

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

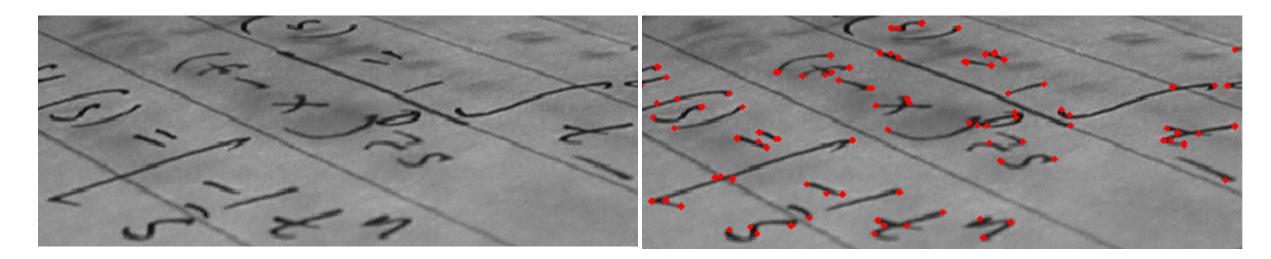


Image Credit: <u>https://en.wikipedia.org/wiki/Corner_detection</u>

(unless otherwise stated slides are taken or adopted from **Bob Woodham, Jim Little** and **Fred Tung**)

Lecture 10: Corner Detection (cont)

Menu for Today (February 5, 2019)

Topics:

— Harris **Corner** Detector (review) - **Blob** Detection

Redings:

- Today's Lecture: Forsyth & Ponce (2nd ed.) 5.3, 6.1, 6.3
- Next Lecture: Forsyth & Ponce (2nd ed.) 3.1-3.3

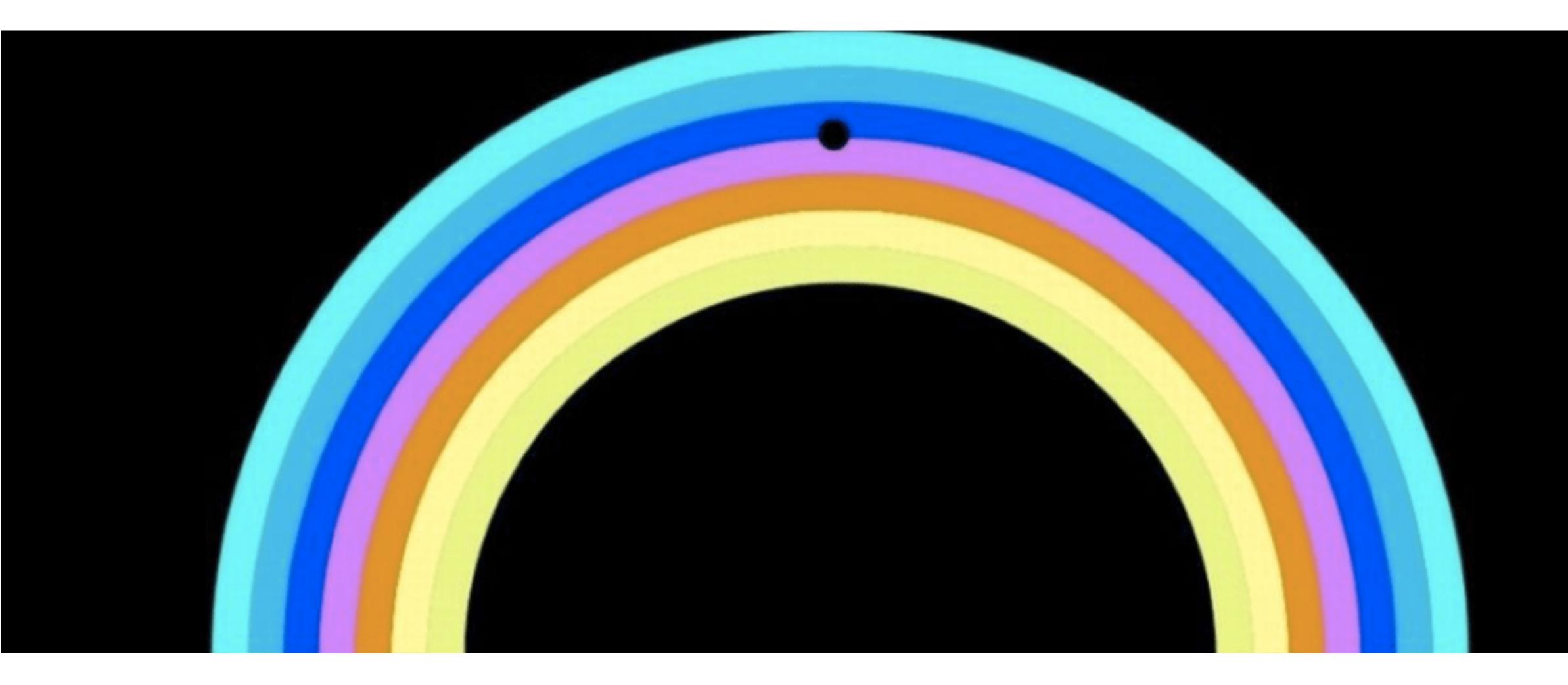
Reminders:

- Office hours; Posted link to online lectures from UCF

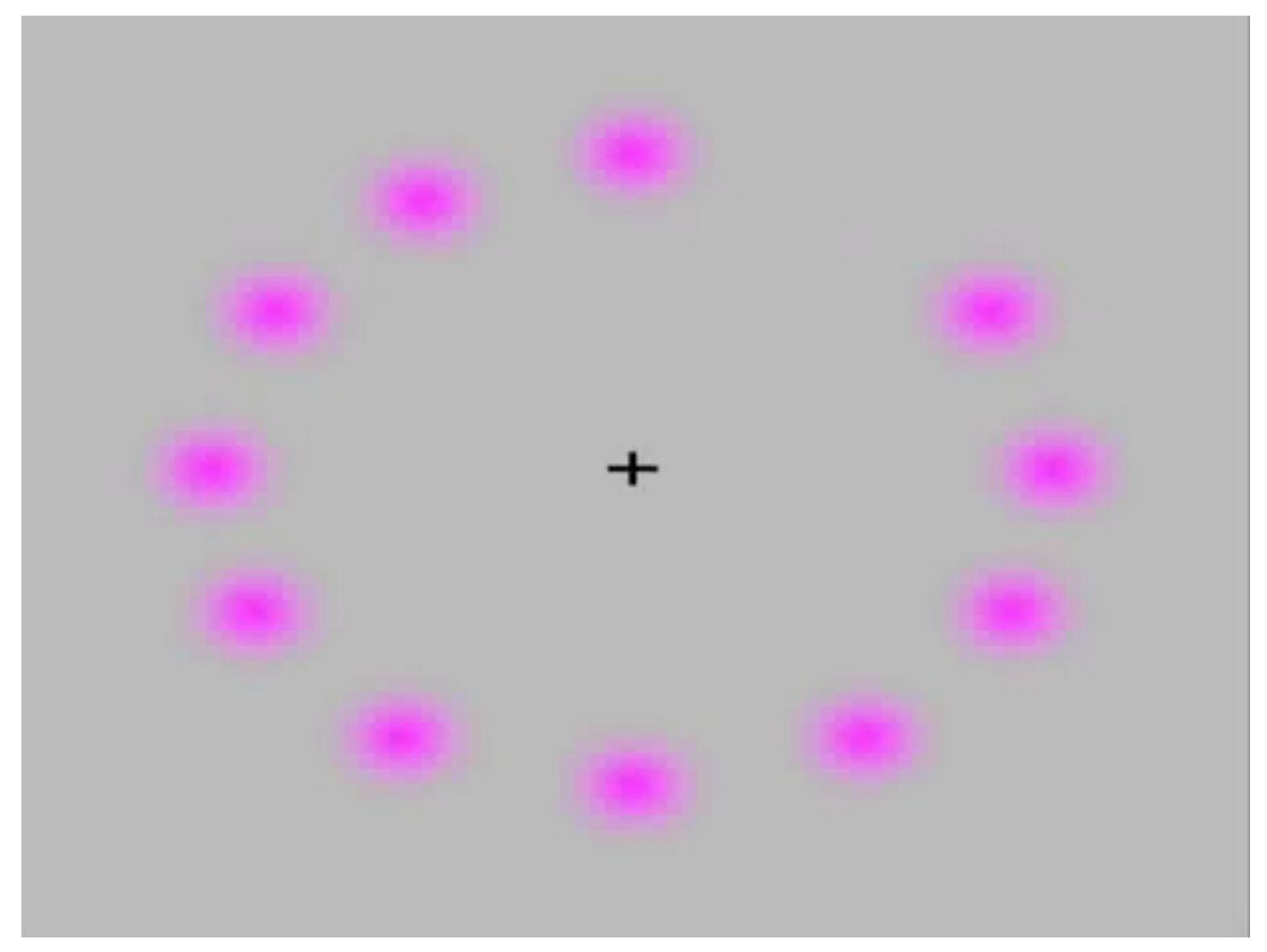
- Searching over **Scale**

— Assignment 2: Face Detection in a Scaled Representation is February 8th

Today's "fun" Example: Rainbow Illusion



Today's "fun" Example: Lilac Chaser (a.k.a. Pac-Man) Illusion



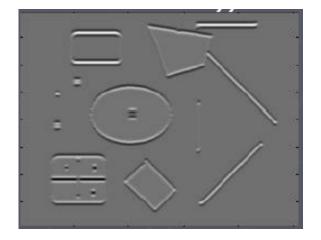
Lecture 9: Re-cap (Harris Corner Detection)

- 1.Compute image gradients over small region
- 2.Compute the covariance matrix
- 3.Compute eigenvectors and eigenvalues
- 4.Use threshold on eigenvalues to detect corners

$$I_x = \frac{\partial I}{\partial x}$$

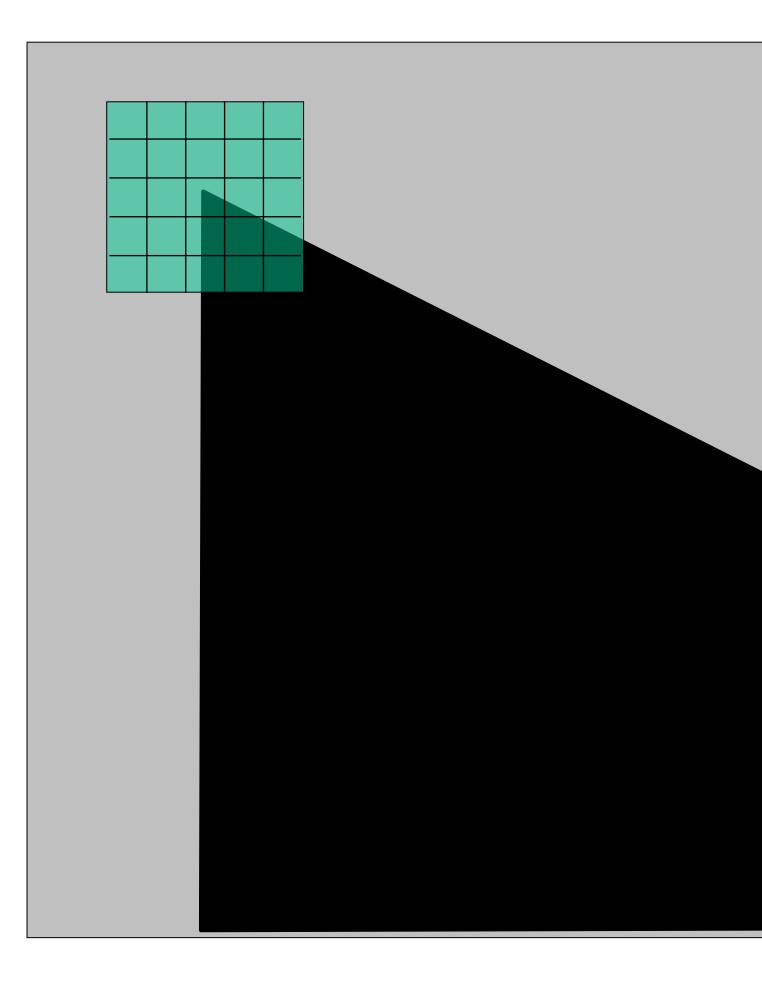


 $I_y = \frac{\partial I}{\partial y}$

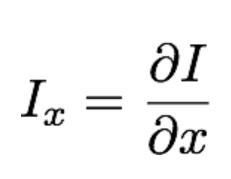


 $\begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$

Lecture 9: Re-cap (compute image gradients at patch) (not just a single pixel)



array of x gradients



array of y gradients

$$I_y = \frac{\partial I}{\partial y}$$

Lecture 9: Re-cap (compute the covariance matrix)

Sum over small region around the corner

Matrix is **symmetric**

Gradient with respect to x, times gradient with respect to y

 $C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$

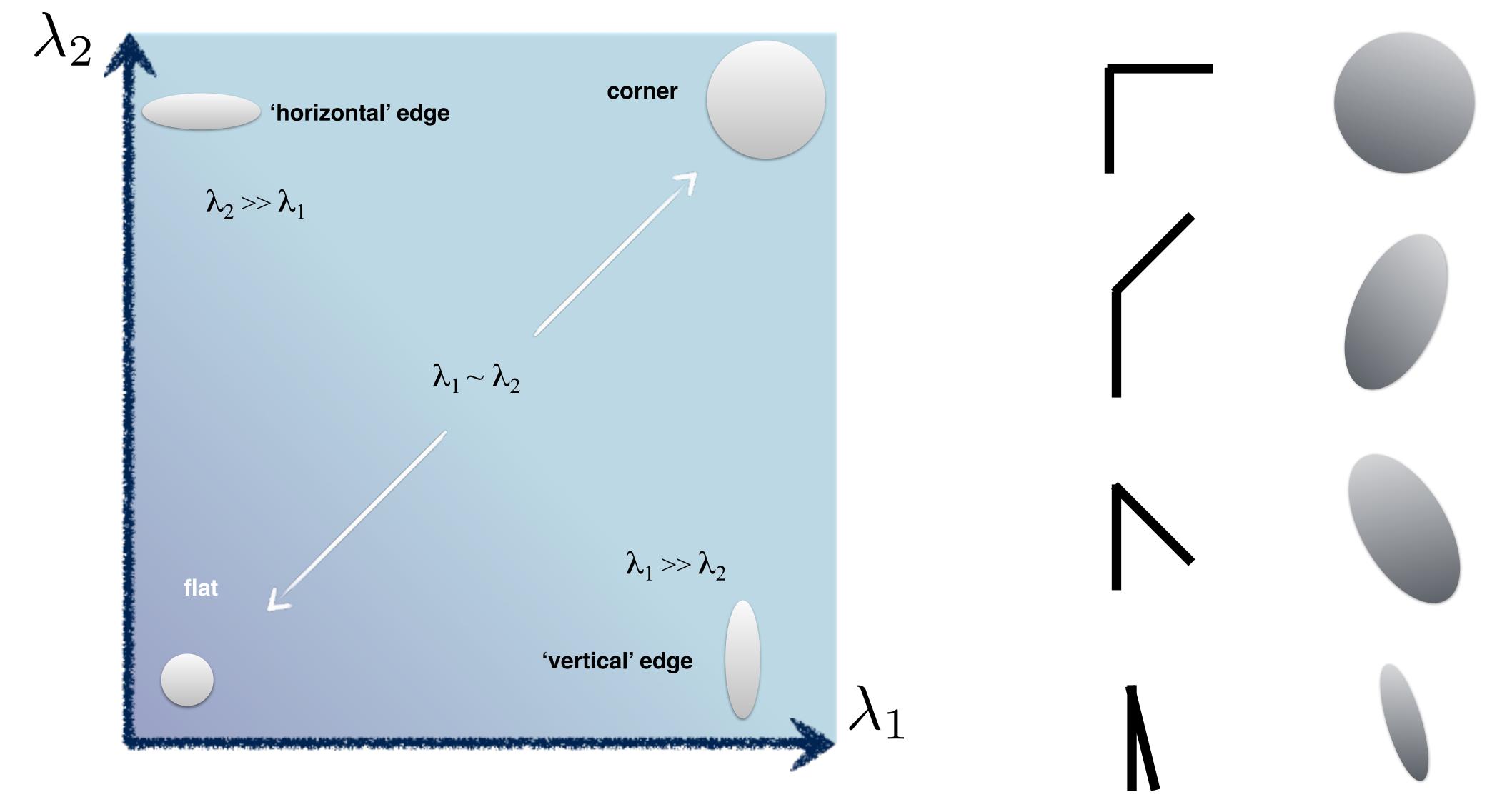
Lecture 9: Re-cap

It can be shown that since every C is symmetric:

 $C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in I} I_y I_y & \sum_{p \in I} I_y$

$$\begin{bmatrix} x & \sum_{p \in P} I_x I_y \\ x & \sum_{p \in P} I_y I_y \end{bmatrix} = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

Lecture 9: Re-cap (interpreting eigenvalues)



Lecture 9: Re-cap (Threshold on Eigenvalues to Detect Corners)

Harris & Stephens (1988)

 $\det(C) - \kappa \operatorname{trace}^2(C)$

Kanade & Tomasi (1994)

 $\min(\lambda_1, \lambda_2)$

Nobel (1998) $\det(C)$ $\operatorname{trace}(C) + \epsilon$

Harris Corner Detection Review

- Filter image with **Gaussian**
- Compute magnitude of the x and y gradients at each pixel
- Construct C in a window around each pixel Harris uses a Gaussian window
- Solve for product of the λ 's
- have a corner
 - Harris also checks that ratio of λs is not too high

Harris & Stephens (1988) $\det(C) - \kappa \operatorname{trace}^2(C)$

- If λ 's both are big (product reaches local maximum above threshold) then we

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

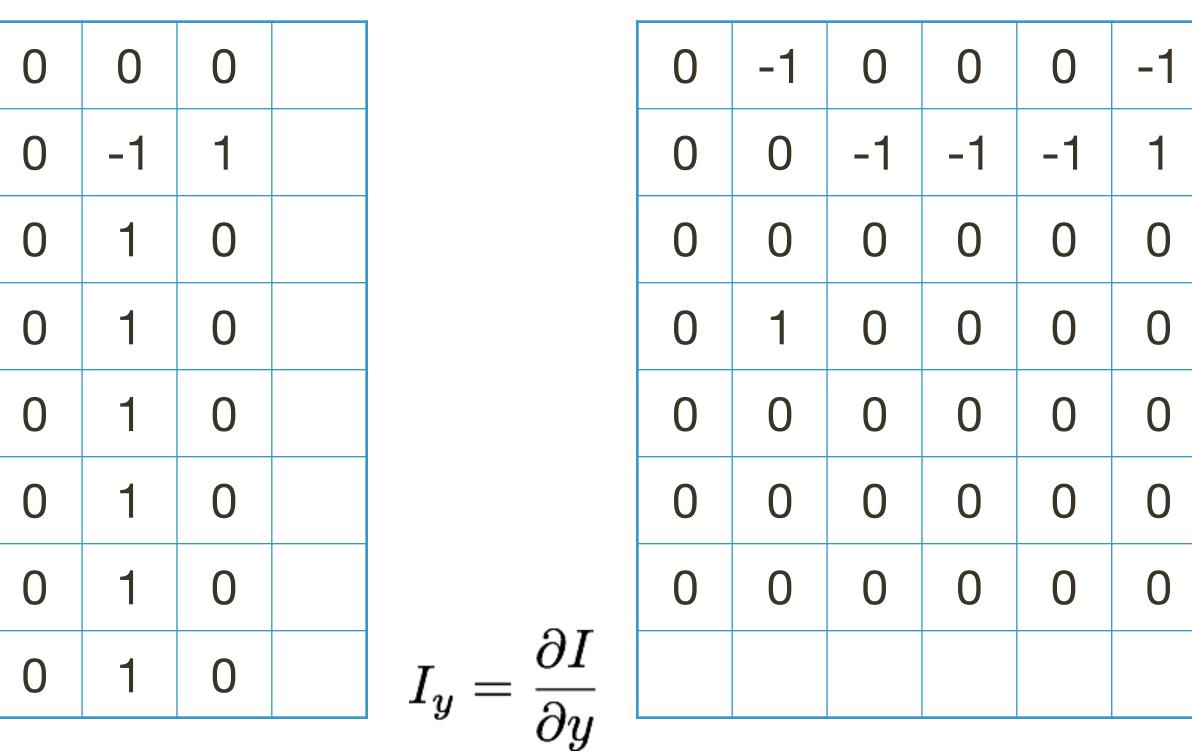
0	0	0	0	0	0	
-1	1	0	0	-1	1	
-1	0	0	0	1	0	
-1	0	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	
0	-1	0	0	1	0	

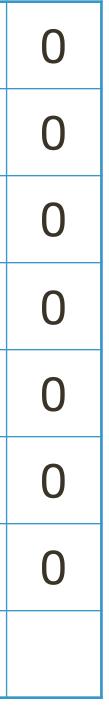
$$I_x = \frac{\partial I}{\partial x}$$

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

0	0
1	0
0	0
0	0
1	0
1	0
1	0
1	0
	0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1

$$I_x = \frac{\partial I}{\partial x}$$





Lets compute a measure of "corner-ness" for the green pixel:

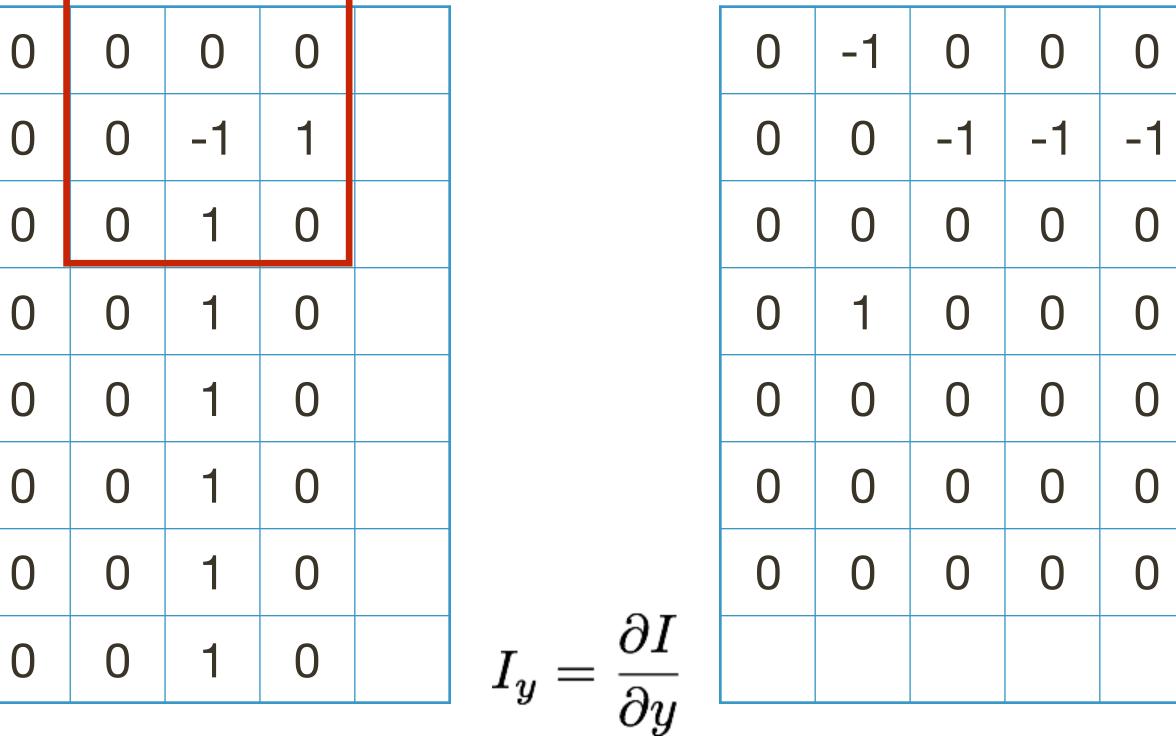
0	0	0	0	0	0	0			$\mathbf{\nabla}$
0	1	0	0	0	1	0			
0	1	1	1	1	0	0			
0	1	1	1	1	0	0	0	0	0
0	0	1	1	1	0	0	-1	1	0
0	0	1	1	1	0	0	-1	0	0
0	0	1	1	1	0	0	-1	0	0
0	0	1	1	1	0	0	0	-1	0

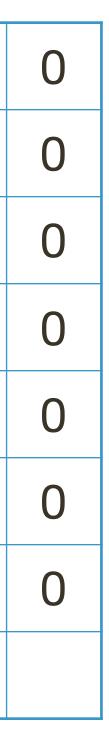
$$I_x = \frac{\partial I}{\partial x}$$

-1

-1

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \odot \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix} = 3$$





-1

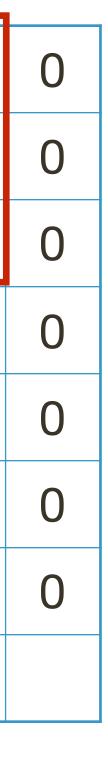
Lets compute a measure of "corner-ness" for the green pixel:

 $\mathbf{C} = \left[\begin{array}{cc} 3 & 2 \\ 2 & 4 \end{array} \right]$

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

$$I_x = \frac{\partial I}{\partial x}$$

-1 -1 \mathbf{O} -1 -1 -1 -1 ()() \mathbf{O} \mathbf{O} \mathbf{O} $\mathbf{\cap}$ U $= \frac{\partial I}{\partial y}$ I_y

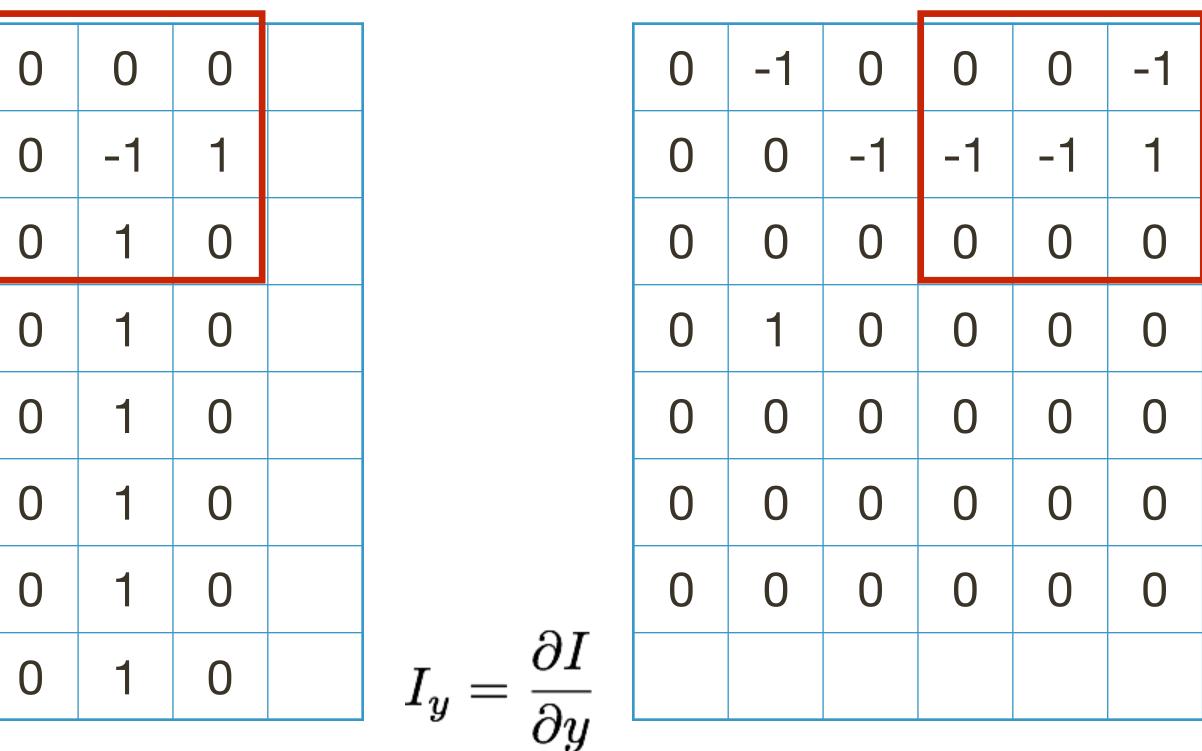


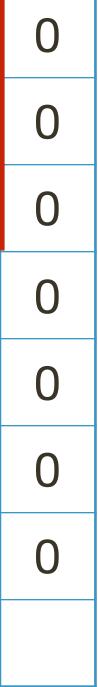
Lets compute a measure of "corner-ness" for the green pixel:

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

$$I_x = \frac{\partial I}{\partial x}$$

$$\mathbf{C} = \begin{bmatrix} 3 & 2 \\ 2 & 4 \end{bmatrix} \Longrightarrow \lambda_1 = 1.4384; \lambda_2 = 5.5616$$





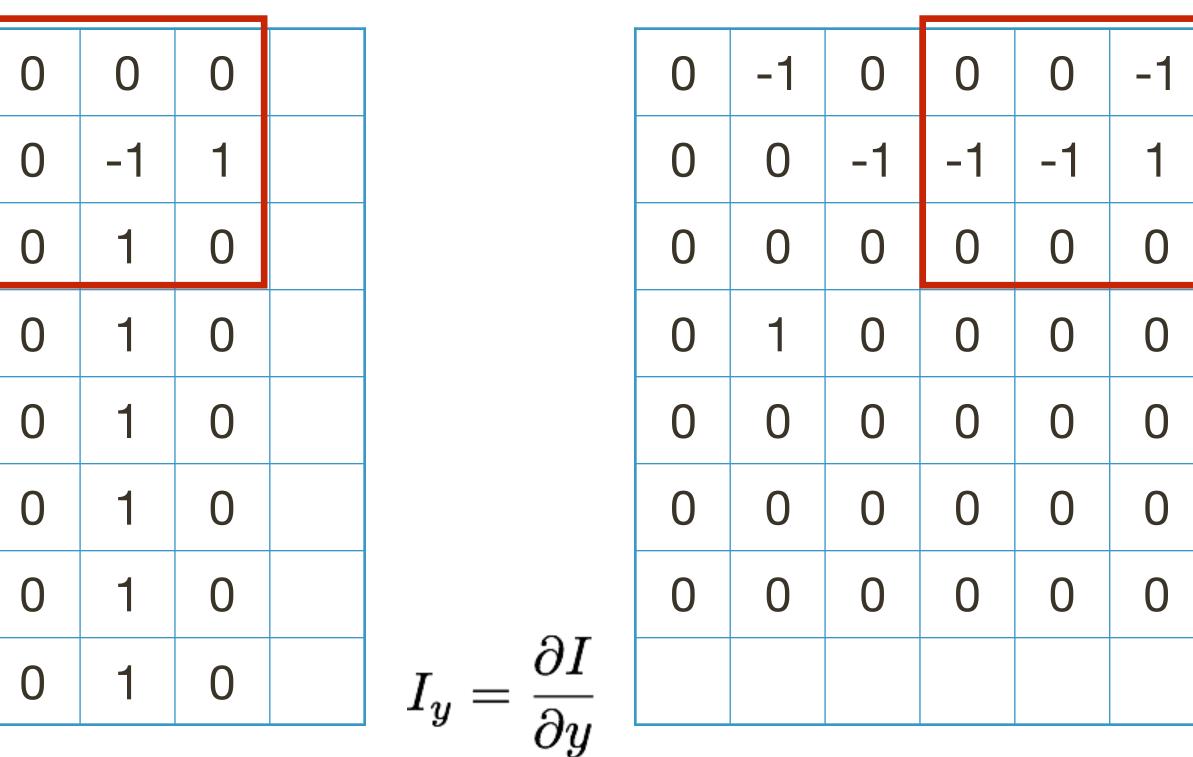
Lets compute a measure of "corner-ness" for the green pixel:

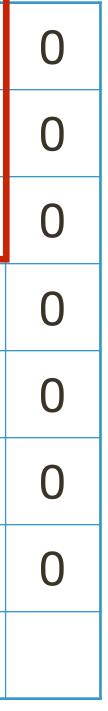
 $\mathbf{C} = \begin{vmatrix} 3 \\ 2 \end{vmatrix}$

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

$$I_x = \frac{\partial I}{\partial x}$$

$$\begin{vmatrix} 2 \\ 4 \end{vmatrix} => \lambda_1 = 1.4384; \lambda_2 = 5.5616$$
$$\det(\mathbf{C}) - 0.04 \operatorname{trace}^2(\mathbf{C}) = 6.04$$





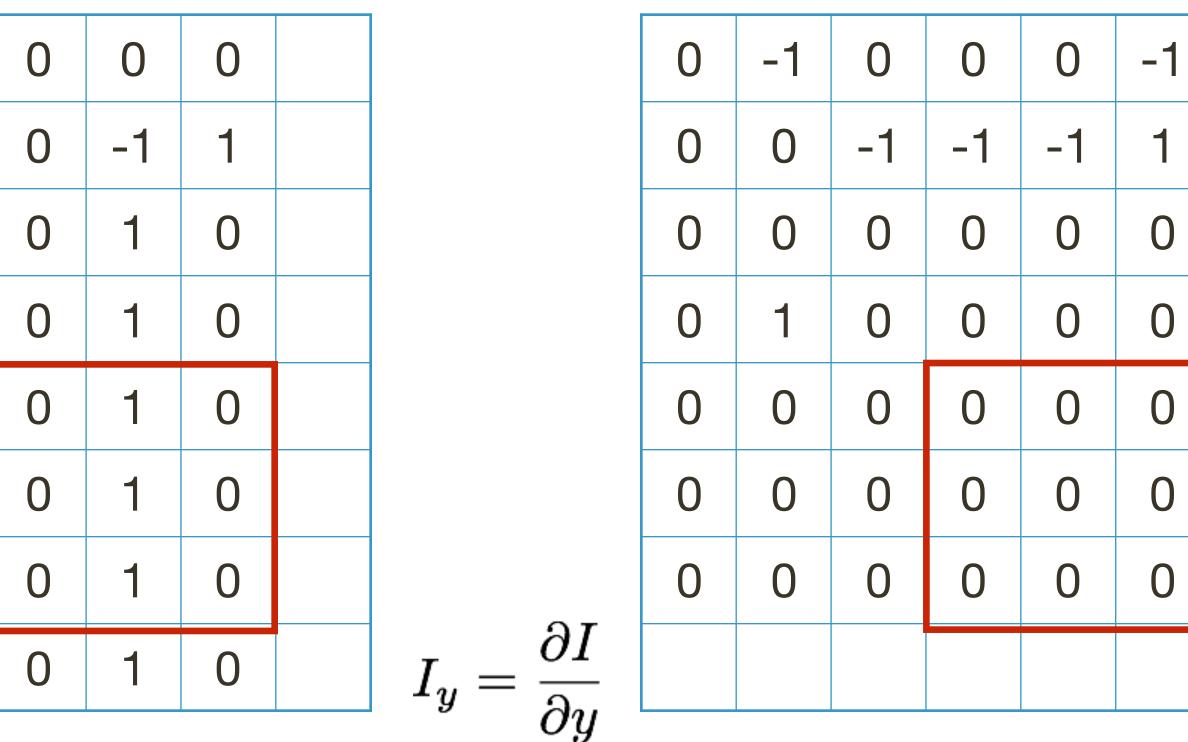
0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

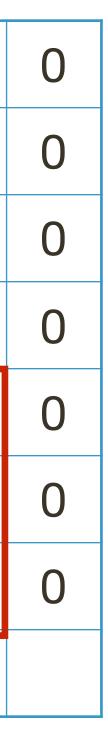
 $\mathbf{C} = \begin{bmatrix} 3\\ 0 \end{bmatrix}$

0	0	0
-1	1	0
-1	0	0
-1	0	0
0	-1	0
0	-1	0
0	-1	0
0	-1	0

 $I_x = \frac{\partial I}{\partial x}$

$$\begin{vmatrix} 0\\0 \end{vmatrix} => \lambda_1 = 3; \lambda_2 = 0$$
$$\det(\mathbf{C}) - 0.04 \operatorname{trace}^2(\mathbf{C}) = -0.36$$





Lets compute a measure of "corner-ness" for the green pixel:

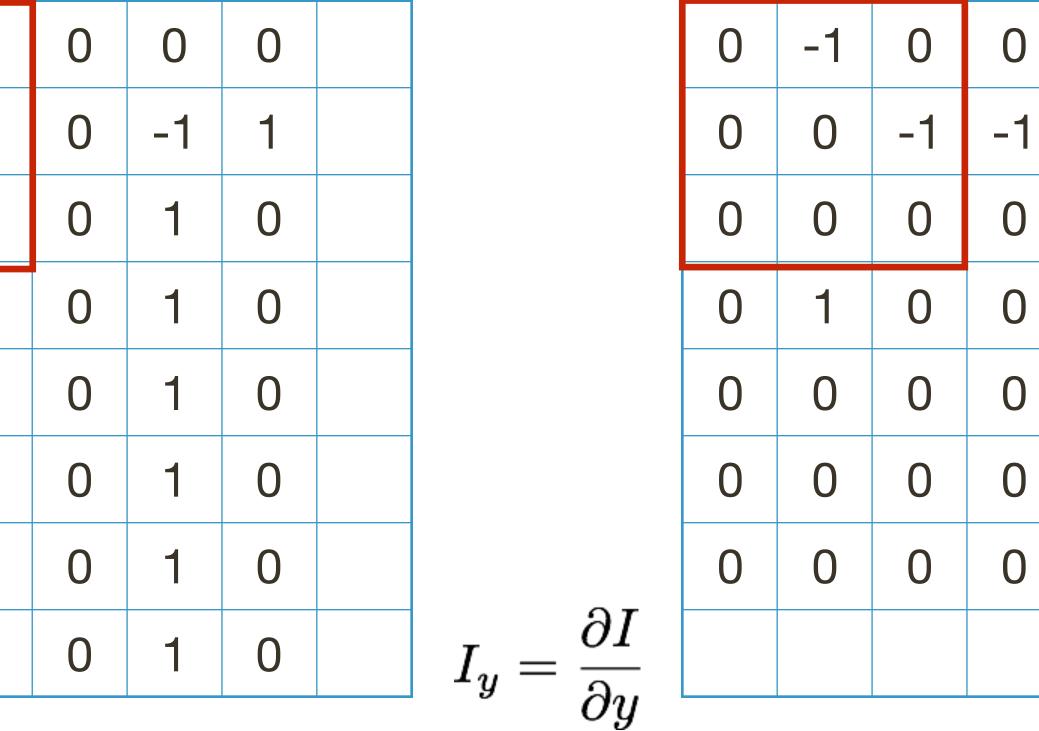
0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0
0	0	1	1	1	0	0

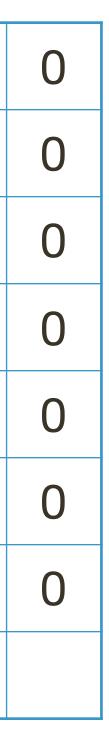
 $\mathbf{C} = \begin{bmatrix} 3\\ 0 \end{bmatrix}$

0	0	0
-1	1	0
-1	0	0
-1	0	0
0	-1	0
0	-1	0
0	-1	0
0	-1	0

$$I_x = \frac{\partial I}{\partial x}$$

$$\begin{bmatrix} 0\\2 \end{bmatrix} => \lambda_1 = 3; \lambda_2 = 2$$
$$\det(\mathbf{C}) - 0.04 \operatorname{trace}^2(\mathbf{C}) = 5$$



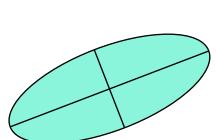


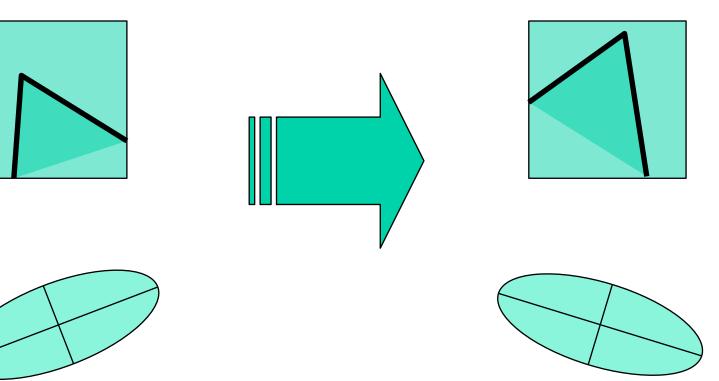
-1

-1

Corner response is **invariant** to image rotation

Ellipse rotates but its shape (eigenvalues) remains the same



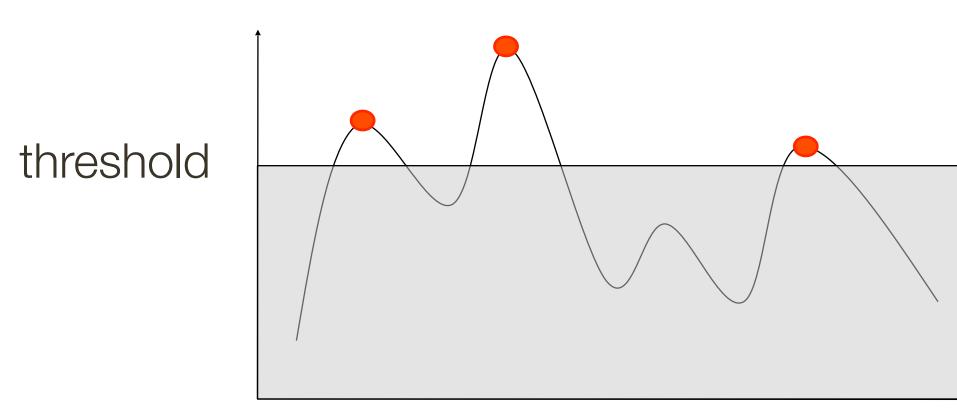


Properties: Rotational Invariance

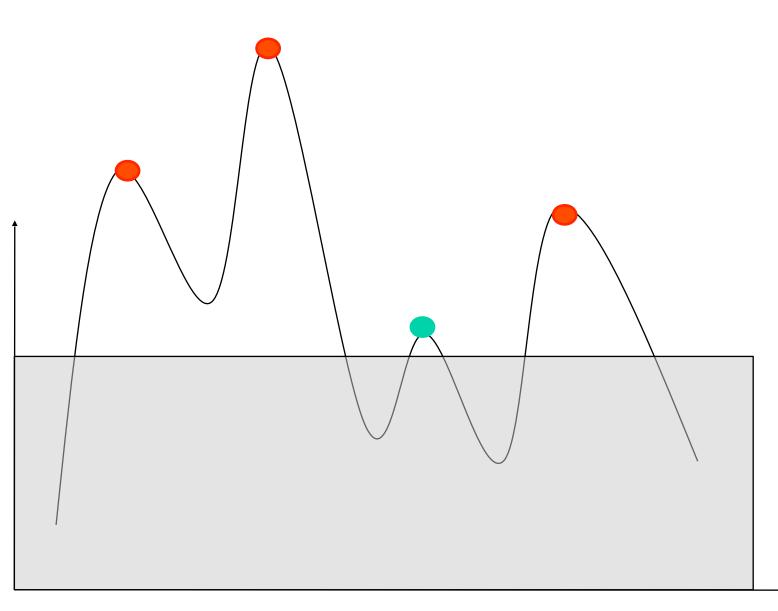
Properties: (partial) Invariance to Intensity Shifts and Scaling

Only derivatives are used -> Invariance to intensity shifts

Intensity scale could effect performance

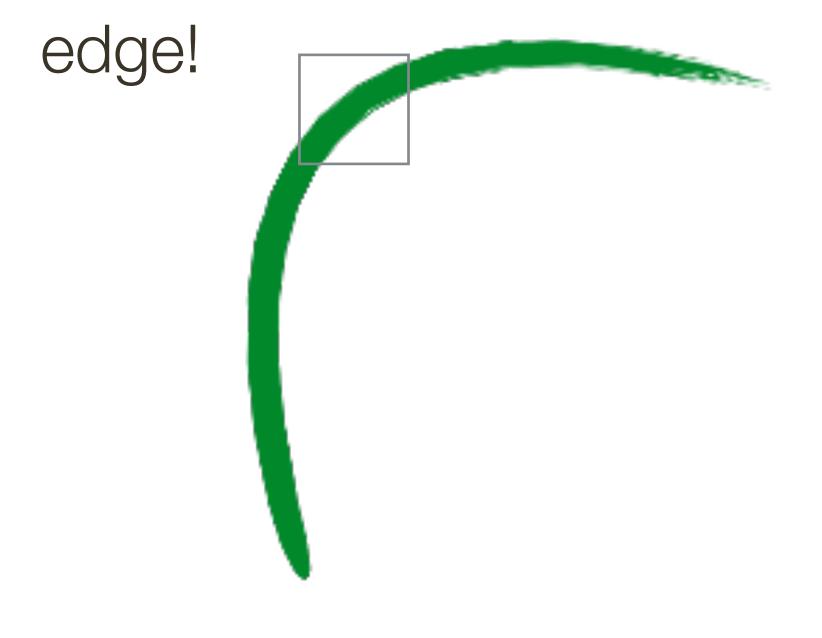


x (image coordinate)

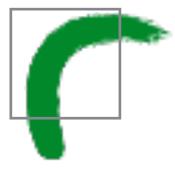


x (image coordinate)

Properties: NOT Invariant to Scale Changes

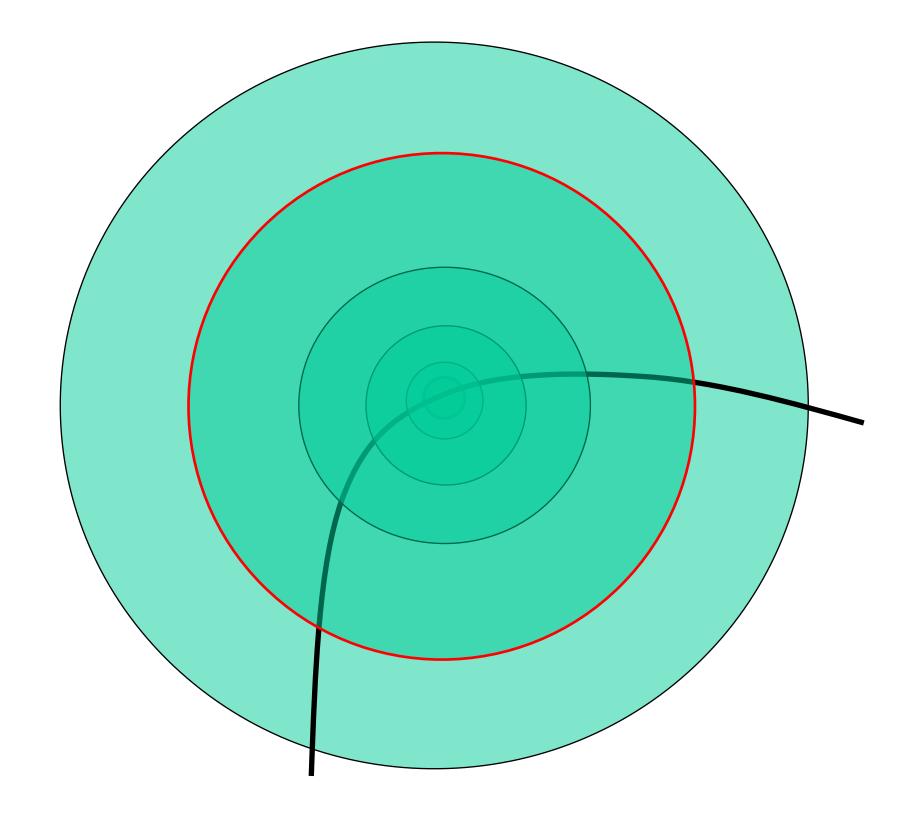


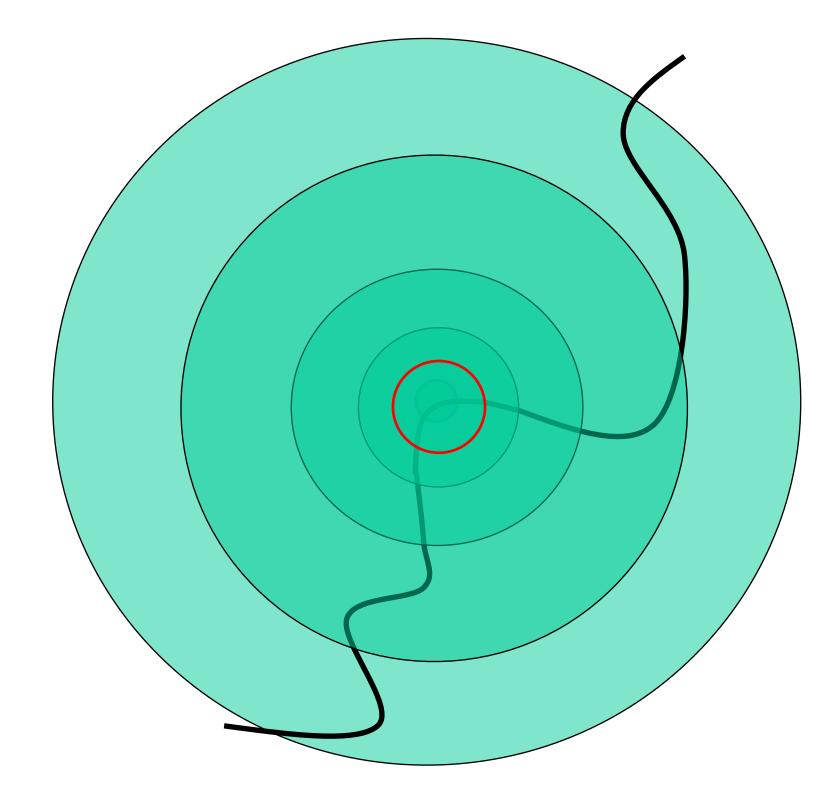
corner!



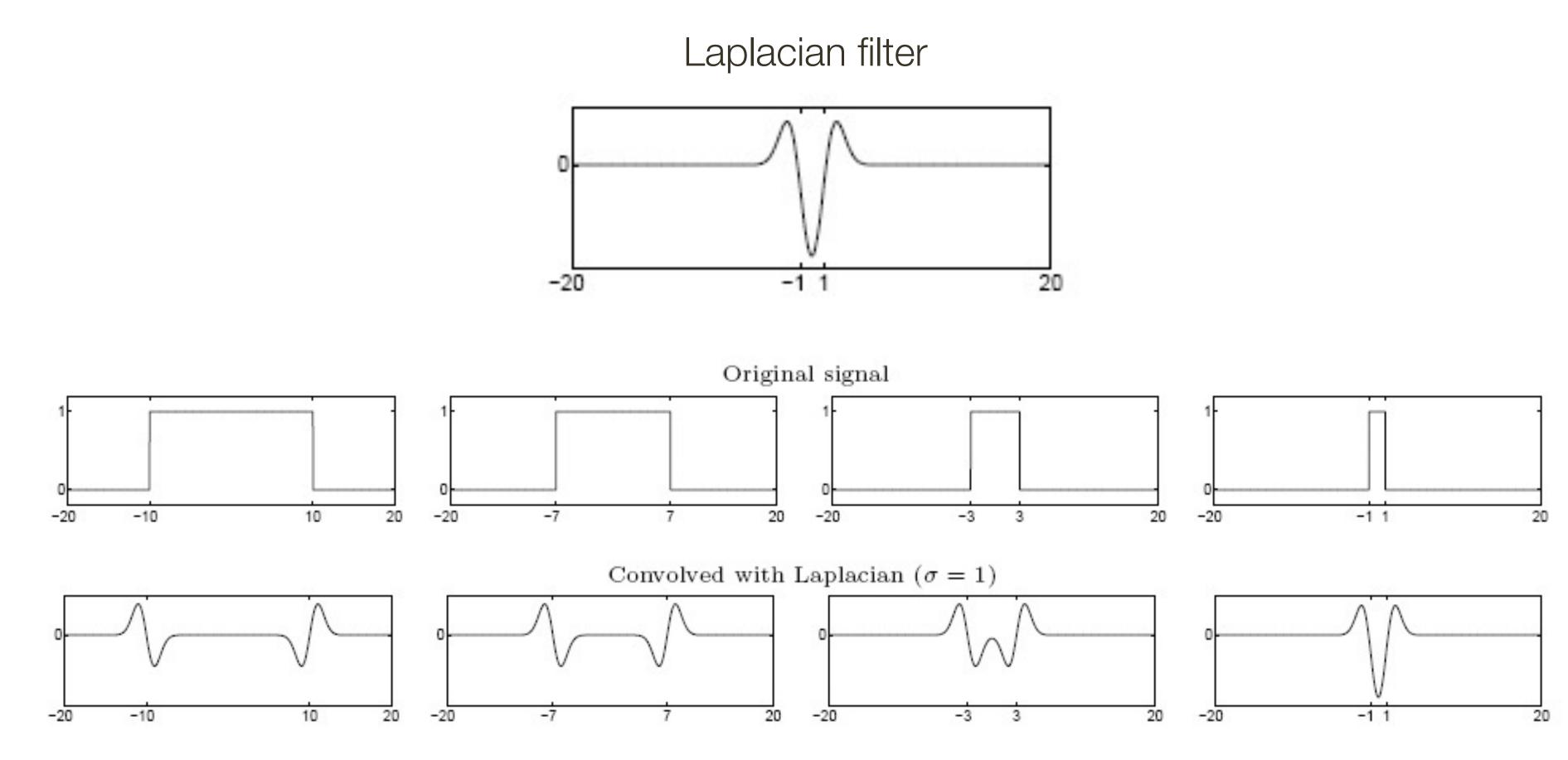
Intuitively ...

Find local maxima in both **position** and **scale**





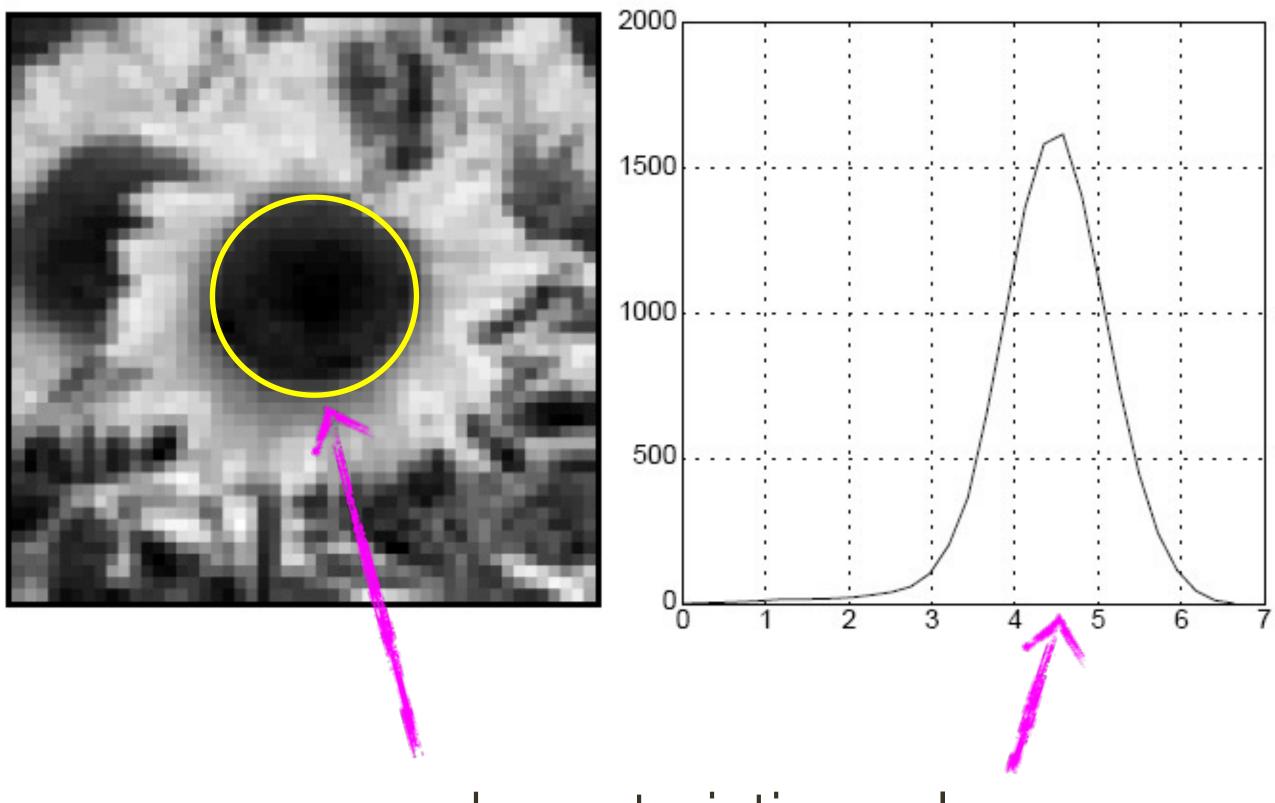
Formally ...



Highest response when the signal has the same characteristic scale as the filter

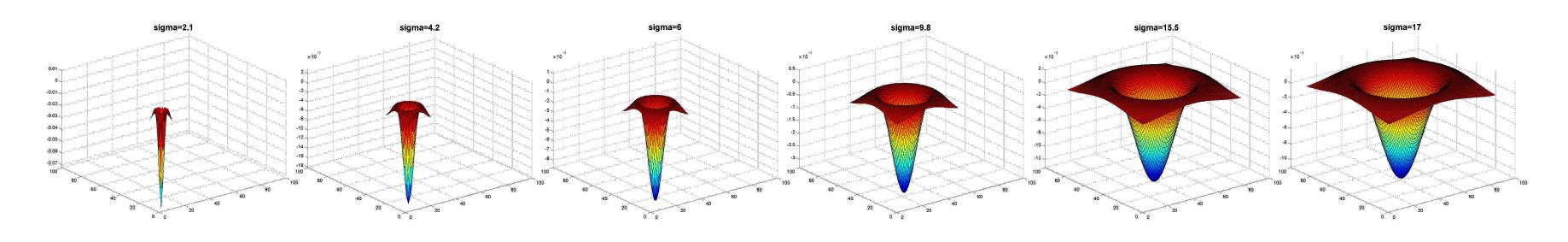
Characteristic Scale

characteristic scale - the scale that produces peak filter response



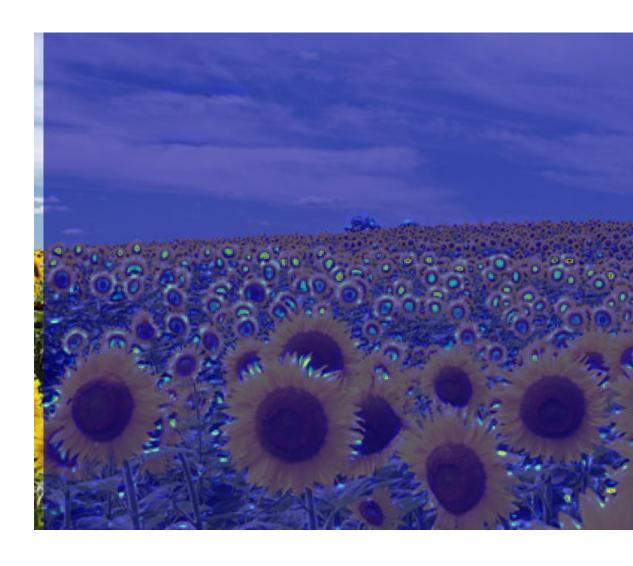
characteristic scale

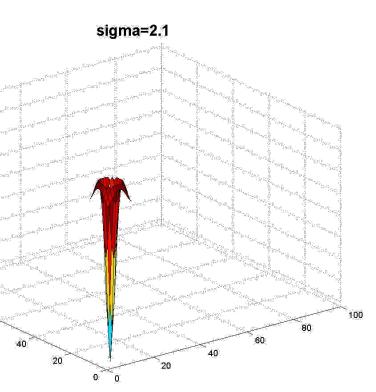
we need to search over characteristic scales



Full size

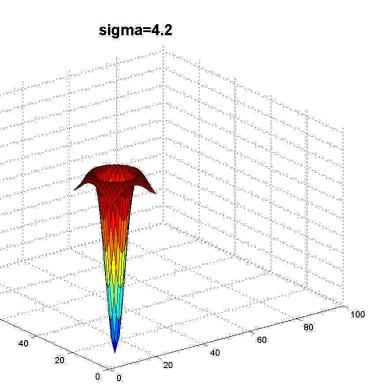
3/4 size

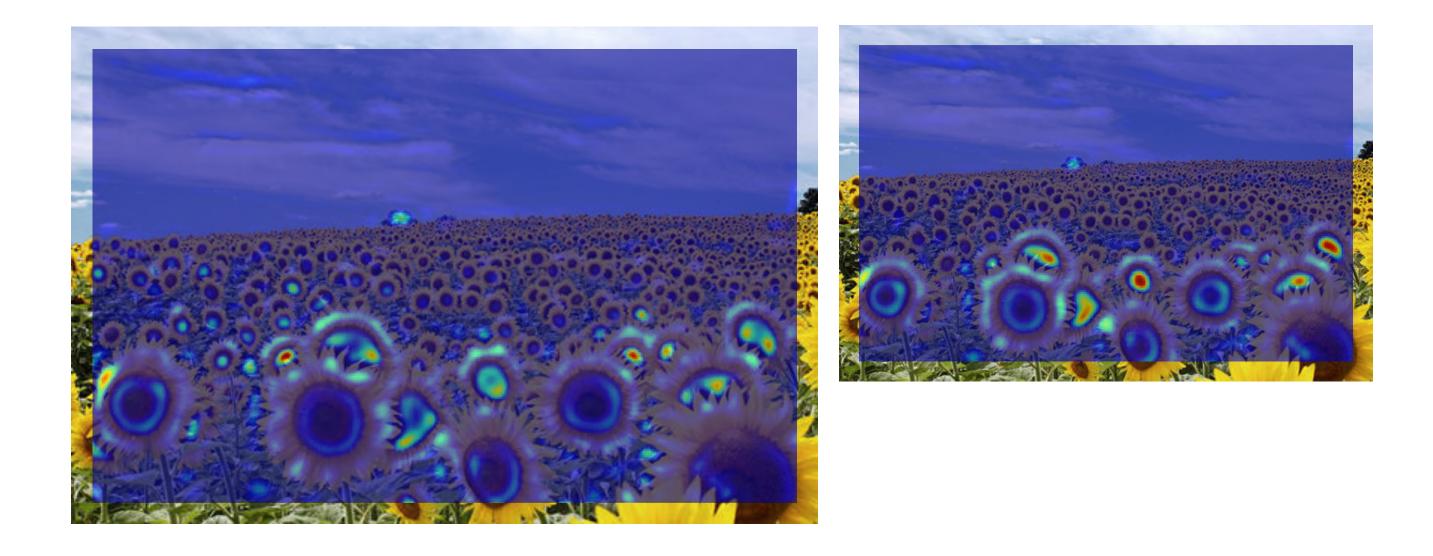


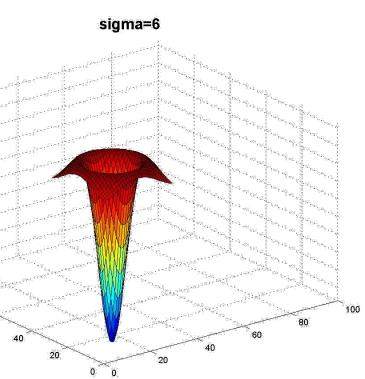


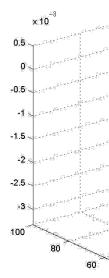
jet color scale blue: low, red: high

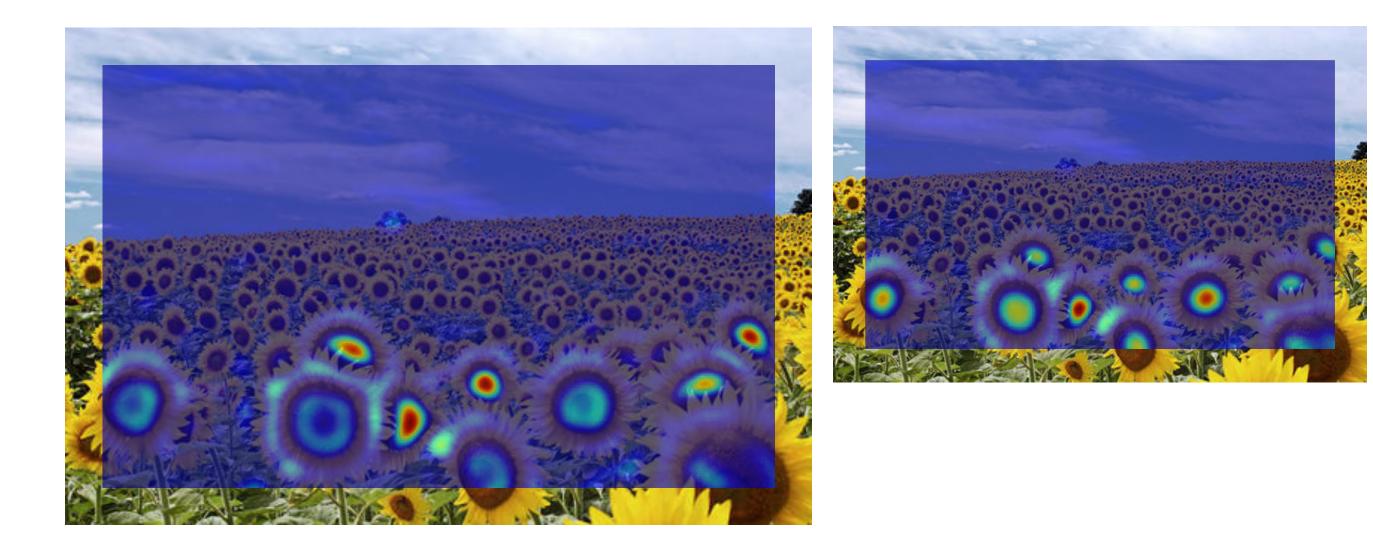


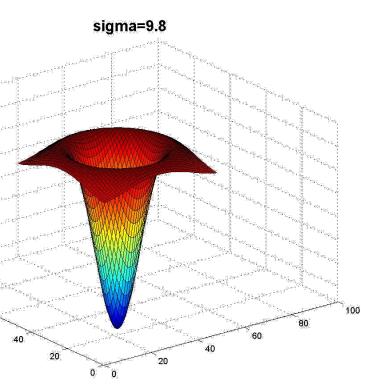




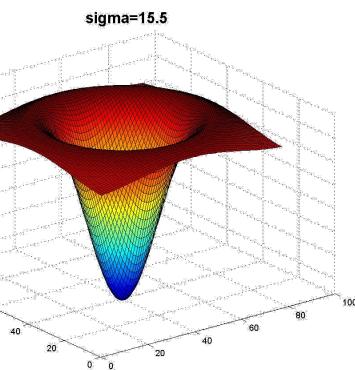


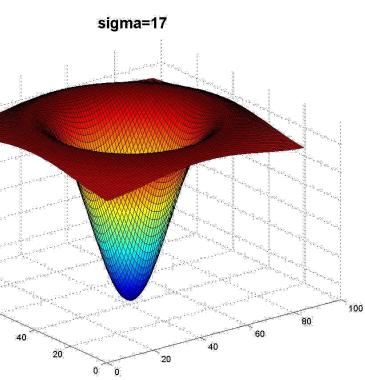






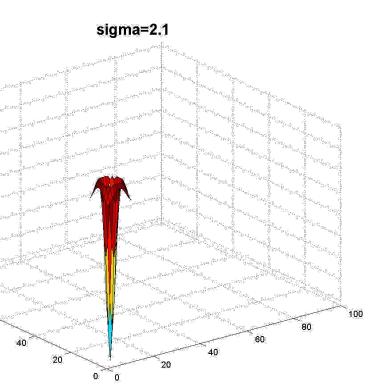


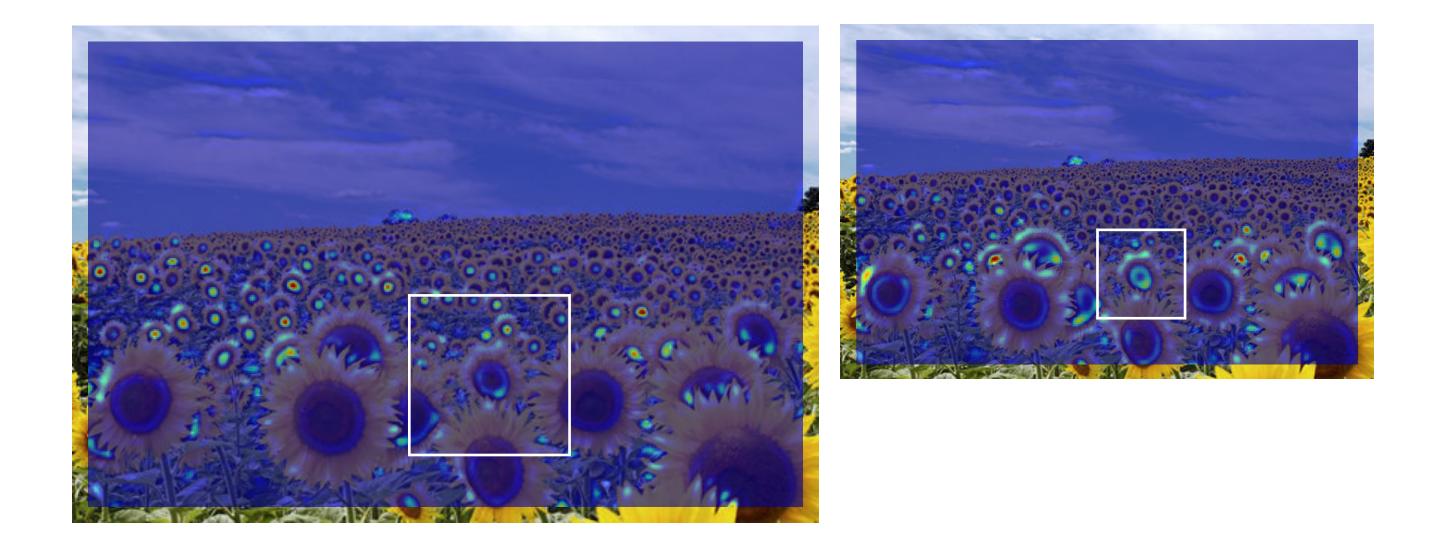


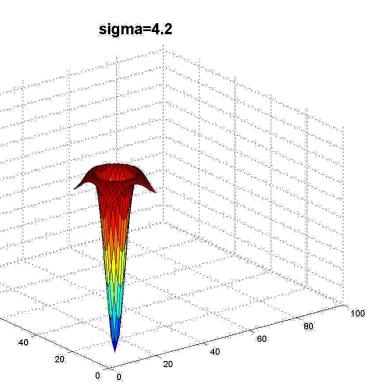


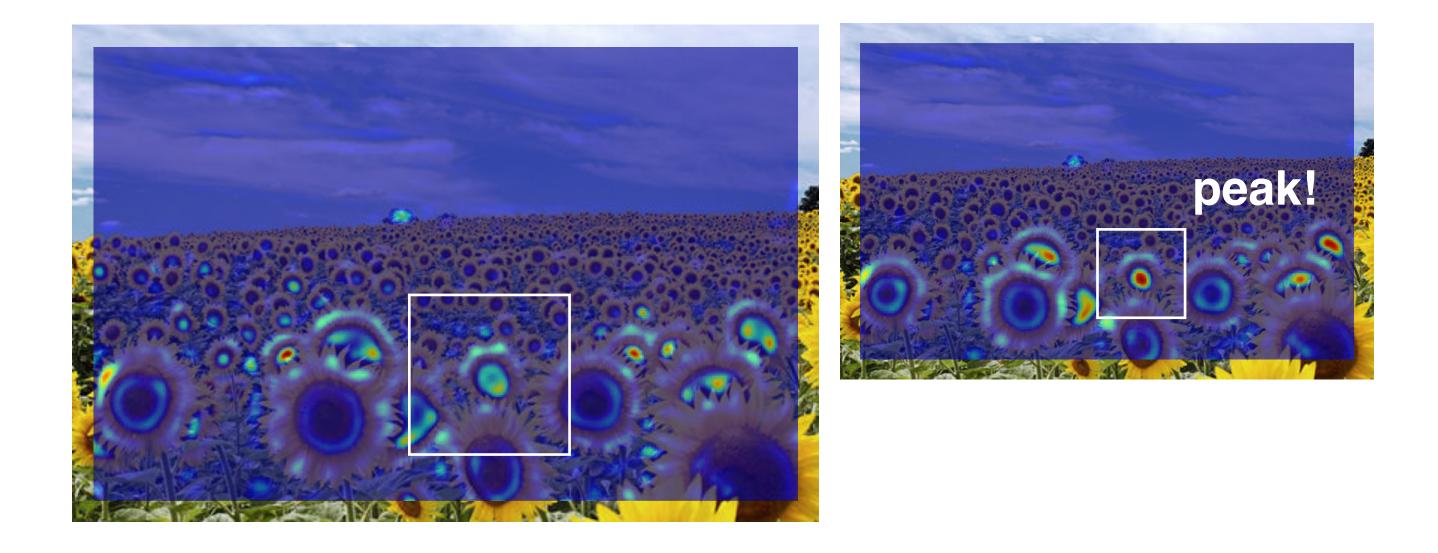
Full size

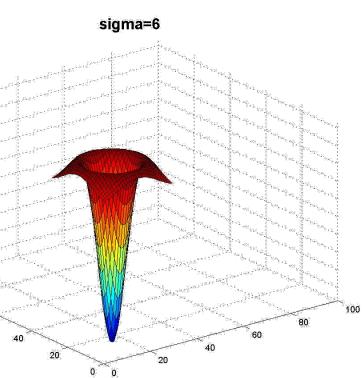
3/4 size

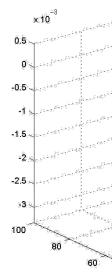


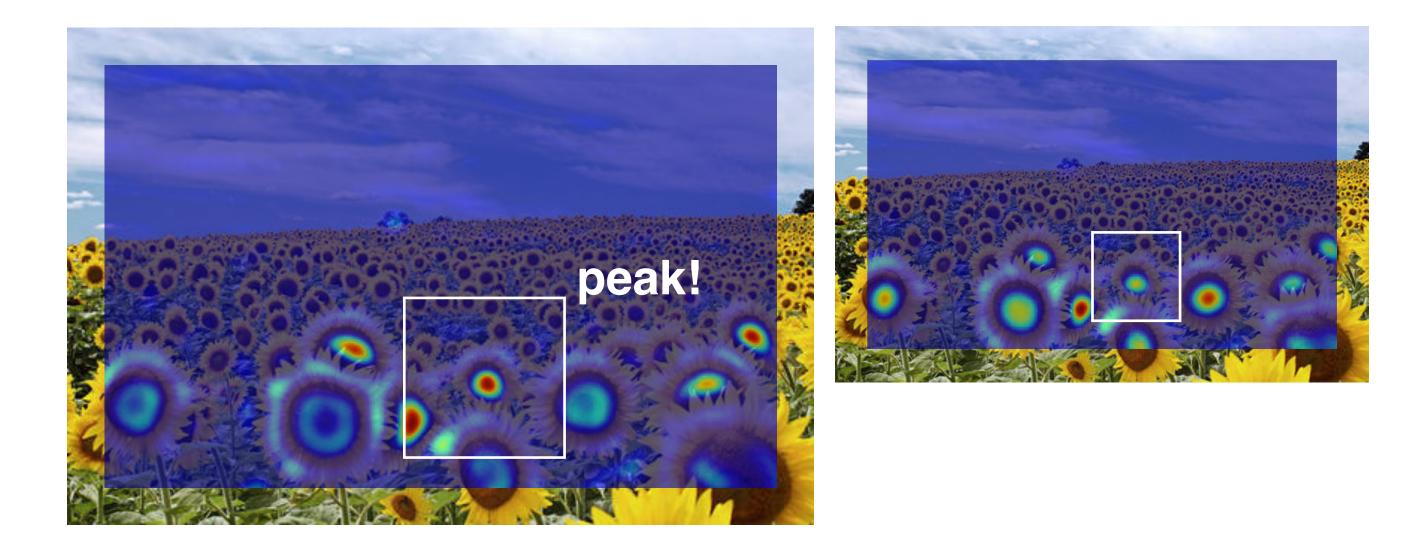


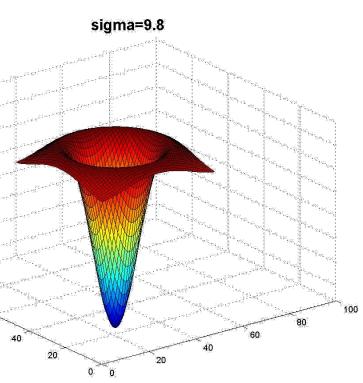


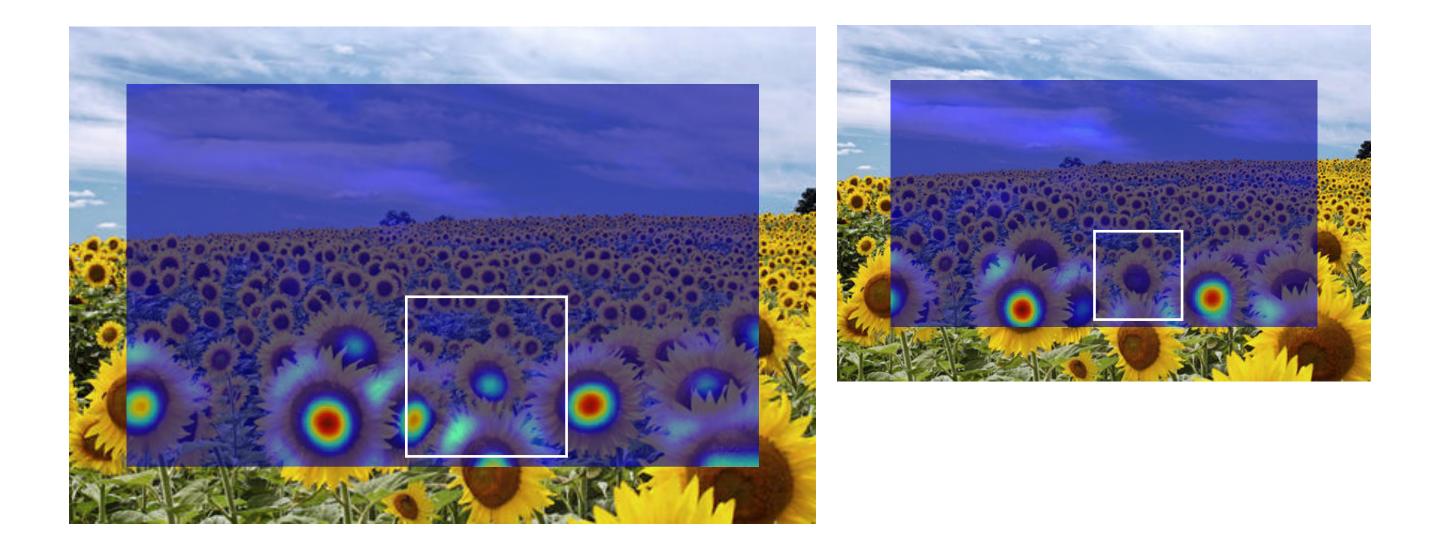


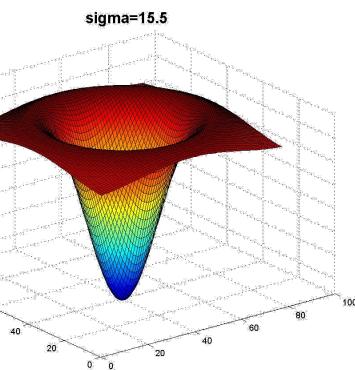


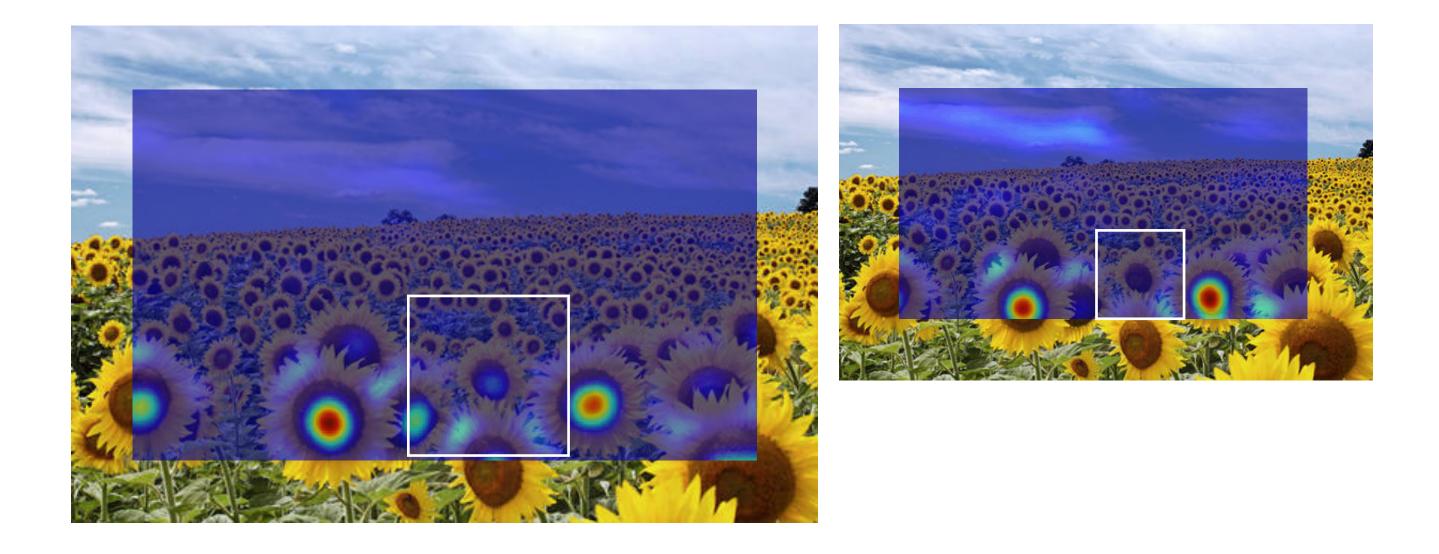


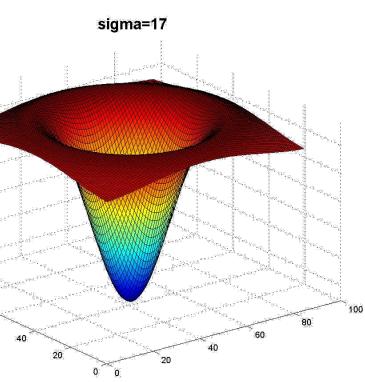








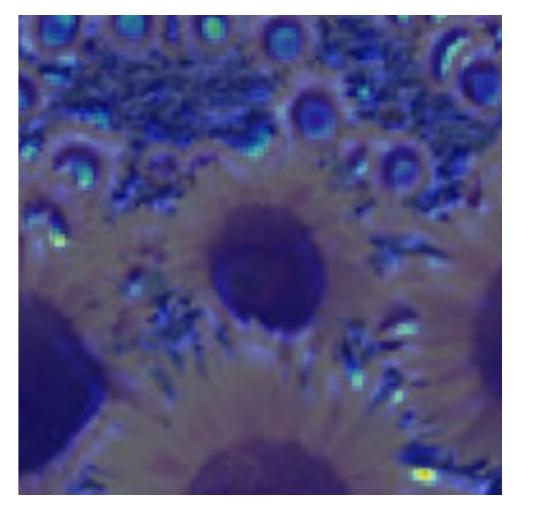


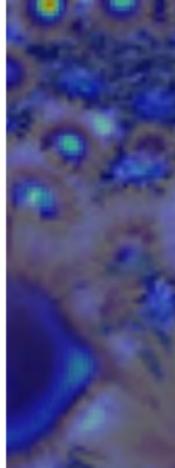


Full size

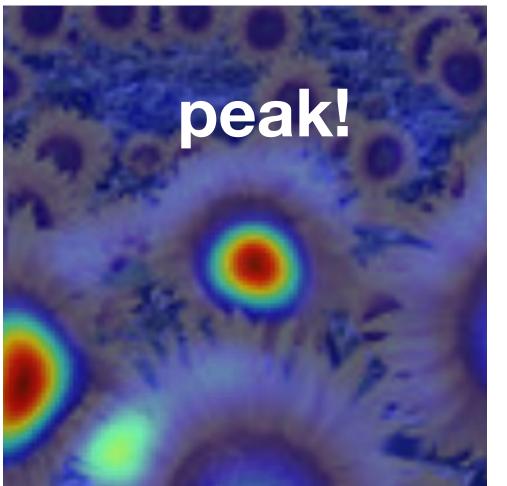
3/4 size

2.1



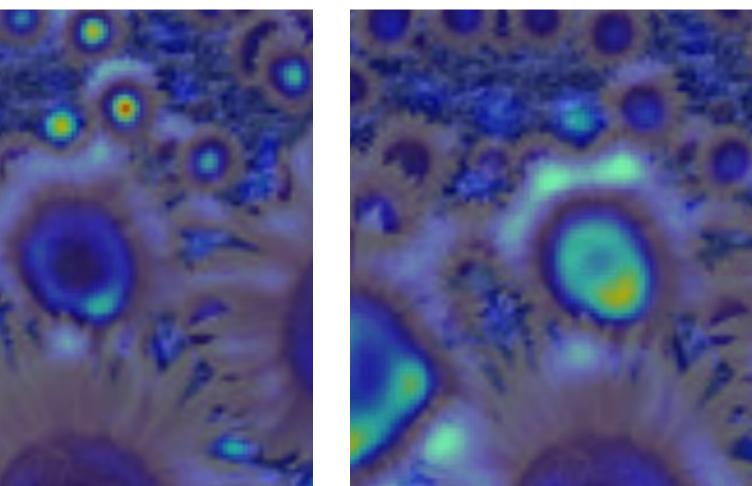


9.8

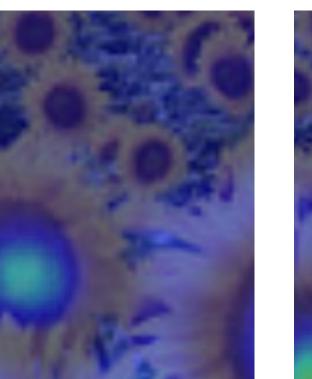


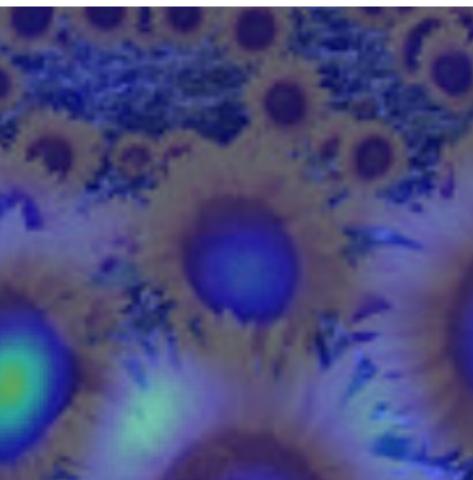
4.2

6.0



15.5

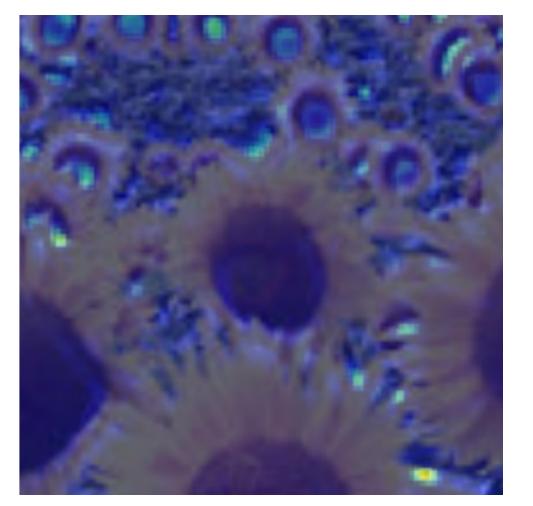


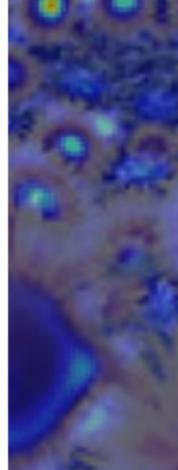


17.0

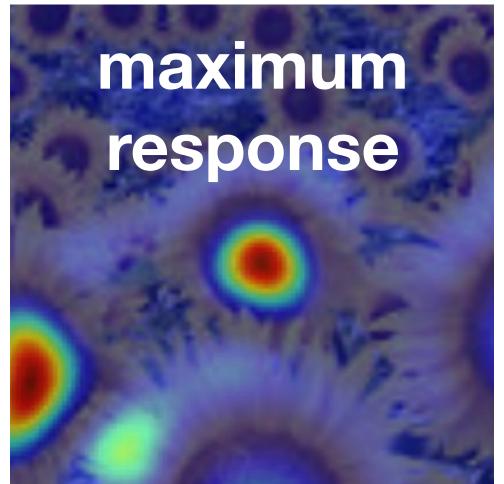
45

2.1



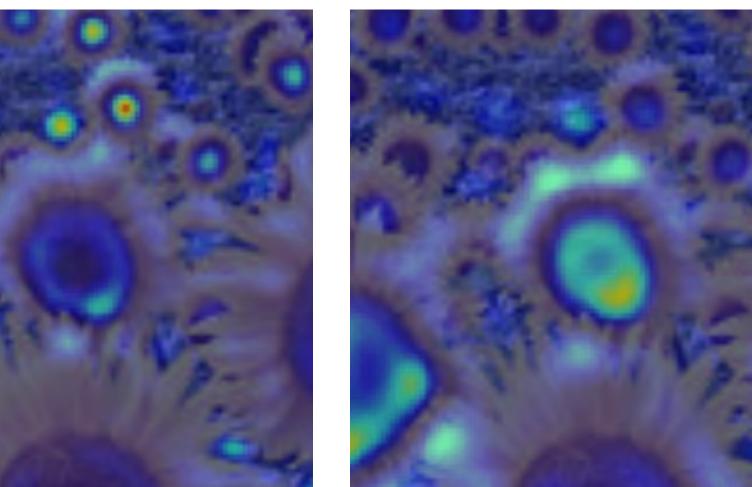


9.8

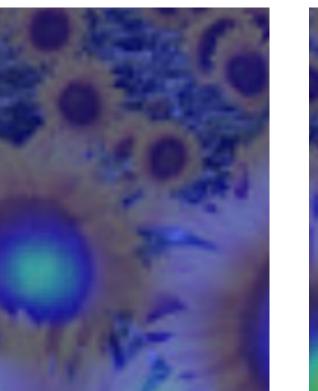


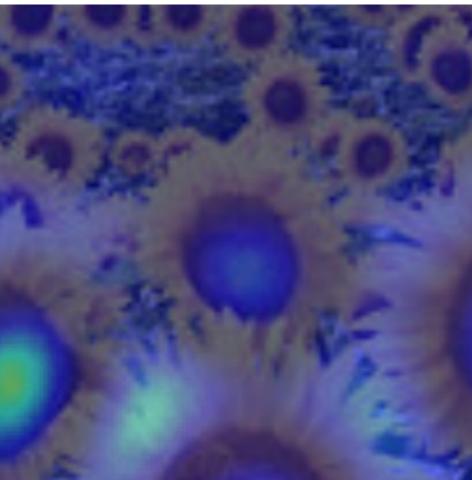
4.2

6.0



15.5





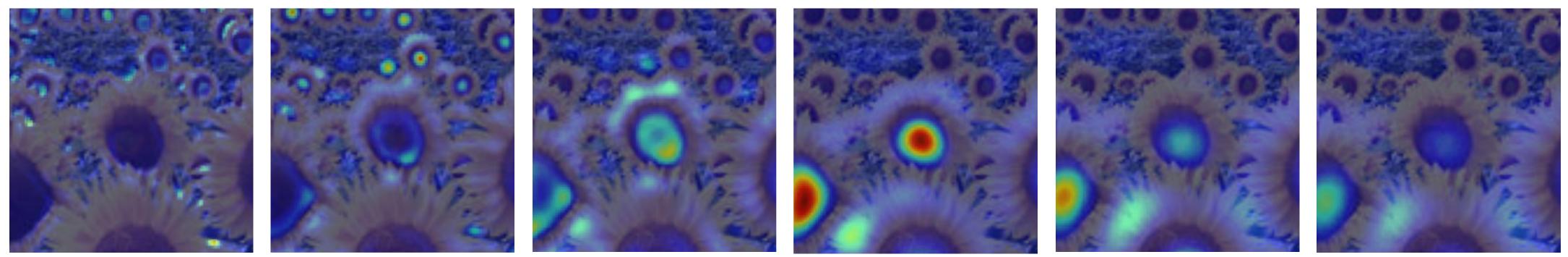
17.0

46

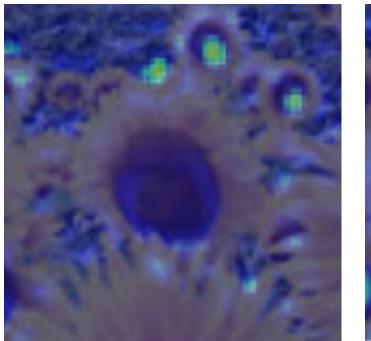
Optimal Scale

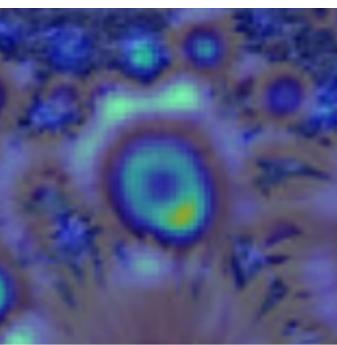
2.1 4.2

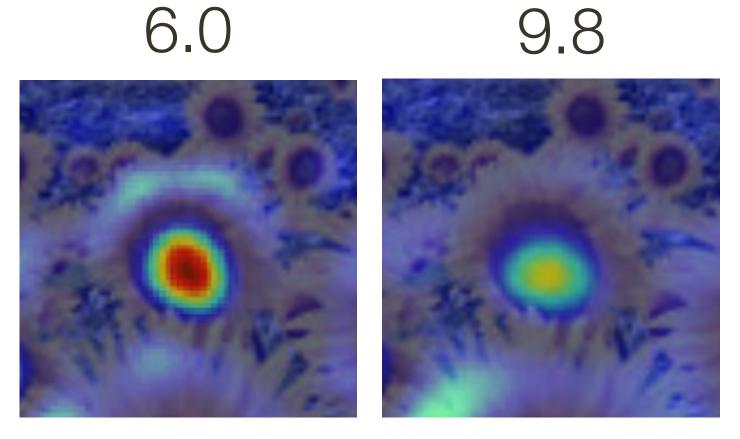
6.0



2.1 4.2







9.8

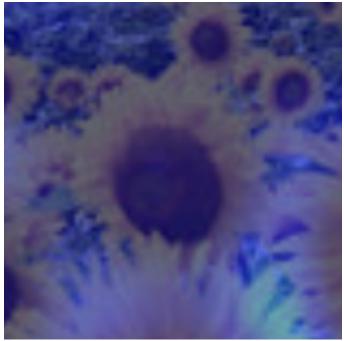
15.5

17.0

Full size image

9.8

15.5



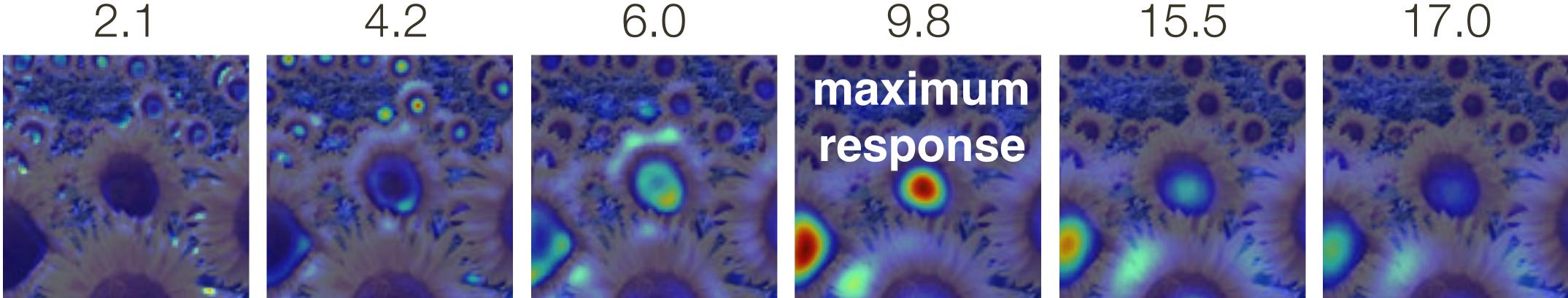
3/4 size image

Optimal Scale

2.1

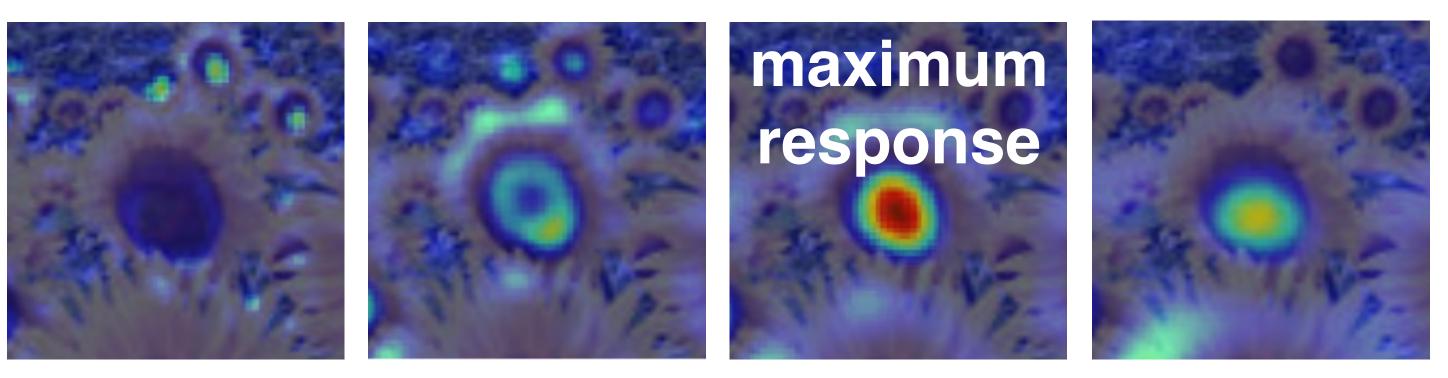
4.2

6.0



6.0

2.1 4.2

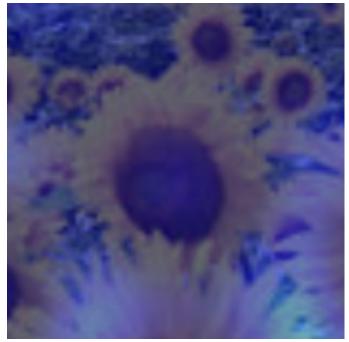


Full size image

9.8

15.5

17.0



3/4 size image

Implementation

- For each level of the Gaussian pyramid compute feature response (e.g. Harris, Laplacian) For each level of the Gaussian pyramid
 - if local maximum and cross-scale save scale and location of feature (x, y, s)

A **corner** is a distinct 2D feature that can be localized reliably

Edge detectors perform poorly at corners → consider corner detection directly

Harris corner detection

- corners are places where intensity gradient direction takes on multiple distinct values
- interpret in terms of autocorrelation of local window
- translation and rotation invariant, but not scale invariant