
Lecture 20: Optical Flow (cont.)

CPSC 425: Computer Vision 
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Menu for Today (March 19, 2019)
Topics: 

— Optical Flow (cont) 
— Classification

Redings: 
— Today’s Lecture:  Forsyth & Ponce (2nd ed.) 15.1, 15.2                            

— Next Lecture:       Forsyth & Ponce (2nd ed.) 16.1.3, 16.1.4, 16.1.9

Reminders: 

— Assignment 4: Local Invariant Features and RANSAC due today 

— Assignment 5: Scene Recognition with Bag of Words out soon

— Naive Bayes Classifier 
— Bayes' Risk
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Today’s “fun” Example: Visual Microphone

Follow-up work to previous lecture’s example of Eulerian video magnification
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Lecture 19: Re-cap

Optical flow is the apparent motion of brightness patterns in the image 

Applications 
— image and video stabilization in digital cameras, camcorders  
— motion-compensated video compression schemes such as MPEG 
— image registration for medical imaging, remote sensing 
— action recognition  
— motion segmentation 
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Figure credit: M. Srinivasan

Lecture 19: Re-cap



Aperture Problem
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In which direction is the line moving?

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Aperture Problem
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Aperture Problem

— Without distinct features to track, the true visual motion is ambiguous  

— Locally, one can compute only the component of the visual motion in the 
direction perpendicular to the contour 
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Visual Motion

Visual motion is determined when there are distinct features to track, provided:  
— the features can be detected and localized accurately; and  
— the features can be correctly matched over time  
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Motion as Matching
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Consider image intensity also to be a function of time,  . We write  

Optical Flow Constraint Equation
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Applying the chain rule for differentiation, we obtain 

where subscripts denote partial differentiation
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Consider image intensity also to be a function of time,  . We write  
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Scene point moving through image sequence

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Consider image intensity also to be a function of time,  . We write  

Applying the chain rule for differentiation, we obtain 

where subscripts denote partial differentiation 

Define           .  and             . Then          is the 2-D motion and the space of all  

such    and    is the 2-D velocity space  

Suppose                        . Then we obtain the (classic) optical flow constraint  
equation 

Optical Flow Constraint Equation

24

dI(x, y, t)

dt

= 0

I
x

u+ I
y

v + I
t

= 0

What does this mean, and why is it reasonable? 

constant

Brightness Constancy Assumption: Brightness of the point remains the same

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint
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For small space-time step, brightness of a point is the same

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint
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For small space-time step, brightness of a point is the same

Insight: 
If the time step is really small,  

we can linearize the intensity function

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint
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Multivariable Taylor Series Expansion 
(First order approximation, two variables)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint
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Multivariable Taylor Series Expansion 
(First order approximation, two variables)

assuming small motion

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint
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Multivariable Taylor Series Expansion 
(First order approximation, two variables)

assuming small motion
fixed point

partial derivative

cancel terms

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint
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Multivariable Taylor Series Expansion 
(First order approximation, two variables)

assuming small motion

cancel terms

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint

31

Multivariable Taylor Series Expansion 
(First order approximation, two variables)

assuming small motion

divide by 
take limit 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint
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Multivariable Taylor Series Expansion 
(First order approximation, two variables)

assuming small motion

divide by 
take limit 

Brightness Constancy 
Equation

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



How do we compute … 
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How do we compute … 
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spatial derivative

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



How do we compute … 
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spatial derivative

Forward difference 
Sobel filter 
Scharr filter 

…

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



How do we compute … 
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spatial derivative

Forward difference 
Sobel filter 
Scharr filter 

…

temporal derivative
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How do we compute … 
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spatial derivative

Forward difference 
Sobel filter 
Scharr filter 

…

temporal derivative

Frame differencing

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Frame Differencing: Example
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(example of a forward temporal difference)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



How do we compute … 
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spatial derivative optical flow

Forward difference 
Sobel filter 
Scharr filter 

…

temporal derivative

Frame differencingHow do you compute this?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



How do we compute … 
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spatial derivative optical flow

Forward difference 
Sobel filter 
Scharr filter 

…

temporal derivative

Frame differencingWe need to solve for this! 
(this is the unknown in the 

optical flow problem)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



How do we compute … 
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spatial derivative optical flow

Forward difference 
Sobel filter 
Scharr filter 

…

temporal derivative

Frame differencing
Solution lies on a line

Cannot be found uniquely 
with a single constraint 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Equation determines a straight line in velocity space

many combinations of u and v will satisfy the equality

Optical Flow Constraint Equation

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Lucas-Kanade

Observations:  
1. The 2-D motion,        , at a given point,        , has two degrees-of-freedom  
2. The partial derivatives,              , provide one constraint  
3. The 2-D motion,        , cannot be determined locally from              alone  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Observations:  
1. The 2-D motion,        , at a given point,        , has two degrees-of-freedom  
2. The partial derivatives,              , provide one constraint  
3. The 2-D motion,        , cannot be determined locally from              alone  

Lucas–Kanade Idea:  
Obtain additional local constraint by computing the partial derivatives,             , 
in a window centered at the given  
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Lucas-Kanade

Observations:  
1. The 2-D motion,        , at a given point,        , has two degrees-of-freedom  
2. The partial derivatives,              , provide one constraint  
3. The 2-D motion,        , cannot be determined locally from              alone  

Lucas–Kanade Idea:  
Obtain additional local constraint by computing the partial derivatives,             , 
in a window centered at the given  

Constant Flow Assumption: nearby pixels will likely have same optical flow
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Suppose                         is the (original) center point in the window. Let            
be any other point in the window. This gives us two equations that we can write  

and that can be solved locally for    and    as 

provided that    and    are the same in both equations and provided that the 
required matrix inverse exists. 
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Lucas-Kanade I
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= 0Optical Flow Constraint Equation:



Considering all n points in the window, one obtains  

which can be written as the matrix equation  

where                   ,                                 and

48

I
x1u+ I

y1v = �I
t1

I
x2u+ I

y2v = �I
t2

...
I
xnu+ I

ynv = �I
tn

A =

2

6664

I
x1 I

y1

I
x2 I

y2

...
...

I
xn I

yn

3

7775

b = �

2

6664

I
t1

I
t2

...
I
tn

3

7775

Av = b

v = [u, v]T

Lucas-Kanade

A =

2

6664

I
x1 I

y1

I
x2 I

y2

...
...

I
xn I

yn

3

7775

b = �

2

6664

I
t1

I
t2

...
I
tn

3

7775

I
x

u+ I
y

v + I
t

= 0Optical Flow Constraint Equation:



The standard least squares solution,   , to is  

again provided that    and    are the same in all equations and provided that the 
rank of          is 2 (so that the required inverse exists)  
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ATA
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Note that we can explicitly write down an expression for          as  

which is identical to the matrix     that we saw in the context of Harris corner 
detection  
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What does that mean? 



A dense method to compute motion,        , at every location in an image  

Key Assumptions:  

1. Motion is slow enough and smooth enough that differential methods apply 
(i.e., that the partial derivatives,             , are well-defined)  

2. The optical flow constraint equation holds (i.e.,                        ) 

3. A window size is chosen so that motion,        , is constant in the window  

4. A window size is chosen so that the rank of           is 2 for the window  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Lucas-Kanade Summary
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Aside: Optical Flow Smoothness Constraint

Many methods trade off a ‘departure from the optical flow constraint’ cost with 
a ‘departure from smoothness’ cost.  

The optimization objective to minimize becomes  

where    is a weighing parameter.  
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smoothness brightness constancy

weight

Horn-Schunck Optical Flow

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Horn-Schunck Optical Flow
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Brightness constancy

Smoothness

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Summary

Motion, like binocular stereo, can be formulated as a matching problem. That is, 
given a scene point located at             in an image acquired at time    , what is 
its position,            , in an image acquired at time    ?  

Assuming image intensity does not change as a consequence of motion, we 
obtain the (classic) optical flow constraint equation  

 
where        , is the 2-D motion at a given point,        , and              are the partial 
derivatives of intensity with respect to   ,   , and  

Lucas–Kanade is a dense method to compute the motion,        , at every 
location in an image 
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Lecture 20: Classification

CPSC 425: Computer Vision 
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Problem:  
Assign new observations into one of a fixed set of categories (classes)  

Key Idea(s):  
Build a model of data in a given category based on observations of 
instances in that category  
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Classification
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Classification
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Classification

A classifier is a procedure that accepts as input a set of features and outputs 
a class label  

Classifiers can be binary (face vs. not-face) or multi-class (cat, dog, horse, ...).  

We build a classifier using a training set of labelled examples               , where 
each     is a feature vector and each     is a class label.  

Given a previously unseen observation, we use the classifier to predict its class 
label.  

61

{(xi, yi)}
xi yi



Classification 

62

— Collect a database of images with labels 
— Use ML to train an image classifier 
— Evaluate the classifier on test images

Label

Feature vector 
computed from 
the image



Example 1: A Classification Problem

Categorize images of fish 
— “Atlantic salmon” vs “Pacific salmon”  

Use features such as length, width, lightness, 
fin shape & number, mouth position, etc.  

Given a previously unobserved image of a 
salmon, use the learned classifier to guess 
whether it is an Atlantic or Pacific salmon  

63

Figure credit: Duda & Hart



Example 2: Real Classification Problem

SUN Dataset 

- 131K images 
- 908 scene categories
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Example 3: Real Classification Problem

ImageNet Dataset 

- 14 Million images 
- 21K object categories
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Bayes Rule (Review and Definitions)
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P (c|x) = P (x|c)p(c)
P (x)

Let c be the class label and let x be the measurement (i.e., evidence)

prior probabilityclass−conditional probability 
(a.k.a. likelihood)

unconditional probability 
(a.k.a. marginal likelihood)posterior probability



Bayes Rule (Review and Definitions)
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P (c|x) = P (x|c)p(c)
P (x)

Let c be the class label and let x be the measurement (i.e., evidence)

Simple case:  
— binary classification; i.e.,   
— features are 1D; i.e., 

General case:  
— multi-class; i.e., 
— features are high-dimensional; i.e., 

c 2 {1, ..., 1000}

c 2 {1, 2}
x 2 R

x 2 R2,000+



Assume we have two classes:  
We have a person who’s gender we don’t know, who’s name is drew 

68

Example: Discrete Bayes Classifier
c2 = femalec1 = male

Example from: Eamonn Keogh



Assume we have two classes:  
We have a person who’s gender we don’t know, who’s name is drew 
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c2 = femalec1 = male

Example: Discrete Bayes Classifier

Example from: Eamonn Keogh



Assume we have two classes:  
We have a person who’s gender we don’t know, who’s name is drew 

Classifying drew as being male or female is equivalent to asking is it more 
probable that drew is male or female, i.e. which is greater 
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c2 = femalec1 = male

p(male|drew) = p(drew|male)p(male)

p(drew)
p(female|drew) = p(drew|female)p(female)

p(drew)

Example: Discrete Bayes Classifier

Example from: Eamonn Keogh
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Example: Discrete Bayes Classifier

p(male|drew) = p(drew|male)p(male)

p(drew)

Name Gender
Drew	 Male

Claudia Female

Drew Female

Drew Female

Alberto Male

Karin Female	

Nina Female	

Sergio Male

Example from: Eamonn Keogh
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8
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1

3

p(drew) =
3

8

Example from: Eamonn Keogh
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Example: Discrete Bayes Classifier

p(male|drew) = p(drew|male)p(male)

p(drew)

Name Gender
Drew	 Male

Claudia Female

Drew Female

Drew Female

Alberto Male

Karin Female	

Nina Female	

Sergio Male

p(male) =
3

8

p(drew|male) =
1

3

p(drew) =
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8

= 0.125

Example from: Eamonn Keogh
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Name Gender
Drew	 Male

Claudia Female

Drew Female

Drew Female

Alberto Male

Karin Female	

Nina Female	

Sergio Male

p(male|drew) = p(drew|male)p(male)

p(drew)

p(male) =
3

8

p(drew|male) =
1

3

p(drew) =
3

8

= 0.125

p(female|drew) = p(drew|female)p(female)

p(drew)

p(drew|female) =
2

5

p(female) =
5

8

Example: Discrete Bayes Classifier

= 0.25

Example from: Eamonn Keogh



Bayes Rule (Review and Definitions)
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P (c|x) = P (x|c)p(c)
P (x)

Let c be the class label and let x be the measurement (i.e., evidence)

Simple case:  
— binary classification; i.e.,   
— features are 1D; i.e., 

General case:  
— multi-class; i.e., 
— features are high-dimensional; i.e., 

c 2 {1, ..., 1000}

c 2 {1, 2}
x 2 R

x 2 R2,000+



Bayes’ Risk
Some errors may be inevitable: the minimum risk (shaded area) is called the 
Bayes’ risk 
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Forsyth & Ponce (2nd ed.) Figure 15.1



Discriminative vs. Generative
Finding a decision boundary is not the same as modeling a conditional density 
— while a normal density here is a poor fit to P(1|x), the quality of the classifier 
depends only on how well the boundary is positioned 
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Forsyth & Ponce (2nd ed.) Figure 15.5



Discriminative vs. Generative
Finding a decision boundary is not the same as modeling a conditional density 
— while a normal density here is a poor fit to P(1|x), the quality of the classifier 
depends only on how well the boundary is positioned 
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Forsyth & Ponce (2nd ed.) Figure 15.5


