THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Image Credit: loannis (Yannis) Gkioulekas (CMU)

Lecture 18: Stereo (and finish Hough)



Menu for Today (March 12, 2019)

Topics:

— Hough Transform (examples) — Stereo Vision

— Today’s Lecture: Forsyth & Ponce 2nd ed.) 7.1.1, 7.2.1, 7.4, 7.0
— Next Lecture: Forsyth & Ponce (2nd ed.) 7.1.1, 7.2.1, 7.4, 7.6

Reminders:

— Assignment 4 is due March 19th

— Tech staff is working on making exams available (there were some issues)



Today’s “fun” Example: Im2Calories

|CCV 2015 paper by Kevin Murphy Top View Side View
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Today’s “fun” Example: Im2Calories

Im2Calories: towards an automated mobile vision food diary

Austin Myers, Nick Johnston, Vivek Rathod, Anoop Korattikara, Alex Gorban Nathan Silberman, Sergio
Guadarrama, George Papandreou, Jonathan Huang, Kevin Murphy amyers@umd.edu, (nickj, rathodyv,
kbanoop, gorban)@google.com (nsilberman, sguada, gpapan, jonathanhuang, kpmurphy)@google.com



Today’s “fun” Example: Im2Calories

Fun on-line demo: http://www.caloriemama.ai/api



http://www.caloriemama.ai/api

Lecture 17: Re-cap

|dea of Hough transform:
— For each token vote for all models to which the token could belong
— Return models that get many votes

Example: For each point, vote for all lines that could pass through it; the true
ines will pass through many points and so receive many Votes



Lecture 17: Re-cap

Idea: Each point votes for the lines that pass through it

— Aline is the set of points, (z, y), such that
rsinf +ycosf +r =20

— Different choices of 8, r give different lines



Lecture 17: Re-cap

Idea: Each point votes for the lines that pass through it

— Aline is the set of points, (z, y), such that
rsinf +ycosf +r =20

— Different choices of 8, r give different lines

— For any (z, y) there is a one parameter family of lines through this point. Just
et (x,¥y) be constants and for each value of 6 the value of r will be determined

— Each point enters votes for each line In the family

— It there Is a line that has lots of votes, that will be the line passing near the
points that voted for it



Lecture 17: Re-cap

Slide Credit: loannis (Yannis) Gkioulekas (CMU)




Lecture 17: Re-cap

Original Edges Parameter Hough Lines
space

10 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Generalized Hough Transform

What if we want to detect an arbitrary geometric shape?
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Generalized Hough Transform

What if we want to detect an arbitrary geometric shape”?

Offline procedure:

At each boundary point,
compute displacement
vector: r = a - p;.

Model shape

Store these vectors in a
£ / table indexed by gradient
“~g \ orientation 6.

Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980
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Example 1: Object Recognition — Implicit Shape Model

Combined object detection and segmentation using an implicit shape model.
Image patches cast weighted votes for the object centroid.

Original Image Interest Points Matched Codebook Probabilistic

\ o Entries

Voting Space
(continuous)
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™

Refined Hypothesis Backprojected Backprojection
(uniform sampling) Hypothesis of Maximum

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model,
ECCV Workshop on Statistical Learning in Computer Vision 2004
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Example 1: Object Recognition — Implicit Shape Model

Basic Idea:

— FInd Interest points In an Image (e.g., SIFT Keypoint detector or Corners)

— Match patch around each interest point to a training patch (e.g., SIFT Descriptor)
— Vote for object center given that training instances

— Find the patches that voted for the packs (back-project)
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Example 1: Object Recognition — Implicit Shape Model

“Training” Images of CoOws “Testing” Image

15 * Slide from Sanja Fidler



xample 1: Object Recognition — Implicit Shape Model

“Training” Images of CoOws “Testing” image

training image of cow
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Vote for center of object

16 * Slide from Sanja Fidler



Example 1: Object Recognition — Implicit Shape Model
“Training” Images of CoOws “Testing” image

training image of cow
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Vote for center of object
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xample 1: Object Recognition — Implicit Shape Model
“Training” Images of cows “Testing” image

training image of cow
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Vote for center of object

18 * Slide from Sanja Fidler



xample 1: Object Recognition — Implicit Shape Model

“Training” Images of CoOws “Testing” image

training image of cow
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of course sometimes wrong votes are bound to happen

19 * Slide from Sanja Fidler



Example 1: Object Recognition — Implicit Shape Model

“Training” Images of cows “Testing” image
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That's ok. We want only peaks in voting space.

20 * Slide from Sanja Fidler



Example 1: Object Recognition — Implicit Shape Model

“Training” Images of cows “Testing” image
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Find patches that voted for the peaks (back-project

21 * Slide from Sanja Fidler



Example 1: Object Recognition — Implicit Shape Model

“Training” Images of CoOws “Testing” image
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xample 1: Object Recognition — Implicit Shape Model

“Training” Images of CoOws “Testing” image
Really easy ... but slow ... how do we make it fast”?
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We need to match a patch around each yellow keypoint to

all patches In all training images (slow
23 * Slide from Sanja Fidler




Visual \Words

@ Visual vocabulary (we saw this for retrieval)

@ Compare each patch to a small set of visual words (clusters)

Visual words (visual codebook)!

24 * Slide from Sanja Fidler



Example 1: Object Recognition — Implicit Shape Model

INndex displacements by “visual codeword”

visual codeword with
displacement vectors

training image

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model,
ECCV Workshop on Statistical Learning in Computer Vision 2004

25



Example 1: Object Recognition — Implicit Shape Model

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model,
ECCV Workshop on Statistical Learning in Computer Vision 2004
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Inferring Other Information: Segmentation

Combined object detection and segmentation using an implicit shape model.
Image patches cast weighted votes for the object centroid.

Original Image Interest Points Matched Codebook Probabilistic

\ o Entries

Voting Space
(continuous)

ot |
« T —meoy  mep A
: N » - ‘l - /

Segmentation

™

Refined Hypothesis Backprojected Backprojection
(uniform sampling) Hypothesis of Maximum

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model,
ECCV Workshop on Statistical Learning in Computer Vision 2004
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Inferring Other Information: Segmentation

(a) detections (b) p(figure) (c) segmentation (a) detections (b) p(figure) (c) segmentation

[Source: B. Leibe]

- * Slide from Sanja Fidler



Inferring Other Information: Segmentation

B
ol

* Slide from Sanja Fidler

[Source: B. Leibe]



Inferring Other Information: Part Labels

Training

30 * Slide from Sanja Fidler



Inferring Other Information: Depth

Test image Ground truth Result
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“Depth from a single image”




Example 2: Object Recognition — Boundary Fragments

Boundary fragments cast weighted votes for the object centroid. Also obtains
an estimate of the object’s contour.

All matched boundary
fragments

Original Image

Centroid Voting on a subset of the matched fragments

Segmentation / Detection Backprojected Maximum

Image credit: Opelt et al., 2006
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Example 2: Object Recognition — Boundary Fragments

Boundary fragments cast weighted votes for the object centroid. Also obtains
an estimate of the object’s contour.

. Hough votin Backprojected "
Original Edac | Matching boundary spacge for thg codebook entries D:‘tee c;t';_o:c:f Segmentation
Steps iy IMage ge 'mage fragments centroid for a maximum )
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Image credit: Opelt et al., 2006
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Example 3: Object Recognition — Poselets

Poselets are image patches that have distinctive appearance and can be used
to Infer some of the configuration of a parts-based object. Detected poselets
vote for the object configuration. "




Example 3: Object Recognition — Poselets

Poselets are image patches that have distinctive appearance and can be used
to Infer some of the configuration of a parts-based object. Detected poselets

vote for the object configuration.

1. g-scores. Different colors illustrate different 2. Q-scores (Section 4). Evidence from consistent 3. Clustering (Section 5). Activations are 4. Bounding boxes (Section 6) and segmen-
poselet detectors firing in the image. The blob poselet activations leads to a reranking based on merged in a greedy manner starting with the tations (Section 7). We predict the visible
size illustrates the score of the independent mutual activation (Q-scores). Weaker activations strongest activation. Merging is based on bounds and the contour of the person using the
poselet classifier. consistent with others gain importance, whereas pairwise consistency. poselets within the cluster.

inconsistent ones get damped.

Image credit. Bourdev and Malik, 2009
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Discussion of Hough [ransform

Advantages:
— Can handle high percentage of outliers: each point votes separately
— (Can detect multiple instances of a model in a single pass

Disadvantages.

— Complexity of search time increases exponentially with the number of model
parameters

— (Can be tricky to pick a good bin size

36



Summary of Hough Transform

The Hough transform is another technique for fitting data to a model
— a voting procedure

— possible model parameters define a guantized accumulator array
— data points “vote" for compatible entries in the accumulator array

A key Is to have each data point (token) constrain model parameters as tightly
as possible

37



THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Image Credit: loannis (Yannis) Gkioulekas (CMU)

Lecture 18: Stereo
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Stereo Vision

Problem Formulation:
Determine depth using two images acquired from (slightly) different viewpoints

Key Idea(s):

The 3D coordinates of each point imaged are constrained to lie along a ray. This
'S true also for a second image obtained from a (slightly) different viewpoint.
Rays for the same point in the world intersect at the actual 3D location of that
poINt

50



Stereo Vision

With two eyes, we acquire images of the world from slightly different viewpoints

We perceive depth based on differences In the relative position of points
N the left Image and in the right image
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Binoculars

Binoculars enhance binocular depth perception In two distinct ways:
1. magnification

2. longer baseline (i.e., distance between entering light paths) compared to the
normal human inter-pupillary distance

/ Eyepiece
] Porro
J L / prisms
— ‘ s
AN
Objective

Figure credit: http://en.wikipedia.org/wiki/Binoculars
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Stereo Vision

Task: Compute depth from two images acquired from (slightly) different
viewpoints

Approach: “Match” locations in one image to those in another

Sub-tasks:

— (Calibrate cameras and camera positions

— Find all corresponding points (the hardest part)
— Compute depth and surfaces
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Stereo Vision

debhth

baseline

Slide credit: Trevor Darrell
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Stereo Vision

Triangulate on two Images of the same point

f | baseline | \ N

Right

Match correlation windows
across scan lines

Image credit: Point Grey Research
Slide credit: Trevor Darrell
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Point Grey Research Digiclops

Image credit: Point Grey Research
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Correspondence
54

Forsyth & Ponce (2nd ed.) Figure 7.2
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The Epipolar Constraint

epipolar line epipolar line

Matching points lie along corresponding epipolar lines
Reduces correspondence problem to 1D search along conjugate epipolar lines

Greatly reduces cost and ambiguity of matching

Slide credit; Steve Seitz
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Simplest Case: Rectified Images

Image planes of cameras are parallel

Focal points are at same height

Focal lengths same

Then, epipolar lines fall along the horizontal scan lines of the images

We assume images have been rectified so that epipolar lines correspond to
scan lines

— Simplifies algorithms
— Improves efficiency

59



Rectified Stereo Pair
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Rectified Stereo Pair

Reproject image planes onto
a common plane parallel to

the line between camera \
centers 2
Need two homographies

(Bx3 transform), one for each
INput Image reprojection

C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision.Computer Vision and Pattern Recognition, 1999.

6 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Example

Before Rectification

After Rectification

62 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

X 3D point
image plane
O O’
camera center camera center

63 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

image plane

64 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

65 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

(basveline)
b

66 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

(basveline)
b

67 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

(basveline)
b

68 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

(basveline)
b

69 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

X

(baseline)

b
Disparity
d=x—2x (wrtto camera origin of image plane)
_bof
7

70 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Depth Estimate

X

(baseline)

b
Disparity
R iInversely proportional to depth
bf e

71 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



(simple) Stereo Algorithm
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(make epipolar lines horizontal)
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c.Compute depth from disparity Zfzwa—

70 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



(simple) Stereo Algorithm
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1.Recti1fy 1mages
(make epipolar lines horizontal)
2.For each pixel
a.fFind epipolar line
b.Scan line for best match
- . . bf
c.Compute depth from disparity 23=~E—

73 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Correspondence: \What should we match?

Objects”?
Edges”?
Pixels?

Collections of pixels?

74



Random Dot Stereograms

Julesz (1960) showed that recognition is not needed for stereo

"“When viewed monocularly, the images appear completely random. But when
viewed stereoscopically, the image pair gives the impression of a square
markedly in front of (or behind) the surround.”

lgs



Method: Pixel Matching

"y - - .

T HON. ARRAIAM LINCOLN, President of United States. &=

For each epipolar line
For each pixel in the left Image
— compare with every pixel on same epipolar line in right image
— pick pixel with minimum match cost

This leaves too much ambiguity!

Slide credit: Steve Seitz
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Sum of Squared (Pixel) Differences

Left Right

1‘!‘ Ji!l ! i
S T ... LR Ly o FOTHTT m

(X, 1) (x, =d. v )

W1 and wg are corresponding m x m Windows of pixels
Define the window function,W.(z, y), by

m m m m
m A\ —{ , < u < | : < v < | }
W (:Ey) (uv)|:1: 2_u_:,v 2y Z_U_y 5

SSD measures intensity difference as a function of disparity:
CR(wayad) — Z [[L(U,U) _IR(u_d7 U)]Q

(u,v) EW p, (2,y)
T4



Image Normalization

_ 1
I = I(u,v -
W, (2, ) Z (u,v) Average Pixel

11w, () = > [I(u,v))? Window Magnitude

I(z,y) = [(z,y) — 1 Normalized Pixel: subtract the
| | = I||lw,, (z.) mean, normalize to unit length

/3



Image Metrics

(Normalized) Sum of Squared Differences

wgr(d)
WL

(Normalized) Correlation
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Image Metrics

Assume w1 and wg(d) are normalized to unit length (Normalized)

Sum of Squared Differences:

Cssp(d) = > I'r(u,v) — Ip(u—d,v)
(u,0)EW o (z,y) _

= |[wr — wr(d)|[*

(Normalized) Correlation:

CNC'(d) — Z ]AL(U,U)IAR(u—d,fU)
(u,v) EW p (2,y)

= wy, - Wgr(d) = cos @
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Image Metrics

Let d* be the value of d that minimizes Cqgp
Then d* also is the value of d that minimizes Cnc¢

That Is,

d* = argmin |lwr, — wgr(d)||* = argmgnwL - Wg(d)

81



Method: Correlation

Left Right

SSD error &

RN,

>

disparity
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Similarity Measure Formula
Sum of Absolute Differences (SAD) (,;W G~ Bt by +)l
. (G - LG +iy+))°
Sum of Squared Differences (SSD) (i;w R
Z (i) = (i) = L(x+ i,y + ) + L(x+ i,y + ) |
Zero-mean SAD i 5ew
2 I(i,)) . .
L ” | d SAD H;W”l(lr]) _72(x+i,y+j)12(x+ l'y+])|
ocally scale o
2o pew (G ). L(x + i,y + )
Normalized Cross Correlation (NCC) \/Za,j)ewff L) - Zajew Z(x+ 4,y + )

SAD Ground truth

93 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Method: Edges

Matching zero-crossings at a single scale

SoptITECe

Matching zero-crossings at multiple scales

Width

Scal 77
i Match> —9

! Offsct> @

5
.
/]
1 O Rematch
N

Scale o< v é‘{_( '{ ¥ 7
B
Width Mateh > - i

Forsyth & Ponce (2nd ed.) Figure 7.12 (Top & Middle)
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Method: Edges (aside)

The Marr/Poggio (1979) multiscale stereo algorithm:

1. Convolve the two (rectified) images with vV Gy filters of INcreasing
01 < 09 < 03 < 04

2. Find zero crossings along horizontal scanlines of the filtered images

3. For each filter scale o, match zero crossings with the same parity and
roughly equal orientations in a |—w,, +W| disparity range, with W = 2V 20

4. Use the disparities found at larger scales to control eye vergence and cause
unmatched regions at smaller scales to come Iinto correspondence
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Which Method is Better: Correlation or Edges®

Edges are more “meaningful” [Marr]. . . . .. but hard to find!
Edges tend to fail in dense texture (outdoors)

Correlation tends to fail in smooth, featureless regions

Note: Correlation-based methods are “dense.” Edge-based methods are
‘relatively sparse”
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Fffect of Window Size

W =20
Smaller window Larger window
+ More detall + Smoother disparity maps
- More noise - Less detall

- Falls near boundaries

q7 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fffect of Window Size

Note: Some approaches use an adaptive window size
— try multiple sizes and select best match
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Ordering Constraints

Ordering constraint ... .... and a failure case

Forsyth & Ponce (2nd ed.) Figure 7.13
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Block Matching lechnigues: Result

90 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Block Matching lechnigues: Result

Too many discontinuities.
We expect disparity values to
change slowly.

Let’s make an assumption:
depth should change smoothly

O Slide Credit: loannis (Yannis) Gkioulekas (CMU)



