THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 5:

mage Filtering (continued)

( unless otherwise stated slides are taken or adopted fromm Bob Woodham, Jim Little and Fred Tung )



Menu for [ogay (September 14, 2018)

Topics:
— Gaussian and Pillbox filters — The Convolution Theorem
— Separability — Non-linear filters

— Today’s Lecture: none
— Next Lecture: |Optional] Forsyth & Ponce (2nd ed.) 4.4

Reminders:

— Assignment 1: Image Filtering and Hybrid Images due September 24th



Today’s “fun” Example: Rolling Shutter

-—""/




Today’s “fun” Example: Rolling Shutter

Rolling

R

shutter

effect —




Lecture 4: Re-cap

— The correlation of F'( X ,‘Y) and I(X,Y)is

I'X,Y) = Z ZFIJ (X +i,Y + )

1=—ki1=—k

output filter image (signal)

— Visual interpretation: Superimpose the filter F' on the image I at (X, Y),
perform an element-wise multiply, and sum up the values

— Convolution is ke correlation except filter “flipped’

f F(X,Y)=F(—X,—-Y) then correlation = convolution.

5



Lecture 4: Re-cap

Ways to handle boundaries
— Ignore/ discard. Make the computation undefined for top/bottom k rows and left/right-most k columns
— Pad with zeros. Return zero whenever a value of | is required beyond the image bounds

— Assume periodicity. Top row wraps around to the bottom row; leftmost column wraps around to
rightmost column.

Simple examples of filtering:
— Copy, shift, smoothing, sharpening

Linear filter properties:
— superposition, scaling, shift invariance

Characterization Theorem: Any linear, shift-invariant operation can be
expressed as a convolution



Example 6: Smoothing with a Gaussian

Idea: \Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

1 x? 4 y?
GO’ (aj? y) — ) 52 CXP 207

Forsyth & Ponce (2nd ed.)
Figure 4.2



Example 6: Smoothing with a Gaussian

Idea: \Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

1 x? 4 y?
GO’ (QZ‘, y) — ) 2 CXP 20

Standard Deviation

Forsyth & Ponce (2nd ed.)
Figure 4.2



Example 6: Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

Gy(—1,1) G, (0,1) G, (1,1)
Go(—1,0) G4(0,0) G, (1,0)
G, (=1, 1) G, (0, 1) G, (1,—1)




Example 6: Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

1 2 1 1 1 2
G,(—1,1) = 53 eXP 2 G,(0,1) = 53 eXP 2 G,(1,1) = 53 ©XP 202
Go(—1,0 ! ~ 5.7 G4 (0,0) = ! G (1.0 L — 557
- p— 20 o ] J— — 20
U( 9 ) 27’(’0’2 CXPp 27.‘.0-2 U( y ) 27’(’0’2 CXP
1 2 1 1 1 _ 2
Gy(—1,—1) = 53 ©XP 202 | G(0,—1) = 53 CXP 202 | Gy(l,—-1) = 53 ©XP 202

10



Example 6: Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

1 2 1 1 1 2
G,(—1,1) = 53 OXP 202 G,(0,1) = 53 ©XP 202 G,(1,1) = 53 ©XP 202
G,(—1,0 ! ~ 5.7 G,(0,0) = ! G (1.0 L — 557
— — 20 o ] — p— 20
U( 9 ) 27’(’0’2 CXPp 27.‘.0-2 U( y ) 27’(’0’2 CXP
1 2 1 1 1 2
Gy(—1,—1) = 53 ©XP 202 | G(0,—1) = 53 CXP 202 | Gy(1,—-1) = 53 ©XP 202
Witho =1 0.059 | 0.097 | 0.059
0.097 { 0.159 | 0.097
0.059 | 0.097 | 0.059

11




Example 6: Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

1 2 1 1 1 _ 2
G,(—1,1) = 53 OXP 202 G,(0,1) = 53 ©XP 202 G,(1,1) = 53 ©XP 202
G,(—1,0) = ! exp” 7 G4(0,0) = : G,(1,0) = ! exp 207
N 2702 2mo? T 2702
Col(~1-1) = g exp 57 | Gol0, 1) = -pexp 37 | Goll,—1) = - exp 52
o\~ 1y — €X 202 o\Y, — — €X 207 o\l — — 202
o2 omg? P o2 P
Witho =1 0.059 | 0.097 | 0.059 What happens if o is larger?
0.097 | 0.159 | 0.097
0.059 | 0.097 | 0.059

12



Example 6: Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

1 2 1 1 1 _ 2
G,(—1,1) = 53 eXP 2 G,(0,1) = 53 eXP 2 G,(1,1) = 53 OXP
Go(—1,0) = ——— exp™ 2 G (0,0) = — G (1,0) = —— exp ™37
7 omo? ¥ o 202 T g2 T
Go(—1,-1) = —— exp 7 | Go(0,-1) = ——m exp 7 | Gp(l,—1) = s exp~ 57
i " o2 P T " oo P o(1,=1) = ono? P
Witho =1 : What happens if o is larger?

—_ |—> |—>

— |— |—>

—_ |—> |—>

13

— More blur




Example 6: Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

1 _ 2 1 1 1 _ 2
G,(—1,1) = 53 eXP 2 G,(0,1) = 53 eXP 2 G,(1,1) = 53 OXP
G,(—1,0) = L exp o G,(0,0) = : G,(1,0) = L exp 52
o omg? P T 2702 oA oo ¥
Go(—1,-1) = —— exp 7 | Go(0,-1) = ——m exp 7 | Gp(l,—1) = s exp~ 57
N " omg2 P T " oo P o(1,=1) = ono? P
Witho =1 : 0.059 | 0.097 |0.059 What happens if o is larger?
0.097 | 0.159 | 0.097
| | ?
1050 | 0.007 | 0.050 What happens if o Is smaller”:

14



Example 6: Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

1 2 1 1 1 _ 2
G,(—1,1) = 53 eXP 2 G,(0,1) = 53 eXP 2 G,(1,1) = 53 OXP
Go(—1,0) = ——— exp™ 2 G (0,0) = — G (1,0) = —— exp ™37
o omg? P T 2702 oA oo ¥
Go(—1,-1) = —— exp 7 | Go(0,-1) = ——m exp 7 | Gp(l,—1) = s exp~ 57
i " o2 P T " o2 P o1, =1) = omo? P 7
Witho =1 : What happens if o is larger?

What happens it o is smaller?

«— |— |—
«— | |
«— |— |—

- — Less blur



Example 6: Smoothing with a Gaussian

Forsyth & Ponce (2nd ed.) Figure 4.1 (left and right)

10



Box vs. Gaussian Filter

/X7 (Gaussian

original

/X{ boX

17 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fun: How to get shadow effect”

University of
Britisn
Columbia



Fun: How to get shadow effect”

University of
British
Columbia

Blur with a Gaussian kernel, then compose the blurred image with the original
(with some offset)

19 Adopted from: loannis (Yannis) Gkioulekas (CMU)



Example 6: Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

1 2 1 1 1 _ 2
G,(—1,1) = 53 OXP 202 G,(0,1) = 53 ©XP 202 G,(1,1) = 53 ©XP 202
Go(—1,0) = = exp™ 57 Gr(0,0) = — G, (1,0) = —— exp™ 57
N 2702 | 2mo? T 2702
Col(~1-1) = g exp 57 | Gol0, 1) = -pexp 37 | Goll,—1) = - exp 52
o\~ 1y — S 202 o\Y, — — C 207 o\l — — 202
2mo2 P omg2 22 P
Witho =1 0.059 | 0.097 | 0.059 What is the problem with this filter?
0.097 | 0.159 | 0.097
0.059 | 0.097 | 0.059

20




Example 6: Smoothing with a Gaussian

Quantized an truncated 3x3 Gaussian filter:

1 2 1 1 1 _ 2
Go,(—1,1) = 53 eXP 2 G,(0,1) = 53 eXP 2 G,(1,1) = 53 &XP 2
Go(—1,0) = 1 exp 207 G»(0,0) = 1 G,(1,0) = ! exp” 707
7 = ong2 P o 202 A T org2 T
G 1,—1) = ! 202 | Gg(0,—1) = ! ~ 3.7 G (1. =1) = 1 — 523
o(=1,—1) = o2 P o(0,=1) = omo? P o1, =1) = omo? P
Witho =1 0.059 | 0.097 | 0.059 What is the problem with this filter?
0.097 | 0.159 | 0.097 does not sum to 1
— _truncated too much

21

truncated too much



Gaussian: Area Under the Curve

~26 -0 206 -10 0 16 20 30 40
~—68% —
B 95% |
N 99.7% -1

- 99.99% 1

22



Example 6: Smoothing with a Gaussian

Witho = 1 0.059 | 0.097 | 0.059
0.097 |1 0.159 | 0.097
0.059 [ 0.097 | 0.059
1 4 7 4
Better version of the (Gaussian filter:
4 | 16| 26| 16
— sums to 1 (normalized) 2‘73 - | og | 41| 28
— captures 2o 2|18l 26! 18| 4
1 4 7 4 1

In general, you want the Gaussian filter to capture =30, for o = 1 => 7X7 filter

23



Efficient Implementation: Separability

A 2D function of x and y is separable if it can be written as the product of two
functions, one a function only of x and the other a function only of y

Both the 2D box filter and the 2D Gaussian filter are separable

Both can be implemented as two 1D convolutions:
— First, convolve each row with a 1D filter

— Then, convolve each column with a 1D filter

— Aside: or vice versa

The 2D Gaussian is the only (non trivial) 2D function that is both separable and
rotationally invariant.

24



olololololo olololololo
e IR IR I R B e N |||~ @
olololololo olololololo
N|TF|o|lo|F &[] Vl. M E I I I R =
olololololo - olololololo
m|lo|o|ad|lo|an|C|@ VA m|lo|o|a|lo|an|C|@
olololololo olololololo
H|O|o|o|v|aC|@ o O H|O|o|od|v|a|C|@
o olololololo ~ o olololololo
™ OOl ~—]| I ™ ||| —]|
olo|ololololo]o olo|lololololo]o
AN|T|IO]JITOID|IAN]| ]| ™ AN|T|IO|OIND|IAN] ]| ™
ololololololo]o 4 ololololololo]o
| N MDD O|IAN]| | — | M D) T N O|IAN| |~ D

ol|lo ol|lo
o|lo|lo|o|lo|o|2]2 ._hLP o|lo|lo|o|lo|o|2]2
D)
O
N\
” Y1 Y|
-
(e — |om
FH
=
N\
V o|o|RRRKR8|o|o|o|o
~ o|lo|3I38I8I38|olo|lo|o
F oloflo|o
o|o olo|lo|o
e — |||
—_— V_A o|lo|[3I8I8|elo|o|o
o|loflolo o
Q. — olo|8[8]8|8|=|=[8]|°
m F o|lo|3|I8I38|18lo|o|8|o
oflololo o

a : OOESSSOOSO

olo|lo|o|o|lo|o|o|&|o

X —

o
b D e D

- <
A B ol B ol B o

O, — O

— “— AN

- — | D X ~—

Ll .

~— O |
)
—_ —™

X Fr_l

B olo|lo|lo|lo|lo|lo|lo|lo]|o olo|lo|lo|lo|lo|lo|lo|o]|o
olo|lo|lo|lo|lo|lo|lo|lo]|o olo|lo|lo|lo|lo|lo|lo|o]|o

- olo|RIS[8|S|o|olo|o V o|lo|RI8[8|S|o|olo|o

"—-- o|lo|RI8[8I18|o|olo]|o ~ |[0|o|8I818[8|cololo|o

e olo|l3[8I3|S|elo|o|o V_A o|lo|RI8[8IS|o|lolo|o

— ~

N — olo|8|81o|S|o|o|lolo ~ o|lo|S|8|o|S|o|lo|lo|o

b oloRI818|8|o|olo|o o|lolS3ISISIS|elo|o|e

o o

a olo|o|lo|o|o|lo|lo|g|o o |o|o)lofolo|o|lolo|g|o

. olo|lo|lo|lo|lo|lo|lo|o]|o wOOOOOOOOOO

a olo|lo|lo|lo|lo|lo|lo|lo]|o & lo|lo|lolo|lo|lo|lolo|lo]o




Efficient Implementation: Separability

For example, recall the 2D Gaussian:

1 x2 4 y?
Ga (iEa y) — ) 2 CXP 207

The 2D Gaussian can be expressed as a product of two functions, one a
function of x and another a function of y

20



Efficient Implementation: Separability

For example, recall the 2D Gaussian:

1 w2+y2

Ga (ZC, y) — ) 2 CXP 207
1 :I:2 1 y2 >
— exX 202 ex 202
( 2O P ) ( 2O P
function of x function of y

The 2D Gaussian can be expressed as a product of two functions, one a
function of x and another a function of y

27



Efficient Implementation: Separability

For example, recall the 2D Gaussian:

1 w2+y2

Ga (ZC, y) — ) 2 CXP 207
1 :I:2 1 y2 >
— exX 202 ex 202
( 2O P ) ( 2O P
function of x function of y

The 2D Gaussian can be expressed as a product of two functions, one a
function of x and another a function of y

In this case the two functions are (identical) 1D Gaussians

28



Efficient Implementation: Separability

Naive implementation of 2D Gaussian:

At each pixel, (X,Y), there are m x m multiplications

There are nxn pixelsin (X,Y)

Total: m* x n* multiplications

29



Efficient Implementation: Separability

Naive implementation of 2D Gaussian:

At each pixel, (X,Y), there are m x m multiplications

There are nxn pixelsin (X,Y)

Total: m* x n* multiplications

Separable 2D Gaussian:

30



Efficient Implementation: Separability

Naive implementation of 2D Gaussian:

At each pixel, (X,Y), there are m x m multiplications

There are nxn pixelsin (X,Y)

Total: m* x n* multiplications

Separable 2D Gaussian:

At each pixel, (X ,‘Y), there are 2m  multiplications

There are n Xn pixels in (X QY)

2

Total. 2m X n“ multiplications

31



Example 7. Smoothing with a Pillbox

Let the radius (i.e., half diameter) of the filter be 7r

In a contentious domain, a 2D (circular) pilloox filter, f (x, v), is defined as:

1 1 if 22+ y? < r?
flz,y) = { =

T2 0 otherwise

1

Tre’

The scaling constant, ensures that the area of the filter is one

32



Example 7. Smoothing with a Pillbox

Secall that the 2
separable and

D Gaussian is the only (non trivial) 2
rotationally invariant.

D function that 1s both

A 2D pillbox is rotationally invariant but not separable.

[here are occasions wnen we want to convolve an image with a 2D pilloox. hus,
t worth exploring possibilities tor efficient implementation.

33



Example 7. Smoothing with a Pillbox

A 2D box filter can be expressed as the sum of a 2D pillbox and some “extra

corner bits”
A 4

34



Example 7. Smoothing with a Pillbox

Therefore, a 2D pilloox filter can be expressed as the difference of a 2D box

filter and those same “extra corner bits”

35



Example 7. Smoothing with a Pillbox

N RO

Implementing convolution with a 2D pilloox filter as the difference between
convolution with a box filter and convolution with the “extra corner bits” filter

allows us to take advantage of the separability of a box filter

Further, we can postpone scaling the output to a single, final step so that

convolution involves filters containing all O's and 1°s
— This means the required convolutions can be implemented without any

Mmultiplication at all

36



Example 7. Smoothing with a Pillbox

Original 11 x 11 Pillbox

37



Speeding Up Convolution (The Convolution Theorem)

Let z be the product of two numbers, x and y, that is,

2 = T



Speeding Up Convolution (The Convolution Theorem)

Let z be the product of two numbers, x and y, that is,
zZ = XY
Taking logarithms of both sides, one obtains

Inz=Inx+Iny



Speeding Up Convolution (The Convolution Theorem)

Let z be the product of two numbers, x and y, that is,
zZ = XY
Taking logarithms of both sides, one obtains

Inz=Inx+Iny

Therefore.



Speeding Up Convolution (The Convolution Theorem)

Let z be the product of two numbers, x and y, that is,
zZ = XY
Taking logarithms of both sides, one obtains

Inz=Ihzx+Iny

Theretore.
z = exp? = exp

Interpretation: At the expense of two In() and one exp() computations,
Mmultiplication is reduced to admission

41



Speeding Up Rotation

Another analogy: 2D rotation of a point by an angle & about the origin

The standard approach, in Euclidean coordinates, involves a matrix
multiplication

r - cosa —sina | | x
y - sina cosa || Yy

-

Suppose we transform to polar coordinates
(@, y) = (p,0) = (p,0 + @) = (2, ¢)

Rotation becomes addition, at expense of one polar coordinate transtorm and
one Inverse polar coordinate transform

42



Speeding Up Convolution (The Convolution Theorem)

Similarly, some image processing operations become cheaper in a

transform domain

f(x, y)—={ Transform
N —_ —

I(u, v)

Operation
R

R|T(u,v)]

Inverse
transform

> g(x,y)

N —

Spatlal \—\,———, Spatlal

Transform domain

domain

Gonzales & Woods (3rd ed.) Figure 2.39

43

domain



Speeding Up Convolution (The Convolution Theorem)

Convolution Theorem:

| et i (x,y) = f(z,y) @i(x,y)

then Z'(wg,wy) = F(wg, wy) Z(wg,w,)

where T’ (wg, w,), F(wg,w,), and Z(w,,w,) are Fourier transforms of ' (x, y),
f(z,y) and i(z,y)

At the expense of two Fourier transforms and one inverse Fourier transform,
convolution can be reduced to (complex) multiplication

44



Existential Choice



Fourier Transform (you will NOT be tested on this)

Basic building block:

Asin(wz + ¢)

Fourier’s claim: Add enough of these to get any periodic signal you want!

A6 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

Basic building block:

Asin(wz + ¢)

amplitude \ ohase
siNUsoId variable
angular
frequency

Fourier’s claim: Add enough of these to get any periodic signal you want!

17 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

How would you generate this function”

48 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

How would you generate this function”

—
-_-.-
v,
-’
‘——-
——
—
"
"
-—
I
_'

sin(2mx)

49 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

How would you generate this function”

50

Slide Credit: loannis (Yannis) Gkioulekas (CMU)

AVA AVA ™\ ™\

f | | \ / \ / \ _

f |. .l | / \ / \ A | N .\‘ A

l’ \ | ‘|i | """ \‘. r'/, \\ 'f \ | \\ f \\ / f \ }{{ \ Jf \\ |

| %q ;‘} | ;" — | \\ ff \\ f + \ f | /f \\ | k.\ | \ l" \/

| | | V)
!'x\ a ‘ ,l"I l‘\ /N "‘ ‘\ ’/", i\\\ /.‘ / \\ " \\J‘ \u'} \v" \\j \ / }

: 1
sin(27x) 3 sin(273x)



Fourier Transform (you will NOT be tested on this)

How would you generate this function”

“!' "‘| "l' ' \‘.li }:‘" "\-\ "/ “"\‘. A ; . N

| : ‘l / ' a \ f { \ f “‘ f .\

’ l ‘ ‘. f “\ { \ " \ f | | \ \ " | |

| | | | f ,' \ A N I Y A B |

| ﬁl ‘} ‘| ,‘ — | \l\ f “ + \ “ \ ff \u / “' }‘ \ '} "\ {'
| Ia 's ,! \ / \ / |/ ~\ \ }f \ '} \ [
!I - |‘ ||| ,“ ‘\\ ,l"‘ l\ ,l"‘ “u" \ | ‘\t." \V \! l'u/
. 1 . : 1

f(x) = sin(2mx) + 2 sin(273x) sin(2mx) . sin(273z)

51 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

How would you generate this function®

e e et B § P — e B B & B

U

~O
4
~O

square wave

59 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

How would you generate this function®

square wave

——
——
e,
—
‘—‘—

53 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

How would you generate this function®

T —
a———
s——
H._
—
—
——
—
—
S——
—
—
——
—
_—
—
—
-
gl
——
-
—
g~
——
o
-
—
——
-‘-)
e
e
-

square wave

—
I —
——

54 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

How would you generate this function®

U

| ! \\ / _I_ "\u 'ﬁ\J n"u’p\f\‘-f (‘\/\Uﬁ\\/\v{\\/ \\Jﬂ'\/’ ,\

square wave

55 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

How would you generate this function®

square wave

U

| ’\‘/\'l' \,'.V.\ ‘Jf \v‘r\'»" “.JA V"!‘f '\‘“l"\' {.\v,f\/\vf\. )ﬁ‘\"A‘U‘A|‘J"||‘.‘F

How would you
express this
mathematically’?

50

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

How would you generate this function®

e e et B § P — e B B & B

O
Z sin(2mkx)

INfiNnite sum of sine waves

square wave

57 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

Basic building block:

Asin(wz + ¢)

Fourier’s claim: Add enough of these to get any periodic signal you want!

58 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

250 |-
A

200 - / L\

150 |- 4

_.100_“”11£ [’V | \H’
| W/
50 f " 4 | [ M w\! J\s I | / | I'V M A “s "
A A | p VTR

00 l 510 | 1(I)O . 1;0 | 2(110

I"ixel point

Image from: Numerical Simulation and Fractal Analysis of Mesoscopic Scale Failure in Shale Using Digital Images

59



Fourier Transform (you will NOT be tested on this

amplitude

Forsyth & Ponce (2nd ed.) Figure 4.6



Fourier Transform (you will NOT be tested on this

cheetah phase
with zebra
amplitude

zebra phase
with cheetah
amplitude

amplitude

Forsyth & Ponce (2nd ed.) Figure 4.6



Speeding Up Convolution (The Convolution Theorem)

Convolution Theorem:

| et i (x,y) = f(z,y) @i(x,y)

then Z'(wg,wy) = F(wg, wy) Z(wg,w,)

where T’ (wg, w,), F(wg,w,), and Z(w,,w,) are Fourier transforms of ' (x, y),
f(z,y) and i(z,y)

At the expense of two Fourier transforms and one inverse Fourier transform,
convolution can be reduced to (complex) multiplication

02



Speeding Up Convolution (The Convolution Theorem)

General implementation of convolution:

At each pixel, (X,Y), there are m x m multiplications

There are nxn pixelsin (X,Y)

Total: m* x n* multiplications

Convolution if FFT space:

Cost of FFT/IFFT for image: O(n?logn)
Cost of FFT/IFFT for filter: @ (m? logm)

Cost of convolution: O(n?)

03



Summary

We covered two additional linear filters: Gaussian, pillbox

Separability (of a 2D filter) allows for more efficient implementation (as two
1D filters)

64



