
Lecture 10: Corner Detection (cont)

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )

Image Credit: https://en.wikipedia.org/wiki/Corner_detection

https://en.wikipedia.org/wiki/Corner_detection


Menu for Today (February 5, 2019)
Topics: 

— Harris Corner Detector (review) 
— Blob Detection 

Redings: 
— Today’s Lecture:  Forsyth & Ponce (2nd ed.) 5.3, 6.1, 6.3 

— Next Lecture:       Forsyth & Ponce (2nd ed.) 3.1-3.3

Reminders: 
— Assignment 2: Face Detection in a Scaled Representation is February 8th 
— Office hours; Posted link to online lectures from UCF 

— Searching over Scale 
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Today’s “fun” Example: Rainbow Illusion
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Today’s “fun” Example: Lilac Chaser (a.k.a. Pac-Man) Illusion
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Lecture 9: Re-cap (Harris Corner Detection)

1.Compute image gradients over 
small region

2.Compute the covariance matrix

3.Compute eigenvectors and     
eigenvalues

4.Use threshold on eigenvalues to 
detect corners

Slide Adopted: Ioannis (Yannis) Gkioulekas (CMU)



Lecture 9: Re-cap (compute image gradients at patch)
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array of x gradients

array of y gradients

(not just a single pixel)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Lecture 9: Re-cap (compute the covariance matrix)
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Sum over small region  
around the corner

Gradient with respect to x, times 
gradient with respect to y

Matrix is symmetric

C =



Lecture 9: Re-cap
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It can be shown that since every C is symmetric: 
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‘horizontal’ edge

‘vertical’ edge

flat

corner

λ2 >> λ1

λ1 >> λ2

 λ1 ~ λ2

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

�1

�2

Lecture 9: Re-cap (interpreting eigenvalues)
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Harris & Stephens (1988)

Kanade & Tomasi (1994)

Nobel (1998)

det(C)� trace2(C)

det(C)

trace(C) + ✏

Lecture 9: Re-cap (Threshold on Eigenvalues to Detect Corners)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Harris Corner Detection Review

— Filter image with Gaussian 

— Compute magnitude of the x and y gradients at each pixel  

— Construct C in a window around each pixel  
      — Harris uses a Gaussian window  

— Solve for product of the λ’s  

— If λ’s both are big (product reaches local maximum above threshold) then we 
have a corner 
      — Harris also checks that ratio of λs is not too high  
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Harris & Stephens (1988)

det(C)� trace2(C)



Example: Harris Corner Detection
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0 0 0 0 0 0 0
0 1 0 0 0 1 0
0 1 1 1 1 0 0
0 1 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0



Example: Harris Corner Detection
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0 0 0 0 0 0 0
0 1 0 0 0 1 0
0 1 1 1 1 0 0
0 1 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel: 



Example: Harris Corner Detection
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0 0 0 0 0 0 0
0 1 0 0 0 1 0
0 1 1 1 1 0 0
0 1 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel: 



Example: Harris Corner Detection

15

0 0 0 0 0 0 0
0 1 0 0 0 1 0
0 1 1 1 1 0 0
0 1 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel: 

0 0 0 0 0 0
-1 1 0 0 -1 1
-1 0 0 0 1 0
-1 0 0 0 1 0
0 -1 0 0 1 0
0 -1 0 0 1 0
0 -1 0 0 1 0
0 -1 0 0 1 0



Example: Harris Corner Detection
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0 0 0 0 0 0 0
0 1 0 0 0 1 0
0 1 1 1 1 0 0
0 1 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel: 

0 0 0 0 0 0
-1 1 0 0 -1 1
-1 0 0 0 1 0
-1 0 0 0 1 0
0 -1 0 0 1 0
0 -1 0 0 1 0
0 -1 0 0 1 0
0 -1 0 0 1 0

0 -1 0 0 0 -1 0
0 0 -1 -1 -1 1 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



Example: Harris Corner Detection
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0 0 0 0 0 0 0
0 1 0 0 0 1 0
0 1 1 1 1 0 0
0 1 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel: 

0 0 0 0 0 0
-1 1 0 0 -1 1
-1 0 0 0 1 0
-1 0 0 0 1 0
0 -1 0 0 1 0
0 -1 0 0 1 0
0 -1 0 0 1 0
0 -1 0 0 1 0

0 -1 0 0 0 -1 0
0 0 -1 -1 -1 1 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Example: Harris Corner Detection
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0 0 0 0 0 0 0
0 1 0 0 0 1 0
0 1 1 1 1 0 0
0 1 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel: 

0 0 0 0 0 0
-1 1 0 0 -1 1
-1 0 0 0 1 0
-1 0 0 0 1 0
0 -1 0 0 1 0
0 -1 0 0 1 0
0 -1 0 0 1 0
0 -1 0 0 1 0

0 -1 0 0 0 -1 0
0 0 -1 -1 -1 1 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

C =


3 2
2 4

�
=> �1 = 1.4384;�2 = 5.5616

det(C)� 0.04trace2(C) = 6.04



Example: Harris Corner Detection
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0 0 0 0 0 0 0
0 1 0 0 0 1 0
0 1 1 1 1 0 0
0 1 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel: 

0 0 0 0 0 0
-1 1 0 0 -1 1
-1 0 0 0 1 0
-1 0 0 0 1 0
0 -1 0 0 1 0
0 -1 0 0 1 0
0 -1 0 0 1 0
0 -1 0 0 1 0

0 -1 0 0 0 -1 0
0 0 -1 -1 -1 1 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

C =


3 2
2 4

�
=> �1 = 1.4384;�2 = 5.5616

det(C)� 0.04trace2(C) = 6.04



Example: Harris Corner Detection
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0 0 0 0 0 0 0
0 1 0 0 0 1 0
0 1 1 1 1 0 0
0 1 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel: 

0 0 0 0 0 0
-1 1 0 0 -1 1
-1 0 0 0 1 0
-1 0 0 0 1 0
0 -1 0 0 1 0
0 -1 0 0 1 0
0 -1 0 0 1 0
0 -1 0 0 1 0

0 -1 0 0 0 -1 0
0 0 -1 -1 -1 1 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

C =


3 2
2 4

�
=> �1 = 1.4384;�2 = 5.5616

det(C)� 0.04trace2(C) = 6.04

C =


3 2
2 4

�
=> �1 = 1.4384;�2 = 5.5616

det(C)� 0.04trace2(C) = 6.04



Example: Harris Corner Detection
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0 0 0 0 0 0 0
0 1 0 0 0 1 0
0 1 1 1 1 0 0
0 1 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel: 

0 0 0 0 0 0
-1 1 0 0 -1 1
-1 0 0 0 1 0
-1 0 0 0 1 0
0 -1 0 0 1 0
0 -1 0 0 1 0
0 -1 0 0 1 0
0 -1 0 0 1 0

0 -1 0 0 0 -1 0
0 0 -1 -1 -1 1 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

C =


3 0
0 0

�
=> �1 = 3;�2 = 0

det(C)� 0.04trace2(C) = �0.36

C =


3 0
0 0

�
=> �1 = 3;�2 = 0

det(C)� 0.04trace2(C) = �0.36



Example: Harris Corner Detection
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0 0 0 0 0 0 0
0 1 0 0 0 1 0
0 1 1 1 1 0 0
0 1 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0

Lets compute a measure of “corner-ness” for the green pixel: 

0 0 0 0 0 0
-1 1 0 0 -1 1
-1 0 0 0 1 0
-1 0 0 0 1 0
0 -1 0 0 1 0
0 -1 0 0 1 0
0 -1 0 0 1 0
0 -1 0 0 1 0

0 -1 0 0 0 -1 0
0 0 -1 -1 -1 1 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

C =


3 0
0 2

�
=> �1 = 3;�2 = 2

det(C)� 0.04trace2(C) = 5

C =


3 0
0 2

�
=> �1 = 3;�2 = 2

det(C)� 0.04trace2(C) = 5



Properties: Rotational Invariance
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Ellipse rotates but its shape  
(eigenvalues) remains the same

Corner response is invariant to image rotation

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Properties: (partial) Invariance to Intensity Shifts and Scaling
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x (image coordinate)

threshold

x (image coordinate)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Only derivatives are used -> Invariance to intensity shifts 

Intensity scale could effect performance



Properties: NOT Invariant to Scale Changes
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edge!
corner!

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Intuitively …
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Find local maxima in both position and scale

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Highest response when the signal has the same characteristic scale as 
the filter

Laplacian filter

Formally …

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



28 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Characteristic Scale 
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characteristic scale - the scale that produces peak filter response

characteristic scale
we need to search over characteristic scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales 
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Full size 3/4 size

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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jet color scale 
blue: low, red: high

Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales 
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Full size 3/4 size

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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peak!

Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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peak!

Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales 
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Full size 3/4 size

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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2.1 4.2 6.0

9.8 15.5 17.0

peak!

Applying Laplacian Filter at Different Scales 
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2.1 4.2 6.0

9.8 15.5 17.0

Applying Laplacian Filter at Different Scales 

maximum  
response



Optimal Scale
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2.1 4.2 6.0 9.8 15.5 17.0

Full size image

2.1 4.2 6.0 9.8 15.5 17.0

3/4 size image



Optimal Scale
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2.1 4.2 6.0 9.8 15.5 17.0

Full size image

2.1 4.2 6.0 9.8 15.5 17.0

3/4 size image

maximum 
response

maximum 
response



Implementation
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For each level of the Gaussian pyramid

compute feature response (e.g. Harris, Laplacian)

For each level of the Gaussian pyramid

if local maximum and cross-scale

save scale and location of feature



Summary

A corner is a distinct 2D feature that can be localized reliably  

Edge detectors perform poorly at corners  
→ consider corner detection directly  

Harris corner detection 
— corners are places where intensity gradient direction takes on multiple 
distinct values 
— interpret in terms of autocorrelation of local window 
— translation and rotation invariant, but not scale invariant  
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