Lecture 11: Texture (cont)

(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)
Menu for Today (October 5, 2018)

Topics:
- Texture Synthesis
- Texture **Analysis**
- **iClicker** quiz

Redings:
- **Today’s** Lecture: Forsyth & Ponce (2nd ed.) 6.1-6.3, 3.1-3.3
- **Next** Lecture: N/A

Reminders:
- **Assignment 2**: Face Detection in a Scaled Representation is **February 8th**
- **Assignment 3**: Texture Synthesis will be out **February 8th**
Today’s “fun” Example: Colour Constancy

Image Credit: Akiyosha Kitoaka
Today’s “fun” Example: Colour Constancy

- Some people see a white and gold dress.
- Some people see a blue and black dress.
- Some people see one interpretation and then switch to the other

Today’s “fun” Example: Colour Constancy

— Some people see a white and gold dress.
— Some people see a blue and black dress.
— Some people see one interpretation and then switch to the other

Two pieces of the dress
Average colors
The basic pattern of the dress

Today’s “fun” Example: Colour Constancy

IS THE DRESS IN SHADOW?
If you think the dress is in shadow, your brain may remove the blue cast and perceive the dress as being white and gold.

THE DRESS IN THE PHOTO
If the photograph showed more of the room, or if skin tones were visible, there might have been more clues about the ambient light.

IS THE DRESS IN BRIGHT LIGHT?
If you think the dress is being washed out by bright light, your brain may perceive the dress as a darker blue and black.

Today’s “fun” Example: Colour Constancy

(Functional) **Definition:**

Texture is detail in an image that is at a scale too small to be resolved into its constituent elements and at a scale large enough to be apparent in the spatial distribution of image measurements.

Figure Credit: Alexei Efros and Thomas Leung
Lecture 10: Re-cap of Texture

We will look at two main questions:

1. How do we represent texture?
 → Texture analysis

2. How do we generate new examples of a texture?
 → Texture synthesis

We begin with texture synthesis to set up Assignment 3
Objective: Generate new examples of a texture. We take a "data-driven" approach.

Idea: Use an image of the texture as the source of a probability model.
- Draw samples directly from the actual texture.
- Can account for more types of structure.
- Very simple to implement.
- Success depends on choosing a correct "distance".
— What is conditional probability distribution of p, given the neighbourhood window?

— Directly search the input image for all such neighbourhoods to produce a histogram for p

— To synthesize p, pick one match at random
Lecture 10: Re-cap

Original Image

Input

Figure Credit: Hays and Efros 2007
Lecture 10: Re-cap

Figure Credit: Hays and Efros 2007
Goal of Texture **Synthesis**

Given a finite sample of some texture, the goal is to synthesize other samples from that same texture.

- The sample needs to be "large enough".

Credit: Bill Freeman
Goal of Texture Analysis

Compare textures and decide if they’re made of the same “stuff”

Credit: Bill Freeman
Definition of Texture (Re-Cap)

Recall that texture is easy to recognize but hard to define
— A functional definition was presented last class

We need representations that differ in ways that are easy to observe when two textures are significantly different.

Recall that textures can often be thought of as patterns composed of repeated instances of one (or more) identifiable elements, called textons
— e.g. bricks in a wall, spots on a cheetah
Texture **Segmentation**

Question: Is texture a property of a point or a property of a region?
Texture **Segmentation**

Question: Is texture a property of a point or a property of a region?

Answer: We need a region to have a texture.
Question: Is texture a property of a point or a property of a region?

Answer: We need a region to have a texture.

There is a “chicken–and–egg” problem. Texture segmentation can be done by detecting boundaries between regions of the same (or similar) texture. Texture boundaries can be detected using standard edge detection techniques applied to the texture measures determined at each point.
Texture Segmentation

Question: Is texture a property of a point or a property of a region?

Answer: We need a region to have a texture.

There is a “chicken–and–egg” problem. Texture segmentation can be done by detecting boundaries between regions of the same (or similar) texture. Texture boundaries can be detected using standard edge detection techniques applied to the texture measures determined at each point.

We compromise! Typically one uses a local window to estimate texture properties and assigns those texture properties as point properties of the window’s center row and column.
Question: How many degrees of freedom are there to texture?
Question: How many degrees of freedom are there to texture?

(Mathematical) Answer: Infinitely many

(Perceptual Psychology) Answer: There are perceptual constraints. But, there is no clear notion of a “texture channel” like, for example, there is for an RGB colour channel
Texture Representation

Observation: Textures are made up of generic sub-elements, repeated over a region with similar statistical properties.

Idea: Find the sub-elements with filters, then represent each point in the image with a summary of the pattern of sub-elements in the local region.
Texture **Representation**

Observation: Textures are made up of generic sub-elements, repeated over a region with similar statistical properties.

Idea: Find the sub-elements with filters, then represent each point in the image with a summary of the pattern of sub-elements in the local region.

Question: What filters should we use?

Answer: Human vision suggests spots and oriented edge filters at a variety of different orientations and scales.
Texture Representation

Observation: Textures are made up of generic sub-elements, repeated over a region with similar statistical properties.

Idea: Find the sub-elements with filters, then represent each point in the image with a summary of the pattern of sub-elements in the local region.

Question: What filters should we use?

Answer: Human vision suggests spots and oriented edge filters at a variety of different orientations and scales.

Question: How do we “summarize”?

Answer: Compute the mean or maximum of each filter response over the region. Other statistics can also be useful.
Texture Representation

Figure Credit: Leung and Malik, 2001
Texture Representation

![Original Image](image)

![Derivative Filter Responses, Squared](image)

<table>
<thead>
<tr>
<th>Win. #1</th>
<th>mean d/dx value</th>
<th>mean d/dy value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Statistics to summarize patterns in small windows.

Slide Credit: Trevor Darrell
Texture Representation

Statistics to summarize patterns in small windows

<table>
<thead>
<tr>
<th>Window</th>
<th>mean $\frac{d}{dx}$ value</th>
<th>mean $\frac{d}{dy}$ value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Win. #1</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Win. #2</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>Win. #9</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Slide Credit: Trevor Darrell
Texture Representation

- Dimension 1 (mean d/dx value)
- Dimension 2 (mean d/dy value)

- Close: similar textures
- Far: dissimilar textures

<table>
<thead>
<tr>
<th></th>
<th>mean d/dx value</th>
<th>mean d/dy value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Win.#1</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Win.#2</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>Win.#9</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Statistics to summarize patterns in small windows

Slide Credit: Trevor Darrell
Texture Representation

Chi-square 0.1
Chi-square 0.8
Spots and Bars (Fine Scale)

Forsyth & Ponce (1st ed.) Figures 9.3–9.4
Spots and Bars (Coarse Scale)

Forsyth & Ponce (1st ed.) Figures 9.3 and 9.5
Comparison of Results

Forsyth & Ponce (1st ed.) Figures 9.4–9.5
A Short Exercise: Match the texture to the response

Filters

Mean abs responses

Slide Credit: James Hays
A Short **Exercise**: Match the texture to the response

Filters

Mean abs responses

Slide Credit: James Hays
Spots and Bars (Fine Scale)

Forsyth & Ponce (1st ed.) Figures 9.3–9.4
Spots and Bars (Coarse Scale)

Forsyth & Ponce (1st ed.) Figures 9.3 and 9.5
What happens to the details?
— They get smoothed out as we move to higher levels

What is preserved at the higher levels?
— Mostly large uniform regions in the original image

How would you reconstruct the original image from the image at the upper level?
— That’s not possible
Laplacian Pyramid

Building a **Laplacian** pyramid:
- Create a Gaussian pyramid
- Take the difference between one Gaussian pyramid level and the next (before subsampling)

Properties
- Also known as the difference-of-Gaussian (DOG) function, a close approximation to the Laplacian
- It is a band pass filter – each level represents a different band of spatial frequencies
Laplacian Pyramid

At each level, retain the residuals instead of the blurred images themselves.

Why is it called Laplacian Pyramid?
Why Laplacian Pyramid?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Laplacian Pyramid

At each level, retain the residuals instead of the blurred images themselves.

Why is it called Laplacian Pyramid?

Can we reconstruct the original image using the pyramid?
— Yes we can!
Laplacian Pyramid

At each level, retain the residuals instead of the blurred images themselves.

Why is it called Laplacian Pyramid?

Can we reconstruct the original image using the pyramid?
— Yes we can!

What do we need to store to be able to reconstruct the original image?
Let's start by just looking at one level

level 0 = level 1 (upsampled) + residual

Does this mean we need to store both residuals and the blurred copies of the original?
Constructing a **Laplacian** Pyramid

Algorithm

repeat:
- filter
- compute residual
- subsample
until min resolution reached

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Constructing a **Laplacian Pyramid**

Algorithm

repeat:
- filter
- compute residual
- subsample
until min resolution reached

What is this part?
Constructing a **Laplacian Pyramid**

It’s a Gaussian Pyramid

Algorithm

repeat:
 - filter
 - compute residual
 - subsample
until min resolution reached

Slide Credit: Ioannis (Yannis) Gkioulkas (CMU)
Reconstructing the Original Image

Algorithm

repeat:
 upsample
 sum with residual
until orig resolution reached
Gaussian vs Laplacian Pyramid

Shown in opposite order for space

Which one takes more space to store?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Aside: Image Blending

Aside: Image Blending

Aside: Image Blending

Algorithm:

1. Build Laplacian pyramid LA and LB from images A and B

2. Build a Gaussian pyramid GR from mask image R (the mask defines which image pixels should be coming from A or B)

3. From a combined (blended) Laplacian pyramid LS, using nodes of GR as weights: \(LS(i,j) = GR(i,j) \times LA(i,j) + (1 - GR(i,j)) \times LB(i,j) \)

4. Reconstruct the final blended image from LS
Aside: Image Blending

- Left
- Right
- Mask
- Blended
Aside: Image Blending

© david dmartin (Boston College)
Aside: Image Blending

© Chris Cameron
Oriented Pyramids

Laplacian pyramid is orientation independent

Idea: Apply an oriented filter at each layer
- represent image at a particular scale and orientation
- Aside: We do not study details in this course
Oriented Pyramids

Forsyth & Ponce (1st ed.) Figure 9.13
Oriented Pyramids

Forsyth & Ponce (1st ed.) Figure 9.14
Final Texture Representation

Steps:

1. Form a Laplacian and oriented pyramid (or equivalent set of responses to filters at different scales and orientations)

2. Square the output (makes values positive)

3. Average responses over a neighborhood by blurring with a Gaussian

4. Take statistics of responses
 - Mean of each filter output
 - Possibly standard deviation of each filter
Summary

Texture representation is hard
- difficult to define, to analyze
- texture synthesis appears more tractable

Objective of texture **synthesis** is to generate new examples of a texture
- Efros and Leung: Draw samples directly from the texture to generate one pixel at a time. A “data-driven” approach.

Approaches to texture embed assumptions related to human perception