
IEEE International Conference on Computer Vision, Corfu, Greece, September 1999

Texture Synthesis by Non-parametric Sampling

Alexei A. Efros and Thomas K. Leung
Computer Science Division

University of California, Berkeley
Berkeley, CA 94720-1776, U.S.A.
�efros,leungt�@cs.berkeley.edu

Abstract

A non-parametric method for texture synthesis is pro-
posed. The texture synthesis process grows a new image
outward from an initial seed, one pixel at a time. A Markov
random field model is assumed, and the conditional distri-
bution of a pixel given all its neighbors synthesized so far is
estimated by querying the sample image and finding all sim-
ilar neighborhoods. The degree of randomness is controlled
by a single perceptually intuitive parameter. The method
aims at preserving as much local structure as possible and
produces good results for a wide variety of synthetic and
real-world textures.

1. Introduction

Texture synthesis has been an active research topic in
computer vision both as a way to verify texture analysis
methods, as well as in its own right. Potential applications
of a successful texture synthesis algorithm are broad, in-
cluding occlusion fill-in, lossy image and video compres-
sion, foreground removal, etc.

The problem of texture synthesis can be formulated as
follows: let us define texture as some visual pattern on an
infinite 2-D plane which, at some scale, has a stationary
distribution. Given a finite sample from some texture (an
image), the goal is to synthesize other samples from the
same texture. Without additional assumptions this problem
is clearly ill-posed since a given texture sample could have
been drawn from an infinite number of different textures.
The usual assumption is that the sample is large enough that
it somehow captures the stationarity of the texture and that
the (approximate) scale of the texture elements (texels) is
known.

Textures have been traditionally classified as either reg-
ular (consisting of repeated texels) or stochastic (without
explicit texels). However, almost all real-world textures lie
somewhere in between these two extremes and should be
captured with a single model. In this paper we have chosen
a statistical non-parametric model based on the assumption

of spatial locality. The result is a very simple texture syn-
thesis algorithm that works well on a wide range of textures
and is especially well-suited for constrained synthesis prob-
lems (hole-filling).

1.1. Previous work

Most recent approaches have posed texture synthesis in a
statistical setting as a problem of sampling from a probabil-
ity distribution. Zhu et. al. [12] model texture as a Markov
Random Field and use Gibbs sampling for synthesis. Un-
fortunately, Gibbs sampling is notoriously slow and in fact
it is not possible to assess when it has converged. Heeger
and Bergen [6] try to coerce a random noise image into a
texture sample by matching the filter response histograms
at different spatial scales. While this technique works well
on highly stochastic textures, the histograms are not pow-
erful enough to represent more structured texture patterns
such as bricks.

De Bonet [1] also uses a multi-resolution filter-based ap-
proach in which a texture patch at a finer scale is condi-
tioned on its “parents” at the coarser scales. The algorithm
works by taking the input texture sample and randomizing
it in such a way as to preserve these inter-scale dependen-
cies. This method can successfully synthesize a wide range
of textures although the randomness parameter seems to ex-
hibit perceptually correct behavior only on largely stochas-
tic textures. Another drawback of this method is the way
texture images larger than the input are generated. The in-
put texture sample is simply replicated to fill the desired di-
mensions before the synthesis process, implicitly assuming
that all textures are tilable which is clearly not correct.

The latest work in texture synthesis by Simoncelli and
Portilla [9, 11] is based on first and second order properties
of joint wavelet coefficients and provides impressive results.
It can capture both stochastic and repeated textures quite
well, but still fails to reproduce high frequency information
on some highly structured patterns.



1.2. Our Approach
In his 1948 article, A Mathematical Theory of Communi-

cation [10], Claude Shannon mentioned an interesting way
of producing English-sounding written text using �-grams.
The idea is to model language as a generalized Markov
chain: a set of � consecutive letters (or words) make up
an �-gram and completely determine the probability distri-
bution of the next letter (or word). Using a large sample
of the language (e.g., a book) one can build probability ta-
bles for each �-gram. One can then repeatedly sample from
this Markov chain to produce English-sounding text. This
is the basis for an early computer program called MARK V.
SHANEY, popularized by an article in Scientific American
[4], and famous for such pearls as: “I spent an interesting
evening recently with a grain of salt”.

This paper relates to an earlier work by Popat and Picard
[8] in trying to extend this idea to two dimensions. The three
main challenges in this endeavor are: 1) how to define a unit
of synthesis (a letter) and its context (�-gram) for texture,
2) how to construct a probability distribution, and 3) how to
linearize the synthesis process in 2D.

Our algorithm “grows” texture, pixel by pixel, outwards
from an initial seed. We chose a single pixel � as our unit
of synthesis so that our model could capture as much high
frequency information as possible. All previously synthe-
sized pixels in a square window around � (weighted to em-
phasize local structure) are used as the context. To proceed
with synthesis we need probability tables for the distribu-
tion of �, given all possible contexts. However, while for
text these tables are (usually) of manageable size, in our tex-
ture setting constructing them explicitly is out of the ques-
tion. An approximation can be obtained using various clus-
tering techniques, but we choose not to construct a model
at all. Instead, for each new context, the sample image is
queried and the distribution of � is constructed as a his-
togram of all possible values that occurred in the sample
image as shown on Figure 1. The non-parametric sampling
technique, although simple, is very powerful at capturing
statistical processes for which a good model hasn’t been
found.

2. The Algorithm
In this work we model texture as a Markov Random

Field (MRF). That is, we assume that the probability distri-
bution of brightness values for a pixel given the brightness
values of its spatial neighborhood is independent of the rest
of the image. The neighborhood of a pixel is modeled as a
square window around that pixel. The size of the window
is a free parameter that specifies how stochastic the user be-
lieves this texture to be. More specifically, if the texture is
presumed to be mainly regular at high spatial frequencies
and mainly stochastic at low spatial frequencies, the size of
the window should be on the scale of the biggest regular
feature.

Figure 1. Algorithm Overview. Given a sample texture im-
age (left), a new image is being synthesized one pixel at
a time (right). To synthesize a pixel, the algorithm first
finds all neighborhoods in the sample image (boxes on the
left) that are similar to the pixel’s neighborhood (box on
the right) and then randomly chooses one neighborhood and
takes its center to be the newly synthesized pixel.

2.1. Synthesizing one pixel
Let � be an image that is being synthesized from a tex-

ture sample image ���� � ����� where ����� is the real in-
finite texture. Let � � � be a pixel and let ���� � � be a
square image patch of width � centered at �. Let ����� ���
denote some perceptual distance between two patches. Let
us assume for the moment that all pixels in � except for �
are known. To synthesize the value of � we first construct
an approximation to the conditional probability distribution
� �������� and then sample from it.

Based on our MRF model we assume that � is indepen-
dent of � � ���� given ����. If we define a set

���� � ��� � ����� � ���
�� ����� � ��

containing all occurrences of ���� in �����, then the condi-
tional pdf of � can be estimated with a histogram of all cen-
ter pixel values in ����. 1 Unfortunately, we are only given
����, a finite sample from �����, which means there might
not be any matches for ���� in ����. Thus we must use a
heuristic which will let us find a plausible ����� � ����
to sample from. In our implementation, a variation of
the nearest neighbor technique is used: the closest match
����	 � 	
��
�
 ������� �� � ���� is found, and all im-
age patches � with ������� �� � �� � ��������� ����	� are
included in �����, where � � ��� for us. The center pixel
values of patches in ����� give us a histogram for �, which
can then be sampled, either uniformly or weighted by �.

Now it only remains to find a suitable distance �. One
choice is a normalized sum of squared differences metric
����. However, this metric gives the same weight to any
mismatched pixel, whether near the center or at the edge
of the window. Since we would like to preserve the local
structure of the texture as much as possible, the error for

1This is somewhat misleading, since if all pixels in ���� except � are
known, the pdf for � will simply be a delta function for all but highly
stochastic textures, since a single pixel can rarely be a feature by itself.



(a)

(b)

(c)
Figure 2. Results: given a sample image (left), the algorithm synthesized four new images with neighborhood windows of
width 5, 11, 15, and 23 pixels respectively. Notice how perceptually intuitively the window size corresponds to the degree of
randomness in the resulting textures. Input images are: (a) synthetic rings, (b) Brodatz texture D11, (c) brick wall.

nearby pixels should be greater than for pixels far away. To
achieve this effect we set � � ���� �� where � is a two-
dimensional Gaussian kernel.

2.2. Synthesizing texture
In the previous section we have discussed a method of

synthesizing a pixel when its neighborhood pixels are al-
ready known. Unfortunately, this method cannot be used
for synthesizing the entire texture or even for hole-filling
(unless the hole is just one pixel) since for any pixel the val-
ues of only some of its neighborhood pixels will be known.
The correct solution would be to consider the joint proba-
bility of all pixels together but this is intractable for images
of realistic size.

Instead, a Shannon-inspired heuristic is proposed, where
the texture is grown in layers outward from a 3-by-3 seed
taken randomly from the sample image (in case of hole fill-
ing, the synthesis proceeds from the edges of the hole). Now
for any point � to be synthesized only some of the pixel val-
ues in ���� are known (i.e. have already been synthesized).
Thus the pixel synthesis algorithm must be modified to han-
dle unknown neighborhood pixel values. This can be easily
done by only matching on the known values in ���� and
normalizing the error by the total number of known pixels
when computing the conditional pdf for �. This heuristic
does not guarantee that the pdf for � will stay valid as the

rest of ���� is filled in. However, it appears to be a good
approximation in practice. One can also treat this as an ini-
tialization step for an iterative approach such as Gibbs sam-
pling. However, our trials have shown that Gibbs sampling
produced very little improvement for most textures. This
lack of improvement indicates that the heuristic indeed pro-
vides a good approximation to the desired conditional pdf.

3. Results
Our algorithm produces good results for a wide range of

textures. The only parameter set by the user is the width �

of the context window. This parameter appears to intuitively
correspond to the human perception of randomness for most
textures. As an example, the image with rings on Figure 2a
has been synthesized several times while increasing �. In
the first synthesized image the context window is not big
enough to capture the structure of the ring so only the notion
of curved segments is preserved. In the next image, the
context captures the whole ring, but knows nothing of inter-
ring distances producing a Poisson process pattern. In the
third image we see rings getting away from each other (so
called Poisson process with repulsion), and finally in the
last image the inter-ring structure is within the reach of the
window as the pattern becomes almost purely structured.

Figure 3 shows synthesis examples done on real-world
textures. Examples of constrained synthesis are shown on



(a) (b) (c) (d)
Figure 3. Texture synthesis on real-world textures: (a) and (c) are original images, (b) and (d) are synthesized. (a) images
D1, D3, D18, and D20 from Brodatz collection [2], (c) granite, bread, wood, and text (a homage to Shannon) images.



Figure 4. Examples of constrained texture synthesis. The
synthesis process fills in the black regions.

Figure 4. The black regions in each image are filled in by
sampling from that same image. A comparison with De
Bonet [1] at varying randomness settings is shown on Fig-
ure 7 using texture 161 from his web site.

4. Limitations and Future Work
As with most texture synthesis procedures, only frontal-

parallel textures are handled. However, it is possible to use
Shape-from-Texture techniques [5, 7] to pre-warp an image
into frontal-parallel position before synthesis and post-warp
afterwards.

One problem of our algorithm is its tendency for some
textures to occasionally “slip” into a wrong part of the
search space and start growing garbage (Figure 5a) or get
locked onto one place in the sample image and produce ver-
batim copies of the original (Figure 5b). These problems
occur when the texture sample contains too many different
types of texels (or the same texels but differently illumi-
nated) making it hard to find close matches for the neigh-
borhood context window. These problems can usually be
eliminated by providing a bigger sample image. We have
also used growing with limited backtracking as a solution.

(a) (b)
Figure 5. Failure examples. Sometimes the growing algo-
rithm “slips” into a wrong part of the search space and starts
growing garbage (a), or gets stuck at a particular place in the
sample image and starts verbatim copying (b).

In the future we plan to study automatic window-size se-
lection, including non-square windows for elongated tex-
tures. We are also currently investigating the use of texels
as opposed to pixels as the basic unit of synthesis (similar
to moving from letters to words in Shannon’s setting). This
is akin to putting together a jigsaw puzzle where each piece
has a different shape and only a few can fit together. Cur-
rently, the algorithm is quite slow but we are working on
ways to make it more efficient.

5. Applications
Apart from letting us gain a better understanding of tex-

ture models, texture synthesis can also be used as a tool
for solving several practical problems in computer vision,
graphics, and image processing. Our method is particularly
versatile because it does not place any constraints on the
shape of the synthesis region or the sampling region, mak-
ing it ideal for constrained texture synthesis such as hole-
filling. Moreover, our method is designed to preserve local
image structure, such as continuing straight lines, so there
are no visual discontinuities between the original hole out-
line and the newly synthesized patch.

For example, capturing a 3D scene from several cam-
era views will likely result in some regions being occluded
from all cameras [3]. Instead of letting them appear as black
holes in a reconstruction, a localized constrained texture
synthesis can be performed to fill in the missing informa-
tion from the surrounding region. As another example, con-
sider the problem of boundary handling when performing
a convolution on an image. Several methods exist, such as
zero-fill, tiling and reflection, however all of them may in-
troduce discontinuities not present in the original image. In
many cases, texture synthesis can be used to extrapolate the



Figure 6. The texture synthesis algorithm is applied to a real image (left) extrapolating it using itself as a model, to result
in a larger image (right) that, for this particular image, looks quite plausible. This technique can be used in convolutions to
extend filter support at image boundaries.

Our method sample image De Bonet’s method

Figure 7. Texture synthesized from sample image with our method compared to [1] at decreasing degree of randomness.

image by sampling from itself as shown on Figure 6.
The constrained synthesis process can be further en-

hanced by using image segmentation to find the exact sam-
pling region boundaries. A small patch of each region can
then be stored together with region boundaries as a lossy
compression technique, with texture synthesis being used to
restore each region separately. If a figure/ground segmen-
tation is possible and the background is texture-like, then
foreground removal can be done by synthesizing the back-
ground into the foreground segment.

Our algorithm can also easily be applied to motion syn-
thesis such as ocean waves, rolling clouds, or burning fire
by a trivial extension to 3D.

Acknowledgments: We would like to thank Alex Berg,
Elizaveta Levina, and Yair Weiss for many helpful discus-
sions and comments. This work has been supported by
NSF Graduate Fellowship to AE, Berkeley Fellowship to
TL, ONR MURI grant FDN00014-96-1-1200, and the Cal-
ifornia MICRO grant 98-096.

References

[1] J. S. D. Bonet. Multiresolution sampling procedure for anal-
ysis and synthesis of texture images. In SIGGRAPH ’97,
pages 361–368, 1997.

[2] P. Brodatz. Textures. Dover, New York, 1966.

[3] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and ren-
dering architecture from photographs: A hybrid geometry-
and image-based approach. In SIGGRAPH ’96, pages 11–
20, August 1996.

[4] A. Dewdney. A potpourri of programmed prose and prosody.
Scientific American, 122-TK, June 1989.

[5] J. Garding. Surface orientation and curvature from differen-
tial texture distortion. ICCV, pages 733–739, 1995.

[6] D. J. Heeger and J. R. Bergen. Pyramid-based texture anal-
ysis/synthesis. In SIGGRAPH ’95, pages 229–238, 1995.

[7] J. Malik and R. Rosenholtz. Computing local surface orien-
tation and shape from texture for curved surfaces. Interna-
tional Journal of Computer Vision, 23(2):149–168, 1997.

[8] K. Popat and R. W. Picard. Novel cluster-based probability
model for texture synthesis, classification, and compression.
In Proc. SPIE Visual Comm. and Image Processing, 1993.

[9] J. Portilla and E. P. Simoncelli. Texture representation and
synthesis using correlation of complex wavelet coefficient
magnitudes. TR 54, CSIC, Madrid, April 1999.

[10] C. E. Shannon. A mathematical theory of communication.
Bell Sys. Tech. Journal, 27, 1948.

[11] E. P. Simoncelli and J. Portilla. Texture characterization via
joint statistics of wavelet coefficient magnitudes. In Proc.
5th Int’l Conf. on Image Processing Chicago, IL, 1998.

[12] S. C. Zhu, Y. Wu, and D. Mumford. Filters, random fields
and maximum entropy (frame). International Journal of
Computer Vision, 27(2):1–20, March/April 1998.


