

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

2 З Ο

Image Credit: https://en.wikibooks.org/wiki/Analog_and_Digital_Conversion/Nyquist_Sampling_Rate

unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Lecture 8: Sampling

Menu for Today (September 21, 2018)

Topics:

- Sampling (continued)
- Aliasing

Redings:

- Today's Lecture: Forsyth & Ponce (2nd ed.) 4.5
- Next Lecture: Forsyth & Ponce (2nd ed.) 4.6, 4.7

Reminders:

— Color Filter Arrays Bayer patterns

Assignment 1: Image Filtering and Hybrid Images due September 24th

Today's "fun" Example: Optical Illusions

Image From: https://inudgeyou.com/en/nudging-traffic-safety-by-visual-illusions/

Today's "fun" Example: Nudging

Aerial view of the white stripes at the lake shore drive in Chicago.

Today's "fun" Example: Anchoring and Ordering

Champagne

CH18	NV	GREMILLET "Brut Selection"
CH31	NV	ERNEST RAPENEAU "Selectio
CH12	NV	CHAMPAGNE ERNEST RAPEN
CH05	NV	DRAPPIER "Carte d'Or" - Cha
CH30	2007	ERNEST RAPENEAU VINTAGE
CH32	NV	ERNEST RAPENEAU "Premier
CH28	NV	DRAPPIER Brut Rose - Champ
CH29	2012	DRAPPIER "Millesime Except
CH11	2008	DRAPPIER " Cuvee Grande Se
CH39	NV	ERNEST RAPENEAU "Grande

Sparkling Wines

CH06	NV	IL CORTIGIANO - Prosecco Ex
CH17	NV	VALLFORMOSA "Clasic" Sem
CH24	NV	VEUVE MOISANS "Blanc de E
CH25	NV	VALDO - Prosecco Extra Dry
CH33	NV	VALDO "Origine" Rose - Ven
CH03	2012	CHATEAU MONTGUERET Sau
CH04	NV	CAVA MASET RESERVA BRU
CH14	NV	TRIVENTO "Brut Nature" - M
CH21	2015	CAMASELLA - Glera - Vaneto
CH02	2013	BRUT D'ARGENT ICE - Charde
CH01	NV	VALDO "ORO PURO" Proseco
CH40	NV	MAISON DARRAGON - AOC \
CH09	NV	LOU MIRANDA ESTATE 'LEON

Rose Wines

PO03	2014	CASAL MENDES Rose - Baga
RH09	2014	LA VIE EN ROSE - Cinsault - L
RH69	2015	LES EMBRUNS "La Croix des
RH04	2015	LES MAITRES VIGNERONS DE
RH15	2015	MANON - COTES DE PROVEN
RH04M	2015	LES MAITRES VIGNERONS DE

Sweet Wines

AR33	2015	TRIVENTO "Birds & Bees" White - Mendoza	\$30
AR34	2016	TRIVENTO "Birds & Bees" Red - Mendoza	\$30
AU05	2015	DEAKIN ESTATE - Moscato - Murray Darling	\$30
AU12	2016	Chalk Hill - Moscato - McLaren Vale	\$30
AU68	NV	WESTEND ESTATE "Richland" - Moscato - New South Wales	\$30
AU107	NV	WESTEND ESTATE "Richland" - Pink Moscato - New South Wales	\$30

Champagne, Sparkling, Rose, Sweet Wines

- Champagne	\$65
on Brut" - Champagne	\$65
NEAU - BRUT - Chardonnay/Pinot Noir/Pinot Meunier -	\$75
mpagne	\$78
- Chardonnay/ Pinot Noir - Champagne	\$80
r Cru Brut" - Champagne	\$80
pagne	\$85
ion" - Champagne	\$98
endree" - Champagne	\$130
Reserve"- Magnum - Champagne	\$130
dra Dry - Veneto	\$30
i Seco - Cava	\$30
Blancs" - Loire Valley	\$30
- Treviso, Veneto	\$30
eto	\$30
umur Sec Rose - Cabernet Franc - Loire Valley	\$32
T - Macabeo/Xarello/Parellada - Cava	\$32
endoza	\$32
	\$32
onnay - France	\$35
co Superiore - Veneto	\$36
/ouvray Brut - Loire Valley	\$38
NE' - Sparkling Shiraz - Barossa Valley	\$42
- Portugal	\$30
anguedoc	\$30
Saintes" - Sable de Camargue	\$30
ST TROPEZ - Cotes de Provence	\$32
ICE - Grenache/Cinsault/Syrah Provence	\$34
LA PRESQU'ILE DE SAINT TROPEZ - Grenache/Mourve	\$68
hite - Mendoza	\$30

Lecture 7: Re-cap

In the continuous case, images are functions of two spatial variables, x and y.

The discrete case is obtained from the continuous case via sampling (i.e. tessellation, quantization).

If a signal is **bandlimited** then it is possible to design a sampling strategy such that the sampled signal captures the underlying continuous signal exactly.

The challenge to intuition is the fact that music (in the 1D case) and images (in the 2D case) can be represented as linear combinations of individual sine waves of differing frequencies and phases (remember discussion on FFTs)

A fundamental result (**Sampling Theorem**) is: For bandlimited signals, if you sample regularly at or above twice the maximum frequency (called the Nyquist rate), then you can reconstruct the original signal exactly

Question: For a bandlimited signal, v greater than the Nyquist rate)

Question: For a bandlimited signal, what if you oversample (i.e., sample at

Question: For a bandlimited signal, we greater than the Nyquist rate)

Answer: Nothing bad happens! Samples are redundant and there are wasted bits

Question: For a bandlimited signal, what if you oversample (i.e., sample at

greater than the Nyquist rate)

Answer: Nothing bad happens! Samples are redundant and there are wasted bits

Question: For a bandlimited signal, what if you **undersample** (i.e., sample at less than the Nyquist rate)

Question: For a bandlimited signal, what if you **oversample** (i.e., sample at

greater than the Nyquist rate)

bits

less than the Nyquist rate)

there aren't) There are artifacts (i.e., things that shouldn't be there are)

Question: For a bandlimited signal, what if you **oversample** (i.e., sample at

Answer: Nothing bad happens! Samples are redundant and there are wasted

Question: For a bandlimited signal, what if you **undersample** (i.e., sample at

Answer: Two bad things happen! Things are missing (i.e., things that should be

)	¢	¢.	¢	¢.
,				
,	0	σ	o	0
	o	0	o	0
	¢	¢	¢	¢
	0	Ģ		0
	0	٥		0
				0

Forsyth & Ponce (2nd ed.) Figure 4.7

Forsyth & Ponce (2nd ed.) Figure 4.12

Reducing Aliasing Artifacts

1. **Oversampling** — sample more than you think you need and average (i.e., area sampling)

Aliasing

aliasing artifacts

anti-aliasing by oversampling

Reducing Aliasing Artifacts

1. Oversampling — sample more than you think you need and average (i.e., area sampling)

2. Smoothing before sampling. Why?

Aliasing in Photographs

This is also known as "moire"

Temporal Aliasing

Mark wheel with dot so we can see what's happening.

time = 1/30 sec. for video, 1/24 sec. for film):

(counterclockwise)

- Imagine a spoked wheel moving to the right (rotating clockwise).
- If camera shutter is only open for a fraction of a frame time (frame

Without dot, wheel appears to be rotating slowly backwards!

Temporal Aliasing

Temporal Aliasing

"things missing" and "artifacts."

- Medical imaging: usually try to maximize information content, tolerate some artifacts

- Computer graphics: usually try to minimize artifacts, tolerate some information missing

Sometimes undersampling is unavoidable, and there is a trade-off between

Review: Continuous Case

where x and y are spatial variable and t is a **temporal variable**

- To make the dependence of brightness on wavelength explicit, we can instead write $i(x, y, t, \lambda)$ where x, y and t are as above and where λ is a spectral variable

— More commonly, we think of "color" already as discrete and write

for specific colour channels, R, G and B

- Images also can be considered a function of time. Then, we write i(x, y, t)

 $i_R(x,y)$ $i_G(x,y)$ $i_B(x,y)$

Color is an Artifact of Human Perception

"Color" is **not** an objective physical property of light (electromagnetic radiation). Instead, light is characterized by its wavelength.

Color Filter Arrays (CFA)

Color Filter Arrays (CFA)

nicrolens		microlens	
color filter		color filter	
hotodiode		photodiode	
otential well		potential well	

Two design choices:

- What spectral sensitivity functions $f(\lambda)$ to use for each color filter?
- How to spatially arrange ("mosaic") different color filters?

Two design choices:

- What spectral sensitivity functions $f(\lambda)$ to use for each color filter?
- How to spatially arrange ("mosaic") different color filters?

$f(\lambda)$ to use for each color filter?) different color filters?

Generally do not match human sensitivity

Two design choices:

- What spectral sensitivity functions $f(\lambda)$ to use for each color filter?
- How to spatially arrange ("mosaic") different color filters?

$f(\lambda)$ to use for each color filter?) different color filters?

Canon 50D

Generally do not match human sensitivity

Two design choices:

- What spectral sensitivity functions $f(\lambda)$ to use for each color filter?
- How to spatially arrange ("mosaic") different color filters?

$f(\lambda)$ to use for each color filter?) different color filters?

Canon 50D

Generally do not match human sensitivity

Different Color Filter Arrays (CFAs)

Finding the "**best**" CFA mosaic is an active research area.

CYGM Canon IXUS, Powershot

RGBE Sony Cyber-shot

How would you go about designing your own CFA? What criteria would you consider?

Many **Different Spectral Sensitivity** Functions

Each camera has its more or less unique, and most of the time secret, SSF

Same scene captured using 3 different cameras with identical settings

RAW Bayer Image

After all of this, what does an image look like?

lots of noise

mosaicking artifacts

Kind of disappointing We call this the RAW image

CFA Demosicing

Produce full RGB image from mosaiced sensor output

Any ideas on how to do this?

CFA **Demosicing**

Produce full RGB image from mosaiced sensor output

Interpolate from neighbors:

- Bilinear interpolation (needs 4 neighbors)
- Bicubic interpolation (needs more neighbors, may overblur)
- Edge-aware interpolation

Demosaicing by Bilinear Interpolation

Bilinear interpolation: Simply average your 4 neighbors.

Neighborhood changes for different channels:

(in camera) Image Processing Pipeline

The sequence of image processing operations applied by the camera's image signal processor (ISP) to convert a RAW image into a "conventional" image.

Summary

In the continuous case, images are functions of two spatial variables, x and y.

The discrete case is obtained from the continuous case via sampling (i.e. tessellation, quantization).

If a signal is **bandlimited** then it is possible to design a sampling strategy such that the sampled signal captures the underlying continuous signal exactly.

Adequate sampling may not always be practical. In such cases there is a tradeoff between "things missing" and "artifacts". Different applications make the trade-off differently