THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 20: Optical Flow (cont.



Menu for Today (March 19, 2019)

Topics:
— Optical Flow (cont) — Naive Bayes Classifier
— Classification — Bayes' Risk

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 15.1, 15.2
— Next Lecture: Forsyth & Ponce (2nd ed.) 16.1.3, 16.1.4, 16.1.9

Reminders:

— Assignment 4: Local Invariant Features and RANSAC due today

— Assignment 5. Scene Recognition with Bag of Words out soon



Today’s “fun” Example: Visual Microphone

The Visual Microphone:
Passive Recovery of Sound from Video

Abe Davis
Michael Rubinstein
Neal Wadhwa
Gautham J. Mysore
Fredo Durand
William T. Freeman

Follow-up work to previous lecture’s example of Eulerian video magnification
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Lecture 19: Re-cap

Optical flow is the apparent motion of brightness patterns in the image

Applications

— Image and video stabilization in digital cameras, camcorders

— motion-compensated video compression schemes such as MPEG
— Image registration for medical iImaging, remote sensing

— action recognition

— motion segmentation



Lecture 19: Re-cap




Aperture Problem

In which direction is the line moving”

A Image Credit: loannis (Yannis) Gkioulekas (CMU)



Aperture Problem

In which direction is the line moving”
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Aperture Problem
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Aperture Problem
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Aperture Problem
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Aperture Problem
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Aperture Problem

— Without distinct features to track, the true visual motion iIs ambiguous

— Locally, one can compute only the component of the visual motion In the
direction perpendicular to the contour
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Aperture Problem

Detected
direction

\
\

Receptive \ Motion
field - direction
(aperture) g

— Without distinct features to track, the true visual motion iIs ambiguous

— Locally, one can compute only the component of the visual motion In the
direction perpendicular to the contour
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Visual Motion

Visual motion is determined when there are distinct features to track, provided:
— the features can be detected and localized accurately; and
— the features can be correctly matched over time
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Vlotion as Matching

Representation Result is. ..
Point/feature based (very) sparse
Contour based (relatively) sparse
(Differential) gradient based dense
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Optical Flow Constraint Equation

Consider image intensity also to be a function of time, t. We write
I(x,y,t)
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Optical Flow Constraint Equation

Consider image intensity also to be a function of time, t. We write
I(x,y,t)
Applying the chain rule for differentiation, we obtain

dl(x,y,t) _ g dr I dy
dt I

where subscripts denote partial differentiation

- 1
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Optical Flow Constraint Equation

Consider image intensity also to be a function of time, t. We write
I(z,y,1)
Applying the chain rule for differentiation, we obtain
dl(x,y,t) dx dy

=1, - i
dt da ' Vdr
where subscripts denote partial differentiation
d
Define u = d_f and v = d—i . Then [u, v] is the 2-D motion and the space of all

such v and v Is the 2-D velocity space
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Optical Flow Constraint Equation

Consider image intensity also to be a function of time, t. We write
I(x,y,t)
Applying the chain rule for differentiation, we obtain

dl(x,y,t) _ g dr I dy
d  tdt YVt
where subscripts denote partial differentiation

d d
Define u = d_f and v = d—i . Then [u, v] is the 2-D motion and the space of all

such v and v Is the 2-D velocity space

dl(x,y,t)

y dt
equation Lu+Iyo+1; =0
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Suppose — 0 - Then we obtain the (classic) optical flow constraint




Optical Flow Constraint Equation

Consider image intensity also to be a function of time, t. We write
I(x,y,t)
Applying the chain rule for differentiation, we obtain

dl(x,y,t) _ g dr I dy
d  tdt YVt
where subscripts denote partial differentiation

d d
Define u = d—f and v = d—i . Then [u, v] is the 2-D motion and the space of all

such v and v Is the 2-D velocity space

dI(xz,y,t)

y dt
equation Lu+Iyo+1; =0
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Suppose — 0 - Then we obtain the (classic) optical flow constraint




Optical Flow Constraint Equation

What does this mean, and why is it reasonable?

dI(xz,y,t)
dt

Suppose — 0 - Then we obtain the (classic) optical flow constraint

equation Lou+ Lo+ 1T, =0
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Optical Flow Constraint Equation

Scene point moving through image sequence

(z(k), y(k))
(2(2),4(2))

(z(1),y(1))

What does this mean, and why is it reasonable?

dI(xz,y,t)

y — 0 - Then we obtain the (classic) optical flow constraint
t

Suppose
equation

lyu+Lyo+ 1 =0

00 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Optical Flow Constraint Equation

Scene point moving through image sequence

........................................................................... e
g .
(z(1),y(1))
I(z,y,1) I(z,y,2) I(2.y.k)

What does this mean, and why is it reasonable?

dI(xz,y,t)

y — 0 - Then we obtain the (classic) optical flow constraint
t

Suppose
equation

lyu+Lyo+ 1 =0

23 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Optical Flow Constraint Equation

Brightness Constancy Assumption: Brightness of the point remains the same

............................................................................ e
g .
(m(l)ay(l))
I(«’anal) I(x,y,Q) I(m,y’ k)
constant

What does this mean, and why is it reasonable?

dI(xz,y,t)

y — 0 - Then we obtain the (classic) optical flow constraint
t

Suppose
equation

lyu+Lyo+ 1 =0

o4 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint
I(z + udt,y +vot, t + ot) = I(x,y,t)

For small space-time step, brightness of a point Is the same

o5 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint
I(xz 4+ udt,y + vét,t + ot) = I(x,y,t)

For small space-time step, brightness of a point Is the same

Insight:
f the time step Is really small,
we can linearize the intensity function

26 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint
I[(xz 4+ udt,y + vét,t + ot) = I(x,y,t)

Multivariable Taylor Series Expansion
(First order approximation, two variables)

f(z,y) = f(a,b) + fz(a,b)(z — a) — fy(a,b)(y —b)

- J

07 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint
I[(xz 4+ udt,y + vét,t + ot) = I(x,y,t)

Multivariable Taylor Series Expansion
(First order approximation, two variables)

f(z,y) = f(a,b) + fz(a,b)(z — a) — fy(a,b)(y —b)

g J

I I ol
I[(z,y,t) gzvéx | Zy&y | 6t5t=I(.’L',y,t) assuming small motion
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Aside: Derivation of Optical Flow Constraint
I[(xz 4+ udt,y + vét,t + ot) = I(x,y,t)

Multivariable Taylor Series Expansion
(First order approximation, two variables)

f(z,y) = f(a,b) + fz(a,b)(z — a) — fy(a,b)(y —b)

g J

partial derivative

I ol ol
I[(z,y,t) Zx&c | 8y5y | 6t5t=I($,y,t) assuming small motion

fixed point

cancel terms

29 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint
I(z + udt,y +vot, t + ot) = I(x,y,t)

Multivariable Taylor Series Expansion
(First order approximation, two variables)

f(z,y) = f(a,b) + fz(a,b)(z — a) — fy(a,b)(y —b)

I ol ol
I[(z,y,t) ZSB 0x 3y5y | 57 0t = I(x,y,t) assuming small motion
ol ol ol
— oz 4 Sy - 5t =0 cancel terms
ox v oy d ot
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Aside: Derivation of Optical Flow Constraint
I(z + udt,y +vot, t + ot) = I(x,y,t)

Multivariable Taylor Series Expansion
(First order approximation, two variables)

f(z,y) = f(a,b) + fz(a,b)(z — a) — fy(a,b)(y —b)

ol ol ol
I[(z,y,t) 9 0x 3y5y | 57 0t = I(x,y,t) assuming small motion
01 01 01 divide by 6t
—0X 0y - 0t =
or Oy T ot 0 take limit 6t — 0

3 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Aside: Derivation of Optical Flow Constraint
I(x 4+ udt,y + vot,t + ot) = I(x,y,t)

f(.’L‘,y) > f(aa b) T fm(aa b)(x o a’) o fy(a'a b)(y _ b)

01 o1 01
[(z,y,t) 0T 0Y - t5t = I(z,y,t) assuming small motion

- Or oy 0
01 01 01 divide by 6t
-0 - | =
oz v oy oy ot ot =0 take limit 6t — 0

~

0l dx , 01 dy , o1 — o Brightness Constancy
Ox dt Oy dt Ot Equation

39 Slide Credit: loannis (Yannis) Gkioulekas (CMU)




How do we compute ...

Im’U,+Iy’U—|-It = ()

33 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



How do we compute ...

Ixu-l—Iy'v-I—It:O

.

Iy =

spatial derivative

- 01
~ By

_J

34
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How do we compute ...

IxU+IyU+It:O

ol ol
I=— I,=—
oxr 7 Oy

spatial derivative

Forward difference
Sobel filter
Scharr filter

35 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



How do we compute ...

IxU+IyU+It:O

ol ol ol

I,=—- I,= I, = —

Ox oy ot
spatial derivative temporal derivative

Forward difference
Sobel filter
Scharr filter

36 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



How do we compute ...

ImU+IyU+It:O

- 2 - 2
I — ol I — g I ol
xr — 6_27 y 8y t — a
! spatial derivative temporal derivative
y . y
Forward difference Frame differencing
Sobel filter

Scharr filter

37 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Frame Differencing: =xample

1
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(example of a forward temporal difference)
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How do we compute ...

ImU+Iy’l)+It:O

- 2 - 2
I — o1 I — o1 I ol
xr 8_.’17 y T ay U = a t — a
spatial derivative optical flow temporal derivative
. y . y
Forward difference How do you compute this? Frame differencing
Sobel filter

Scharr filter

40 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



How do we compute ...

Ixu-l—Iy'v-I—It:O

(- ) éa )
,_or oI )
T — A Yy~ q.. U — — t — A,
oz oy At ot
spatial derivative optical flow temporal derivative
g J . J
Forward difference We need to solve for this! Frame differencing
Sobel filter (this is the unknown in the
Scharr filter optical flow problem)

A Slide Credit: loannis (Yannis) Gkioulekas (CMU)



How do we compute ...

Ixu-l—Iy'v-I—It:O

- 2 - 2
I — ol I — ol I ol
xr 6_.’13 y T ay U = a t — a
\ spatial derivative ) optical flow temporal derivative
. y

Forward difference Frame differencing

Sobel filter Solution lies on a line

Scharr filter
Cannot be found uniquely

with a single constraint
49 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Optical Flow Constraint Equation

Im’U,—I-Iy’U—I-It = ()

many combinations of u and v will satisfy the equality u

Equation determines a straight line in velocity space

43 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Lucas-Kanade

Observations:

1. The 2-D motion, [u, v|, at a given point, |x, y], has two degrees-of-freedom
2. The partial derivatives, I, I,,, I, provide one constraint

3. The 2-D motion, [u, v], cannot be determined locally from I, I, I; alone
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Lucas-Kanade

Observations:

1. The 2-D motion, [u, v|, at a given point, |x, y], has two degrees-of-freedom
2. The partial derivatives, I, I,,, I, provide one constraint

3. The 2-D motion, [u, v], cannot be determined locally from I, I, I; alone

Lucas—-Kanade Idea:

Obtain additional local constraint by computing the partial derivatives, I, I,,, I,
in a window centered at the given |z, y]
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Lucas-Kanade

Observations:

1. The 2-D motion, [u, v|, at a given point, |x, y], has two degrees-of-freedom
2. The partial derivatives, I, I,,, I, provide one constraint

3. The 2-D motion, [u, v], cannot be determined locally from I, I, I; alone

Lucas—-Kanade Idea:

Obtain additional local constraint by computing the partial derivatives, I, I,,, I,
in a window centered at the given |z, y]

Constant Flow Assumption: nearby pixels will likely have same optical flow
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Lucas-Kanade Optical Flow Constraint Equation: [yu + I, v + I; = 0

Suppose [r1,y1] = [z, y] is the (original) center point in the window. Let [z2, y2]
be any other point in the window. This gives us two equations that we can write

Lo u+ 1,0 =—14
Lp,u+ 1,0 = —1,

and that can be solved locally for v and v as

_ _ _ 4 —1 r
U 1 Iy1 ]t

I
v Ly, 1, P

porovided that u and v are the same In both equations and provided that the
required matrix inverse exists.
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Lucas-Kanade Optical Flow Constraint Equation: [yu + I, v + I; = 0

Considering all n points in the window, one obtains

Lo, u+ 1,0 =—1y
lLp,u+ 1,0 = —1,

I, u+1, v=—1

which can be written as the matrix equation

Av =D
le ]yl | Itl
Iﬂi‘z I?JQ Itz
where v =[u,v]", A=| .  |and b=—| |
Ixn ]yn Itn

48



Lucas-Kanade

The standard least squares solution, v, to Is

v=(A"A)"'A'D

again provided that u and v are the same In all equations and provided that the
rank of A1 A is 2 (so that the required inverse exists)

49



Lucas-Kanade

Note that we can explicitly write down an expression for A* A as

N2 Y ILI
ATA: Z T LY
_ > 1.1, ]5

which Is identical to the matrix C that we saw In the context of Harris corner
detection

50



Lucas-Kanade

Note that we can explicitly write down an expression for A* A as

N2 Y ILI
ATA: Z T LY
_ > 1.1, ]5

which Is identical to the matrix C that we saw In the context of Harris corner
detection

What does that mean®?

51



| ucas-Kanade Summary

A dense method to compute motion, [y, v} at every location in an image
Key Assumptions:

1. Motion Is slow enough and smooth enough that differential methods apply
(.e., that the partial derivatives, I, I,,, I, are well-defined)

dl(x,y,t
2. The optical flow constraint equation holds (i.e., (Z ty ) =0)

3. A window size is chosen so that motion, |u, v], is constant in the window

4. A window size is chosen so that the rank of AT A is 2 for the window

52



Aside: Optical Flow Smoothness Constraint

Many methods trade off a ‘departure from the optical flow constraint” cost with
a ‘departure from smoothness’ cost.

The optimization objective to minimize becomes
E= [ [t Lo+ 172 4 2 7l + 19 0l

where X IS a weighing parameter.
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Horn-Schunck Optical Flow

smoothness brightness constancy

t weight

54 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Horn-Schunck Optical Flow

Brightness constancy

Ed(iaj) —

Smoothness
Eolii ) = 2w — it 2 4 (s — e )2 4 (s —
s(2,7) A (Uij — Uiy1,5)" + (Usj — Ui j41)” + (
1,7 +1 i,7+1
(wij — Uit1,5) (Wij — Ui j+1)
o e » ot — s L
i,j.—l 3,7 —1

0O

7,7 —1

1,7 +1
Vitl,5) (vij — vij+1)
1+ 1,7 i—1,9 ¥ 1+ 1,7
i, j — 1

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Summary

Motion, like binocular stereo, can be formulated as a matching problem. That is,

given a scene point located at (g, o) in an image acquired at time to, what is
its position, (x1,y1), in an image acquired at time t17?

Assuming image intensity does not change as a conseqguence of motion, we
obtain the (classic) optical flow constraint equation

lyu+Lyv+ 1 =0

where |u, v}, is the 2-D motion at a given point, |x, y|, and I, 1, I; are the partial
derivatives of intensity with respect to x, y, and ¢

Lucas-Kanade is a dense method to compute the motion, |u, v|, at every
location In an Image

50
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Lecture 20: Classification

of




Classification

Problem:
AssIgn new observations into one of a fixed set of categories (classes)

Key Idea(s):

Build a model of data in a given category based on observations of
instances In that category
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Classification

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}
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lassification
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Classification

A classifier is a procedure that accepts as input a set of features and outputs
a class label

Classifiers can be binary (face vs. not-face) or multi-class (cat, dog, horse, ...).

We build a classifier using a training set of labelled examples { (x;, ¥;) }, where
each X; IS a feature vector and each y; 1S a class label.

Given a previously unseen observation, we use the classifier to predict its class
label.

o1



Classification

— Collect a database of images with labels
— Use ML to train an image classifier
— Evaluate the classitier on test images

Example training set

Label

= S > . . =
Feature vector lﬁ. . ¥
computed from — “, € <

mug

the image

02

hat

Aa
xk,\,,;«
=
= | | :";" —




Example 1: A Classification Problem

Categorize images of fish
— “Atlantic salmon” vs “Pacific salmon’

Use features such as length, width, lightness,
fin shape & number, mouth position, etc.

Given a previously unobserved image of a
salmon, use the learned classifier to guess
whether it Is an Atlantic or Pacific salmon

Figure credit: Duda & Hart
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Example 2: Real Classification Problem

SUN Dataset
- 131K Images

- 908 scene categories

o4

outdoor
natural

outdoor
man-made

workplace
(office building, factory, lab, etc.)

home or hotel

transportation
(vehicle interiors, stations, etc.)

sports and leisure

cultural (art, education, religion,
millitary, law, politics, etc.)

auto showroom

1 © "\ bakery kitchen
e w0 44 bakery shop

| bank indoor

bank vault

banquet hall




Example 3: Real Classification Problem

Natural object 0 82 769 AR

An object occurring naturally; not made by man pictures  Popularity ~ Wordnet
Percentile IDs
' Numbers in brackets: (the number of Treemap Visualization Images of the Synset Downloads
synsets in the subtree ).
*. ImageNet 2011 Fall Release (32326) A ImageNet 2011 Fall Release ' Natural object
i - plant, flora, plant life (4486) Plant Coveri %
L, - ! E

. *. geological formation, formation (1° “ mmnn u S &8 -
s g N AR
ImageNet Dataset 5 s R [ i

- cliff, drop, drop-off (2)

o nnnnE---n =xov A D
- folium (0) . . H +— PP d . T .

- foreshore (0)

Extraterre Bo?/
“ ice mass (10)

14 Million images l:lnﬁalnﬁﬂn-ﬁ

- lakef (0)
* massi (0 14 B @- éi: T S B E

21K object categori | | roree H i
object categories : B a0 .2
dEAEA=Fm fwas

Mechanism | Celestial
N

"~ natural depression, depression (
‘. natural elevation, elevation (41]
- oceanfront (0)

- range, mountain range, range of

- relict (0) -ﬁ m ﬂ i i - : Radiator
- ridge, ridgeline (2) : s _.

e 0 mmmes B ram = Y e g
"~ shore (7)

" slope, incline, side (17)

spring, fountain, outflow, outpo
- talus, scree (0)

*- vein, mineral vein (1)

volcanic crater, crater (2)

- wall (0)

.. water tahle. water level. around
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Bayes Rule (Review and Definitions)

Let ¢ be the class label and let x be the measurement (i.e., evidence)

prior probability

unconditional probabillity
(a.k.a. marginal likelihood)

06



Bayes Rule (Review and Definitions)
L et ¢ be the class label and let x be the measurement (i.e., evidence)

Simple case:
— binary classification; i.e., ¢ € {1, 2}
— features are 1D; i.e., x € R

P(c|lx) =

General case:
— multi-class: i.e., c € {1, ...,1000}
— features are high-dimensional; i.e., z € R0+

o/



Example: Discrete Bayes Classifier

Assume we have two classes: c1 = male co = female

We have a person who’s gender we don’t know, who’s name is drew

68 Example from: Eamonn Keogh



Example: Discrete Bayes Classifier

Assume we have two classes: c1 = male co = female

We have a person who’s gender we don’t know, who’s name is drew

Drew Carey Drew Barrymore

59 Example from: Eamonn Keogh



Example: Discrete Bayes Classifier

Assume we have two classes: c1 = male co = female

We have a person who’s gender we don’t know, who’s name is drew

Classifying drew as being male or female is equivalent to asking is it more
probable that drew is male or female, i.e. which is greater p(male|drew)

p(female|drew)

Drew Carey Drew Barrymore

20 Example from: Eamonn Keogh



Example: Discrete Bayes Classifier

Assume we have two classes: c1 = male co = female

We have a person who’s gender we don’t know, who’s name is drew

Classifying drew as being male or female is equivalent to asking is it more
probable that drew is male or female, i.e. which is greater p(male|drew)

p(female|drew)

p(drew|male)p(male)

le|d =
p(male|drew) o(drew)

2 Example from: Eamonn Keogh



Example: Discrete Bayes Classifier

p(drew|male)p(male)

| —
p(male|drew) o(drew)

25 Example from: Eamonn Keogh



Example: Discrete Bayes Classifier

p(male) =

p(drew|male) =

p(drew) =

p(drew|male)p(male)

| —
p(male|drew) o(drew)
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Example: Discrete Bayes Classifier
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Example: Discrete Bayes Classifier
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1
p(drew|male) = —
p(drew) =
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Example: Discrete Bayes Classifier

3
le) = >
p(male) = =
1
p(drew|male) = —
3
p(drew) = 2

p(drew|male)p(male)

| —
p(male|drew) o(drew)
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Example: Discrete Bayes Classifier

3
le) = —
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1
p(drew|male) = —
pldrewy= -

p(drew|male)p(male)
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Example: Discrete Bayes Classifier

D
3 — =
p(male) - p(female) = ?

1 2

p(dT€w|male) — p(drew\female) — g

p(drew|male)p(male)
_pldres)”

p(drew|female)p(female)

p(female|drew) = M — 0.25

25 Example from: Eamonn Keogh
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Bayes Rule (Review and Definitions)
L et ¢ be the class label and let x be the measurement (i.e., evidence)

Simple case:
— binary classification; i.e., ¢ € {1, 2}
— features are 1D; i.e., x € R

P(c|lx) =

General case:
— multi-class: i.e., c € {1, ...,1000}
— features are high-dimensional; i.e., z € R0+
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Bayes' Risk

Some errors may be inevitable: the minimum risk (shaded area) is called the
Bayes’ risk

Decision Boundary Decision Boundary

p(1]x) p(2|x) p(1]x)

X l)(
Forsyth & Ponce (2nd ed.) Figure 15.1
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Discriminative vs. Generative

FINnding a decision boundary is not the same as modeling a conditional density
— while a normal density here is a poor fit to P(1|x), the quality of the classifier
depends only on how well the boundary is positioned

P(2|x)
P(1|x)

/

|
X

Forsyth & Ponce (2nd ed.) Figure 15.5
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Discriminative vs. Generative

FINnding a decision boundary is not the same as modeling a conditional density
— while a normal density here is a poor fit to P(1|x), the quality of the classifier
depends only on how well the boundary is positioned

P(2|x)

37N

Forsyth & Ponce (2nd ed.) Figure 15.5
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