

CPSC 425: Computer Vision

Lecture 14: Color

(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Menu for Today (February 26, 2019)

Topics:

- Colour
 - Trichromasity
- Colour Matching Experiments

Colour Spaces

Redings:

- Today's Lecture: Forsyth & Ponce (2nd ed.) 3.1-3.3
- Next Lecture: N/A

Reminders:

- Assignment 3: Texture Syntheis is due on March 1st (11:59pm)
- Grading for Midterm (by end of this week ... hopefully)

[B. Zhao, L. Meng, W. Yin, L. Sigal, accepted to CVPR'19]

[B. Zhao, L. Meng, W. Yin, L. Sigal, accepted to CVPR'19]

[B. Zhao, L. Meng, W. Yin, L. Sigal, accepted to CVPR'19]

[B. Zhao, L. Meng, W. Yin, L. Sigal, accepted to CVPR'19]

[B. Zhao, L. Meng, W. Yin, L. Sigal, accepted to CVPR'19]

[B. Zhao, L. Meng, W. Yin, L. Sigal, accepted to CVPR'19]

[B. Zhao, L. Meng, W. Yin, L. Sigal, accepted to CVPR'19]

[B. Zhao, L. Meng, W. Yin, L. Sigal, accepted to CVPR'19]

[B. Zhao, L. Meng, W. Yin, L. Sigal, accepted to CVPR'19]

Midterm Overview

Lecture 11: Re-cap — Laplacian vs. Gaussian Pyramids

Shown in opposite order for space

Lecture 11: Re-cap — Oriented Pyramids

Oriental Filters

Forsyth & Ponce (1st ed.) Figure 9.14

Lecture 11: Re-cap — Oriented Pyramids

Forsyth & Ponce (1st ed.) Figure 9.13

Lecture 11: Re-cap — Texture Representation

Steps:

- 1. Form a Laplacian and oriented pyramid (or equivalent set of responses to filters at different scales and orientations)
- 2. Square the output (makes values positive)
- 3. Average responses over a neighborhood by blurring with a Gaussian
- 4. Take statistics of responses
- Mean of each filter output
- Possibly standard deviation of each filter

Overview: Image Formation, Cameras and Lenses

The image formation process that produces a particular image depends on

- Lightening condition
- Scene geometry
- Surface properties
- Camera optics

Sensor (or eye) captures amount of light reflected from the object

Colour

- Light is produced in different amounts at different wavelengths by each light source
- Light is differentially reflected at each wavelength, which gives objects their natural colour (surface albedo)
- The sensation of colour is determined by the human visual system, based on the product of light and reflectance

Relative Spectral Power of Two Illuminants

Relative spectral power plotted against wavelength in nm

Forsyth & Ponce (2nd ed.) Figure 3.4

(small) Graphics Review

Surface reflection depends on both the **viewing** (θ_v, ϕ_v) and **illumination** (θ_i, ϕ_i) direction, with Bidirectional Reflection Distribution Function: **BRDF** $(\theta_i, \phi_i, \theta_v, \phi_v)$

Spectral Albedo of Natural Surfaces

Forsyth & Ponce (2nd ed.) Figure 3.6

Colour Appearance

Reflected light at each wavelength is the product of illumination and surface reflectance at that wavelength

Surface reflectance often is modeled as having two components:

- Lambertian reflectance: equal in all directions (diffuse)
- Specular reflectance: mirror reflectance (shiny spots)

(small) Graphics Review

Surface reflection depends on both the viewing (θ_v, ϕ_v) and illumination (θ_i, ϕ_i) direction, with Bidirectional Reflection Distribution Function: **BRDF**($\theta_i, \phi_i, \theta_v, \phi_v$)

 $\mathbf{BRDF}(\theta_i, \phi_i, \theta_v, \phi_v)$

(small) Graphics Review

Surface reflection depends on both the **viewing** (θ_v, ϕ_v) and **illumination** (θ_i, ϕ_i) direction, with Bidirectional Reflection Distribution Function: **BRDF** $(\theta_i, \phi_i, \theta_v, \phi_v)$

Mirror surface: all incident light reflected in one directions $(\theta_v, \phi_v) = (\theta_r, \phi_r)$

Color Matching Experiments

Forsyth & Ponce (2nd ed.) Figure 3.2

Show a split field to subjects. One side shows the light whose colour one wants to match. The other a weighted mixture of three primaries (fixed lights)

$$T = w_1 P_1 + w_2 P_2 + w_3 P_3$$

Recall: Color is an Artifact of Human Perception

"Color" is **not** an objective physical property of light (electromagnetic radiation). Instead, light is characterized by its wavelength.

Color Matching Experiments

Forsyth & Ponce (2nd ed.) Figure 3.2

Show a split field to subjects. One side shows the light whose colour one wants to match. The other a weighted mixture of three primaries (fixed lights)

$$T = w_1 P_1 + w_2 P_2 + w_3 P_3$$

Color Matching Experiments

Figure Credit: Brian Wandell, Foundations of Vision, Sinauer Associates, 1995

knobs here

Example Credit: Bill Freeman

Example Credit: Bill Freeman

knobs here

Example Credit: Bill Freeman

Example 2: Color Matching Experiment

Example 2: Color Matching Experiment

We say a "negative" amount of P_2 was needed to make a match , because we added it to the test color side

Example 2: Color Matching Experiment

We say a "negative" amount of P_2 was needed to make a match , because we added it to the test color side

The primary color amount needed to match:

Color Matching Experiments

- Many colours can be represented as a positive weighted sum of A, B, C
- Write

$$M = aA + bB + cC$$

where the = sign should be read as "matches"

- This is **additive** matching
- Defines a colour description system
 - two people who agree on A, B, C need only supply (a, b, c)

Color Matching Experiments

- Some colours can't be matched this way
- Instead, we must write

$$M + aA = bB + cC$$

where, again, the = sign should be read as "matches"

- This is subtractive matching
- Interpret this as (–a, b, c)

Color Matching Experiments

- Some colours can't be matched this way
- Instead, we must write

$$M + aA = bB + cC$$

where, again, the = sign should be read as "matches"

- This is subtractive matching
- Interpret this as (–a, b, c)

Problem for designing displays: Choose phosphors R, G, B so that positive linear combinations match a large set of colours

Principles of Trichromacy

Experimental facts:

Three primaries work for most people, provided we allow subtractive matching

- Exceptional people can match with two or only one primary
- This likely is caused by biological deficiencies

Most people make the same matches

— There are some anomalous trichromats, who use three primaries but match with different combinations

Human Cone Sensitivity

http://hyperphysics.phy-astr.gsu.edu/hbase/vision/colcon.html

Metameric Lights

Two lights whose spectral power distributions appear identical to most observers are called **metamers**.

(A) A tungsten bulb (B) TV monitor set to match (A)

Figure credit: Brian Wandell, Foundations of Vision, Sinauer Associates, 1995

Grassman's Laws

For colour matches:

- symmetry: $U = V \Leftrightarrow V = U$
- transitivity: U=V and $V=W\Rightarrow U=W$
- proportionality: $U = V \Leftrightarrow tU = tV$
- additivity: if any two of the statements are true, then so is the third

$$U = V,$$

$$W = X,$$

$$(U + W) = (V + X)$$

These statements mean that colour matching is, to an accurate approximation, linear.

Representing Colour

- Describing colours accurately is of practical importance (e.g. Manufacturers are willing to go to a great deal of trouble to ensure that different batches of their product have the same colour)
- This requires a standard system for representing colour.

Linear Color Spaces

A choice of primaries yields a linear colour space

— the coordinates of a colour are given by the weights of the primaries used to match it

Choice of primaries is equivalent to choice of colour space

- RGB: Primaries are monochromatic energies, say 645.2 nm, 526.3 nm,
 444.4 nm
- **CIE XYZ**: Primaries are imaginary, but have other convenient properties. Colour coordinates are (X, Y, Z), where X is the amount of the X primary, etc.

RGB Colour Matching Functions

Forsyth & Ponce (2nd ed.) Figure 3.9

- Primaries monochromatic
- Wavelengths 645.2, 526.3 and 444.4 nm
- Negative parts means some colours can be matched only subtractively

RGB Color Space

RGB Colour Matching Functions

Forsyth & Ponce (2nd ed.) Figure 3.9

- Primaries monochromatic
- Wavelengths 645.2, 526.3 and 444.4 nm
- Negative parts means some colours can be matched only subtractively

RGB Colour Matching Functions

Forsyth & Ponce (2nd ed.) Figure 3.8

CIE XYZ: Colour matching functions are positive everywhere, but primaries are imaginary. Usually draw x, y, where

$$x = X/(X + Y + Z)$$
$$y = Y/(X + Y + Z)$$

Overall brightness is ignored

Geometry of Colour (CIE)

- White is in the center, with saturation increasing towards the boundary
- Mixing two coloured lights
 creates colours on a straight line
- Mixing 3 colours creates colours within a triangle
- Curved edge means there are no
 3 actual lights that can create all
 colours that humans perceive!

Geometry of Colour (CIE)

- White is in the center, with saturation increasing towards the boundary
- Mixing two coloured lights
 creates colours on a straight line
- Mixing 3 colours creates colours within a triangle
- Curved edge means there are no
 3 actual lights that can create all
 colours that humans perceive!

RGB Colour Space

The sub-space of CIE colours that can be displayed on a typical computer monitor (phosphor limitations keep the space quite small)

RGB Colour Space

Adding **red** to the green color outside of the region brings it back to where it can be matched by **green** and **blue** RGB primaries

Uniform Colour Spaces

Usually one cannot reproduce colours exactly

This means it is important to know whether a colour difference would be noticeable to a human viewer

Uniform Colour Spaces

McAdam Ellipses: Each ellipse shows colours perceived to be the same

Forsyth & Ponce (2nd ed.) Figure 3.14

Uniform Colour Spaces

McAdam ellipses demonstrate that differences in x, y are a poor guide to differences in perceived colour

A uniform colour space is one in which differences in coordinates are a good guide to differences in perceived colour

- example: CIE LAB

HSV Colour Space

The coordinates of a colour in a linear space like RGB or CIE XYZ may not necessarily...

- encode properties that are common in language or important in applications
- capture human intuitions about the topology of colours, e.g. hue relations are naturally epxressed in a circle

HSV Colour Space

More natural description of colour for human interpretation

Hue: attribute that describes a pure colour

- e.g. 'red', 'blue'

Saturation: measure of the degree to which a pure colour is diluted by white light

pure spectrum colours are fully saturated

Value: intensity or brightness

Hue + saturation also referred to as chromaticity.

HSV Colour Space

Gonzalez and Woods, 2008

Colour Constancy

Image colour depends on both light colour and surface colour

Colour constancy: determine hue and saturation under different colours of lighting

It is surprisingly difficult to predict what colours a human will perceive in a complex scene

- depends on context, other scene information

Humans can usually perceive

- the colour a surface would have under white light

Colour Constancy

A classic experiment by Land and McCann

Environmental Effects

Chromatic adaptation: If the human visual system is exposed to a certain colour light for a while, colour perception starts to skew

Contrast effects: Nearby colours affect what is perceived

Summary

- Approaches to texture exploit pyramid (i.e. scaled) and oriented representations
- Human colour perception
 - colour matching experiments
 - additive and subtractive matching
 - principle of trichromacy
- RGB and CIE XYZ are linear colour spaces
- Uniform colour space: differences in coordinates are a good guide to differences in perceived colour
- HSV colour space: more intuitive description of colour for human interpretation
- (Human) colour constancy: perception of intrinsic surface colour under different colours of lighting