

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 10: Texture

(unless otherwise stated slides are taken or adopted from **Bob Woodham, Jim Little** and **Fred Tung**)

Texture

What is **texture**?

Figure Credit: Alexei Efros and Thomas Leung Texture is widespread, easy to recognize, but hard to define

- Views of large numbers of small objects are often considered textures
- e.g. grass, foliage, pebbles, hair
- Patterned surface markings are considered textures e.g. patterns on wood

Definition of **Texture**

(Functional) **Definition**:

distribution of image measurements

Texture is detail in an image that is at a scale too small to be resolved into its constituent elements and at a scale large enough to be apparent in the spatial

Definition of **Texture**

(Functional) **Definition**:

distribution of image measurements

Sometimes, textures are thought of as patterns composed of repeated instances of one (or more) identifiable elements, called **textons**. - e.g. bricks in a wall, spots on a cheetah

Texture is detail in an image that is at a scale too small to be resolved into its constituent elements and at a scale large enough to be apparent in the spatial

Uses of **Texture**

Texture can be a strong cue to **object identity** if the object has distinctive material properties

the texture from point to point.

- Estimating surface orientation or shape from texture is known as "**shape** from texture"

Texture can be a strong cue to an **object's shape** based on the deformation of

Texture

We will look at two main questions:

1. How do we represent texture? → Texture **analysis**

2. How do we generate new examples of a texture? → Texture **synthesis**

We begin with texture synthesis to set up **Assignment 3**

Why might we want to synthesize texture?

- 1. To fill holes in images (inpainting)
- remove scratches or marks.
- We synthesize regions of texture that fit in and look convincing

- Art directors might want to remove telephone wires. Restorers might want to

— We need to find something to put in place of the pixels that were removed

Why might we want to synthesize texture?

- 1. To fill holes in images (inpainting)
- remove scratches or marks.
- We synthesize regions of texture that fit in and look convincing
- 2. To produce large quantities of texture for computer graphics - Good textures make object models look more realistic

- Art directors might want to remove telephone wires. Restorers might want to

— We need to find something to put in place of the pixels that were removed

radishes

lots more radishes

Szeliski, Fig. 10.49

Bush campaign digitally altered TV ad

President Bush's campaign acknowledged Thursday that it had digitally altered a photo that appeared in a national cable television commercial. In the photo, a handful of soldiers were multiplied many times.

AP

Photo Credit: Associated Pres

.

Cover of "The Economist," June 19, 2010

Photo Credit (right): Reuters/Larry Downing

Assignment 3 Preview: Texture Synthesis

Task: Make donkey vanish

Assignment 3 Preview: Texture Synthesis

Task: Make donkey vanish

Method: Fill-in regions using texture from the white box

Assignment 3 Preview: Texture Synthesis

Task: Make donkey vanish

Method: Fill-in regions using texture from the white box

- **Objective:** Generate new examples of a texture We take a "data-driven" approach
- **Idea:** Use an image of the texture as the source of a probability model
- Draw samples directly from the actual texture
- Can account for more types of structure
- Very simple to implement
- Success depends on choosing a correct "distance"

Texture Synthesis by Non-parametric Sampling

Alexei Efros and Thomas Leung UC Berkeley

Slide Credit: http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

Efros and Leung

granite

Efros and Leung

white bread

brick wall

Like Copying, But not Just Repetition

Infinite sample image

— What is **conditional** probability distribution of *p*, given the neighbourhood window?

Infinite sample image

— What is **conditional** probability distribution of *p*, given the neighbourhood window?

— Directly search the input image for all such neighbourhoods to produce a ${\bf histogram}$ for p

Infinite sample image

— What is **conditional** probability distribution of p, given the neighbourhood window?

- Directly search the input image for all such neighbourhoods to produce a histogram for p

— To synthesize p, pick one match at random

Infinite sample image

Since the sample image is finite, a be present

- Since the sample image is finite, an exact neighbourhood match might not

Infinite sample image

— Since the sample image is finite, a be present

— Find the **best match** using SSD error, weighted by Gaussian to emphasize local structure, and take all samples within some distance from that match

- Since the sample image is finite, an exact neighbourhood match might not

For multiple pixels, "grow" the texture in layers - In the case of hole-filling, start from the edges of the hole

For an interactive demo, see https://una-dinosauria.github.io/efros-and-leung-js/ (written by Julieta Martinez, a previous CPSC 425 TA)

Randomness Parameter

Slide Credit: http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

С . 0 9,0 ~ o -

Texturing a Sphere

Slide Credit: <u>http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt</u>

Efros and Leung: More Synthesis Results

Window Size

Forsyth & Ponce (2nd ed.) Figure 6.12

Efros and Leung: Image Extrapolation

Slide Credit: http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

"**Big** Data" enables surprisingly simple non-parametric, matching-based techniques to solve complex problems in computer graphics and vision.

Suppose instead of a single image, you had a massive database of a million images. What could you do?

Original Image

Input

Input

Scene Matches

Output

Effectiveness of "Big Data"

Effectiveness of "Big Data"

10 nearest neighbors from a collection of 20,000 images

Effectiveness of "Big Data"

10 nearest neighbors from a collection of 2 million images

Algorithm sketch (Hays and Efros 2007):

image statistics

region we want to fill

3. Blend the match into the original image

Purely data-driven, requires no manual labeling of images

1. Create a short list of a few hundred "best matching" images based on global

2. Find patches in the short list that match the context surrounding the image

Original Image

Input

