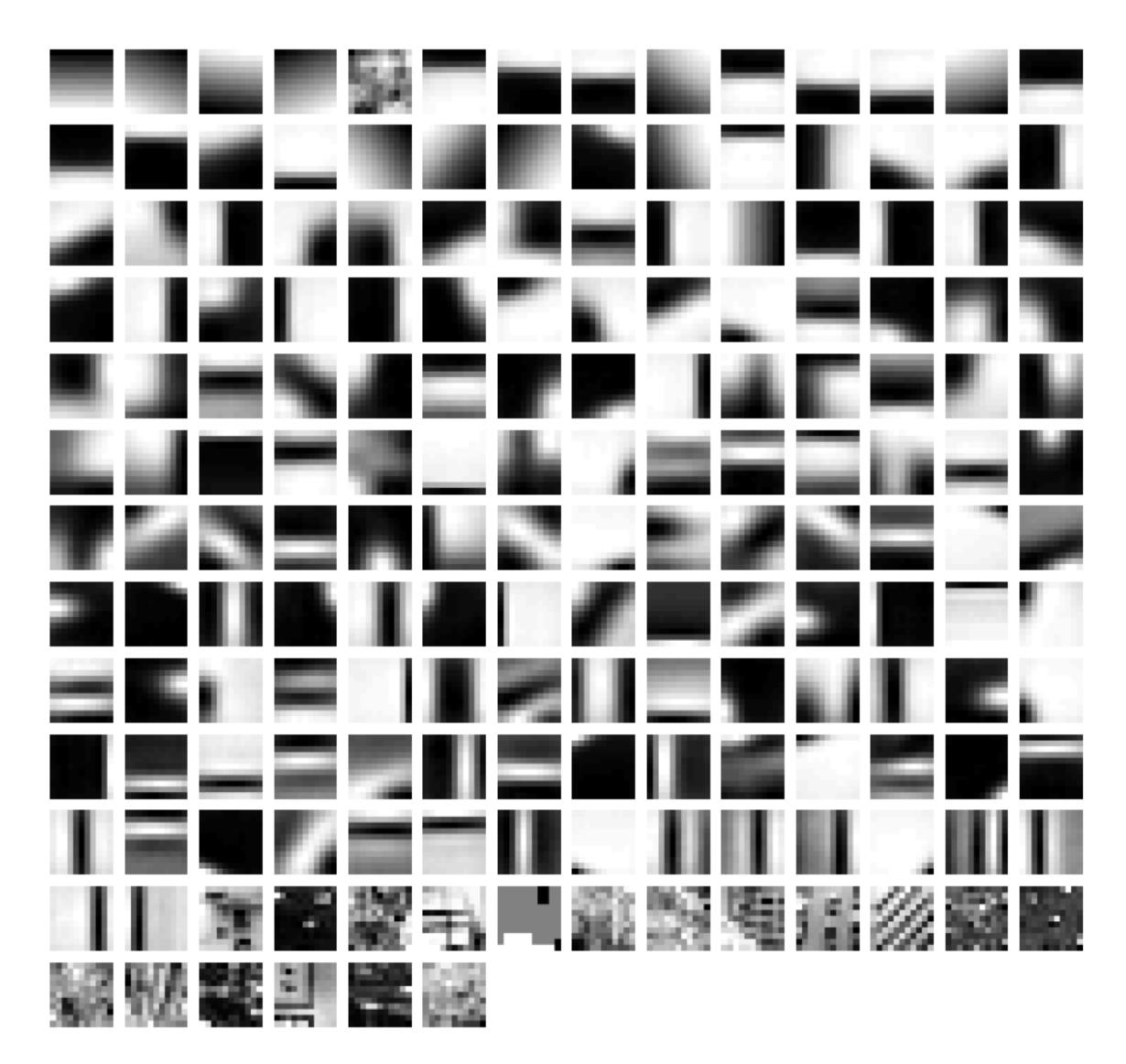
K-means clustering

Lecture 26: Re-cap

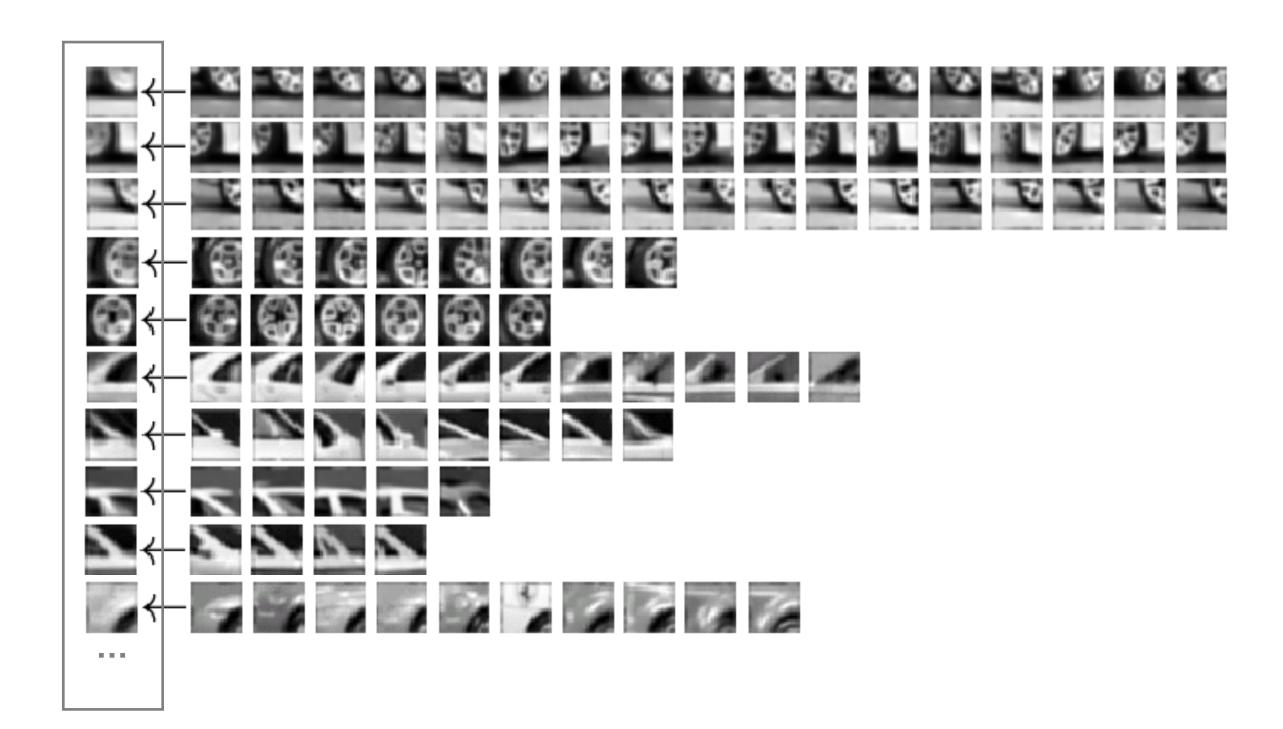
K-means is a clustering technique that iterates between

- **1**. Assume the cluster centers are known. Assign each point to the closest cluster center.
- **2.** Assume the assignment of points to clusters is known. Compute the best cluster center for each cluster (as the mean).
- K-means clustering is initialization dependent and converges to a local minimum

Example Visual Dictionary

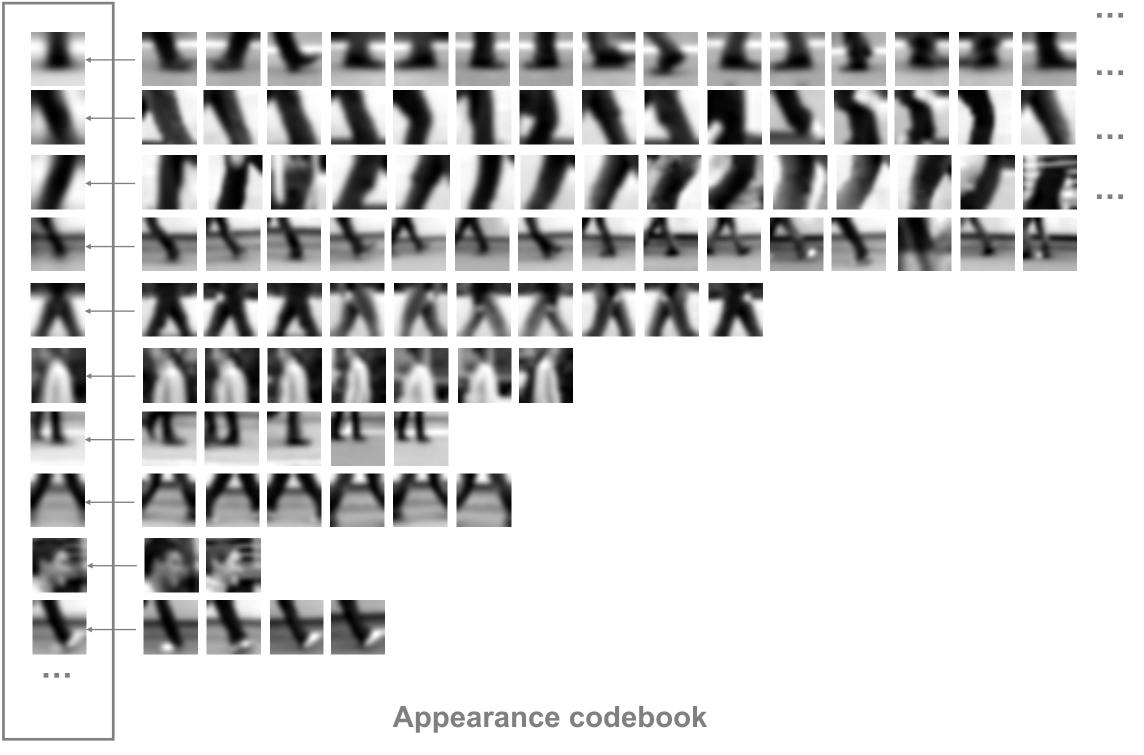


Example Visual Dictionary



Source: B. Leibe

Example Visual Dictionary



Source: B. Leibe

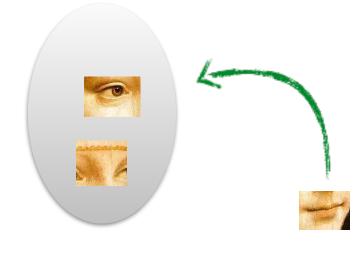
Standard **Bag-of-Words** Pipeline (for image classification)

Classify: Train and test data using BOWs

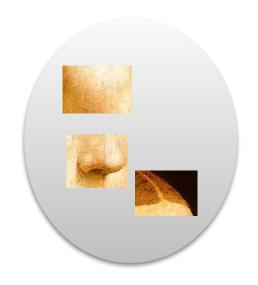
Dictionary Learning: Learn Visual Words using clustering

Encode: build Bags-of-Words (BOW) vectors for each image

2. Encode: build Bag-of-Words (BOW) vectors for each image

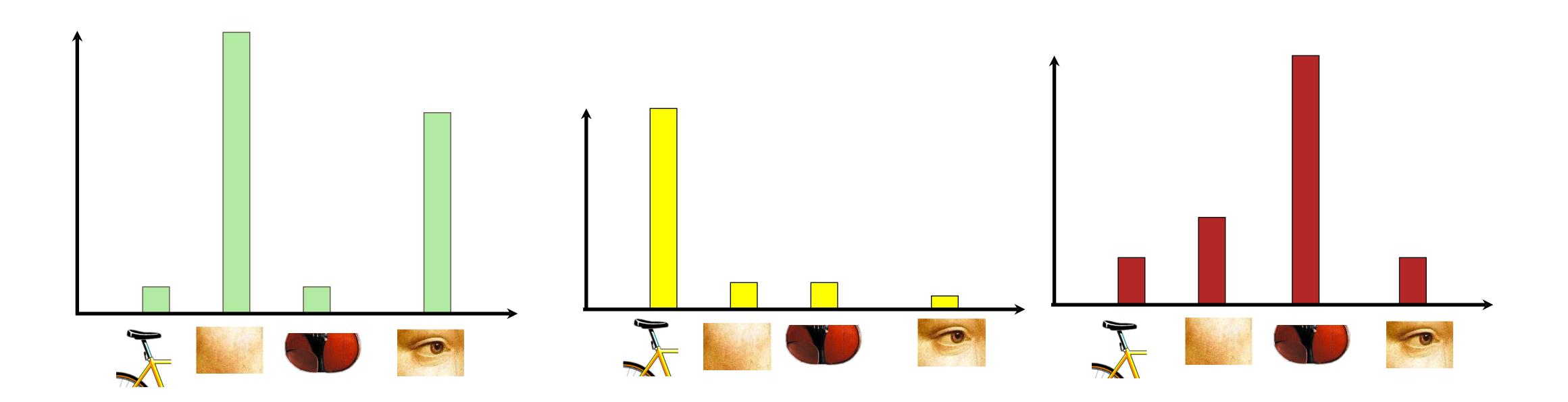


1. Quantization: image features gets associated to a visual word (nearest cluster center)

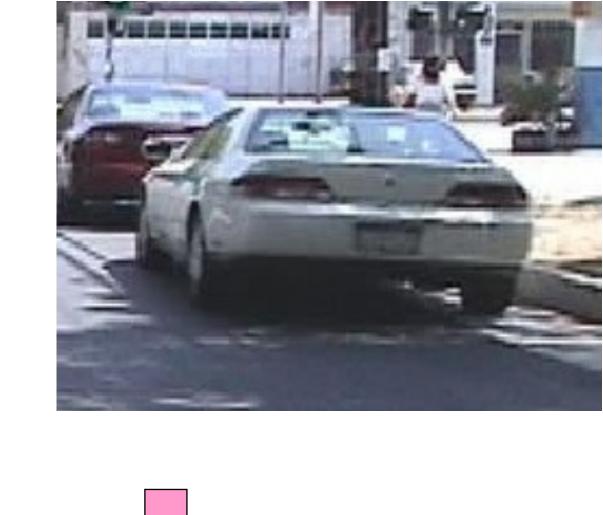


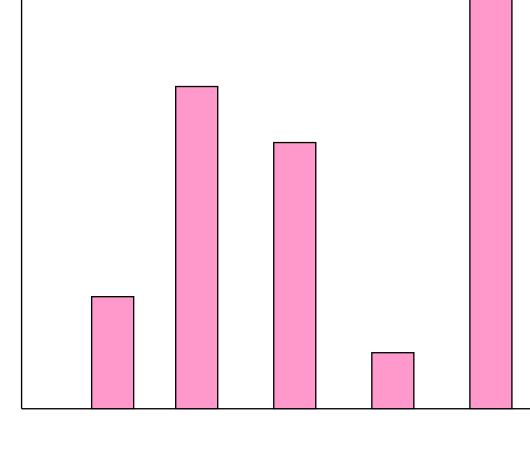
2. Encode: build Bag-of-Words (BOW) vectors for each image

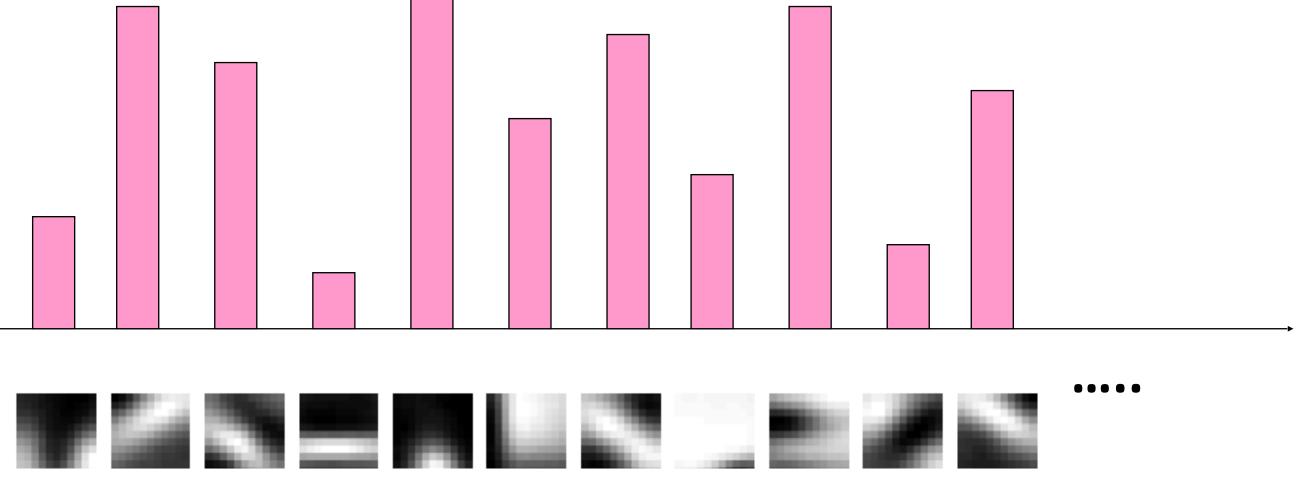
2. Histogram: count the number of visual word occurrences



2. Encode: build Bag-of-Words (BOW) vectors for each image







frequency

codewords

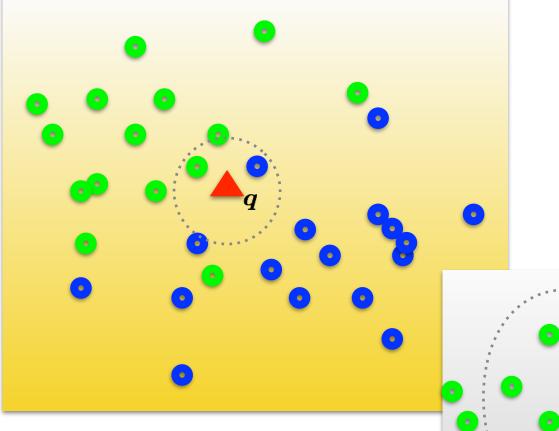
Standard **Bag-of-Words** Pipeline (for image classification)

Classify: Train and test data using BOWs

Dictionary Learning: Learn Visual Words using clustering

Encode: build Bags-of-Words (BOW) vectors for each image

3. Classify: Train and text classifier using BOWs



K nearest neighbors

