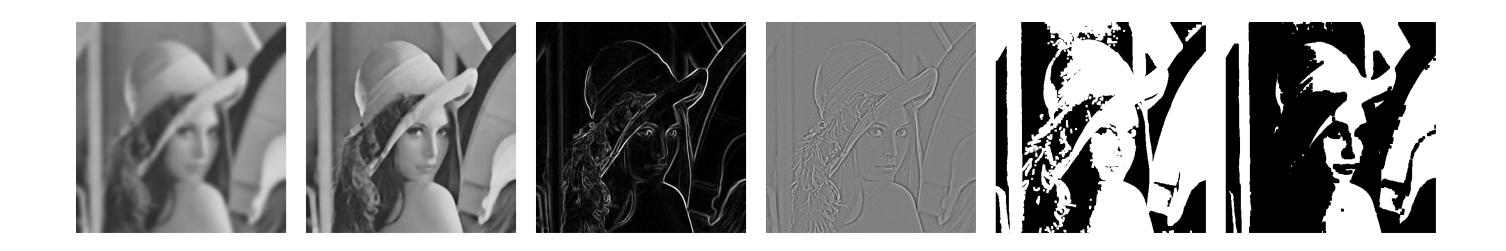


CPSC 425: Computer Vision



Lecture 5: Image Filtering (continued)

(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Menu for Today (September 14, 2018)

Topics:

Gaussian and Pillbox filters

The Convolution Theorem

Separability

Non-linear filters

Redings:

- Today's Lecture: none
- Next Lecture: [Optional] Forsyth & Ponce (2nd ed.) 4.4

Reminders:

Assignment 1: Image Filtering and Hybrid Images due September 24th

Today's "fun" Example: Rolling Shutter

Today's "fun" Example: Rolling Shutter

Lecture 4: Re-cap

— The correlation of F(X,Y) and I(X,Y) is:

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output filter image (signal)

- **Visual interpretation**: Superimpose the filter F on the image I at (X,Y), perform an element-wise multiply, and sum up the values
- Convolution is like correlation except filter "flipped"

if
$$F(X,Y) = F(-X,-Y)$$
 then correlation = convolution.

Lecture 4: Re-cap

Ways to handle boundaries

- Ignore/discard. Make the computation undefined for top/bottom k rows and left/right-most k columns
- Pad with zeros. Return zero whenever a value of I is required beyond the image bounds
- Assume periodicity. Top row wraps around to the bottom row; leftmost column wraps around to rightmost column.

Simple examples of filtering:

- copy, shift, smoothing, sharpening

Linear filter properties:

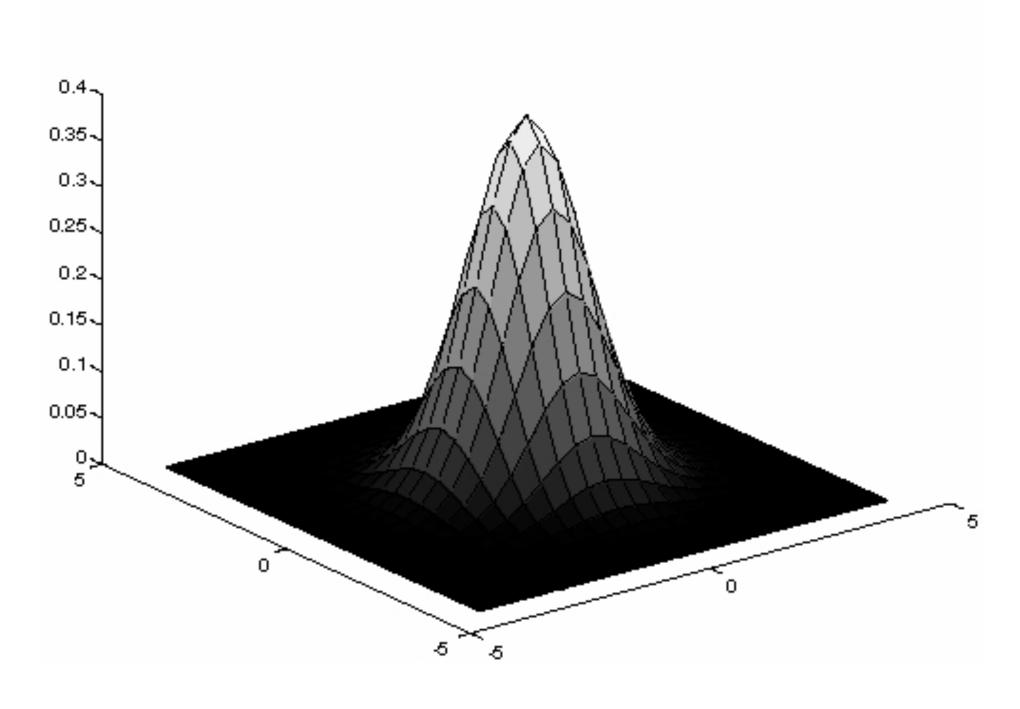
- superposition, scaling, shift invariance

Characterization Theorem: Any linear, shift-invariant operation can be expressed as a convolution

Idea: Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2+y^2}{2\sigma^2}}$$

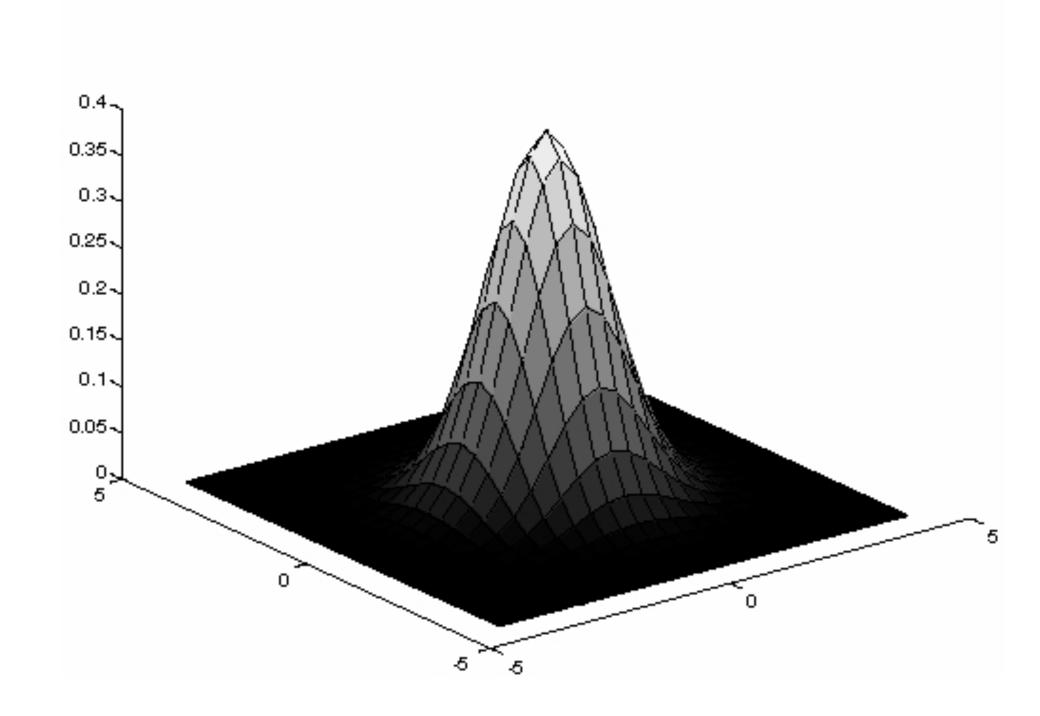


Forsyth & Ponce (2nd ed.)
Figure 4.2

Idea: Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

$$G_{\pmb{\sigma}}(x,y) = rac{1}{2\pi \pmb{\sigma}^2} \exp^{-rac{x^2+y^2}{2\pmb{\sigma}^2}}$$
 Standard Deviation



Forsyth & Ponce (2nd ed.)
Figure 4.2

Quantized an truncated 3x3 Gaussian filter:

$G_{\sigma}(-1,1)$	$G_{\sigma}(0,1)$	$G_{\sigma}(1,1)$
$G_{\sigma}(-1,0)$	$G_{\sigma}(0,0)$	$G_{\sigma}(1,0)$
$G_{\sigma}(-1,-1)$	$G_{\sigma}(0,-1)$	$G_{\sigma}(1,-1)$

Quantized an truncated 3x3 Gaussian filter:

$G_{\sigma}(-1,1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$	$G_{\sigma}(0,1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$	$G_{\sigma}(1,1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$
$G_{\sigma}(-1,0) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$	$G_{\sigma}(0,0) = \frac{1}{2\pi\sigma^2}$	$G_{\sigma}(1,0) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$
$G_{\sigma}(-1, -1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$	$G_{\sigma}(0,-1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$	$G_{\sigma}(1,-1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$

Quantized an truncated 3x3 Gaussian filter:

$G_{\sigma}(-1,1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$	$G_{\sigma}(0,1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$	$G_{\sigma}(1,1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$
$G_{\sigma}(-1,0) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$	$G_{\sigma}(0,0) = \frac{1}{2\pi\sigma^2}$	$G_{\sigma}(1,0) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$
$G_{\sigma}(-1, -1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$	$G_{\sigma}(0,-1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$	$G_{\sigma}(1,-1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$

With $\sigma = 1$:

0.059	0.097	0.059
0.097	0.159	0.097
0.059	0.097	0.059

Quantized an truncated 3x3 Gaussian filter:

$G_{\sigma}(-1,1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$	$G_{\sigma}(0,1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$	$G_{\sigma}(1,1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$
$G_{\sigma}(-1,0) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$	$G_{\sigma}(0,0) = \frac{1}{2\pi\sigma^2}$	$G_{\sigma}(1,0) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$
$G_{\sigma}(-1, -1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$	$G_{\sigma}(0,-1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$	$G_{\sigma}(1,-1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$

With $\sigma = 1$:

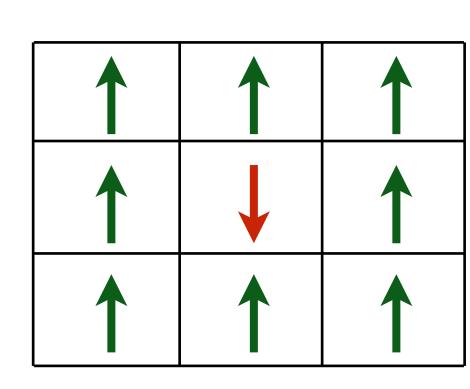
0.059	0.097	0.059
0.097	0.159	0.097
0.059	0.097	0.059

What happens if σ is larger?

Quantized an truncated 3x3 Gaussian filter:

$G_{\sigma}(-1,1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$	$G_{\sigma}(0,1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$	$G_{\sigma}(1,1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$
$G_{\sigma}(-1,0) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$	$G_{\sigma}(0,0) = \frac{1}{2\pi\sigma^2}$	$G_{\sigma}(1,0) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$
$G_{\sigma}(-1, -1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$	$G_{\sigma}(0,-1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$	$G_{\sigma}(1,-1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$

With $\sigma = 1$:



What happens if σ is larger?

— More blur

Quantized an truncated 3x3 Gaussian filter:

$G_{\sigma}(-1,1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$	$G_{\sigma}(0,1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$	$G_{\sigma}(1,1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$
$G_{\sigma}(-1,0) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$	$G_{\sigma}(0,0) = \frac{1}{2\pi\sigma^2}$	$G_{\sigma}(1,0) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$
$G_{\sigma}(-1,-1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$	$G_{\sigma}(0,-1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$	$G_{\sigma}(1,-1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$

With $\sigma = 1$:

0.059	0.097	0.059
0.097	0.159	0.097
0.059	0.097	0.059

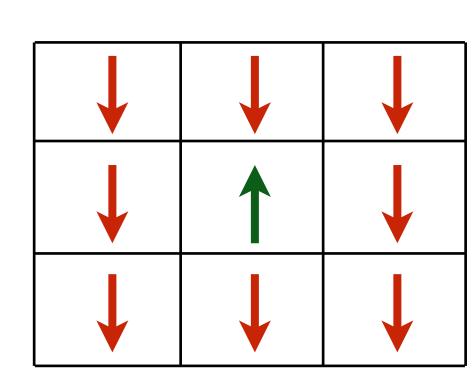
What happens if σ is larger?

What happens if σ is smaller?

Quantized an truncated 3x3 Gaussian filter:

$G_{\sigma}(-1,1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$	$G_{\sigma}(0,1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$	$G_{\sigma}(1,1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$
$G_{\sigma}(-1,0) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$	$G_{\sigma}(0,0) = \frac{1}{2\pi\sigma^2}$	$G_{\sigma}(1,0) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$
$G_{\sigma}(-1, -1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$	$G_{\sigma}(0,-1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$	$G_{\sigma}(1,-1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$

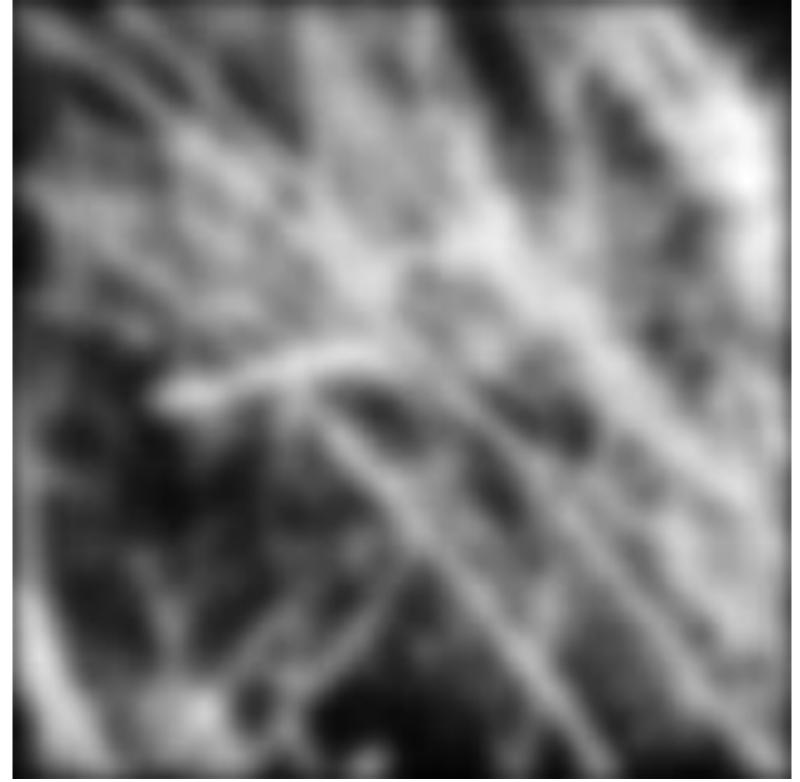
With $\sigma = 1$:



What happens if σ is larger?

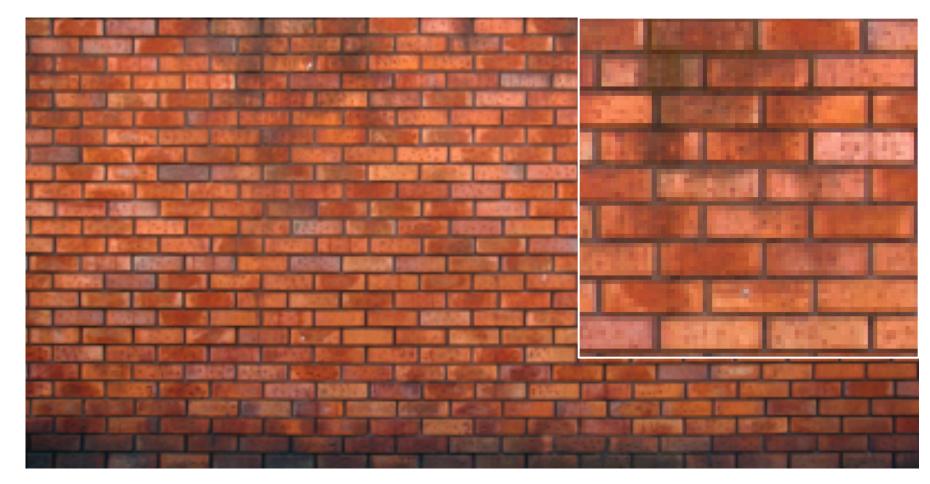
What happens if σ is smaller?

Less blur

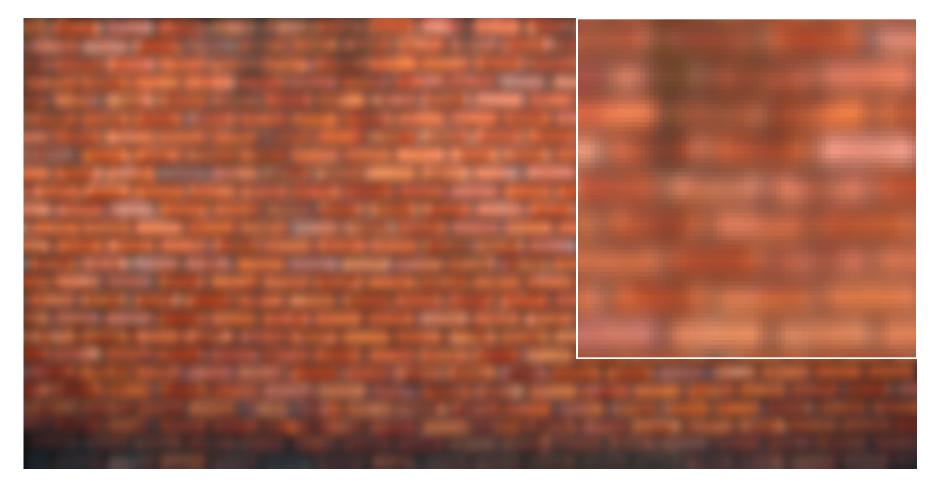


Forsyth & Ponce (2nd ed.) Figure 4.1 (left and right)

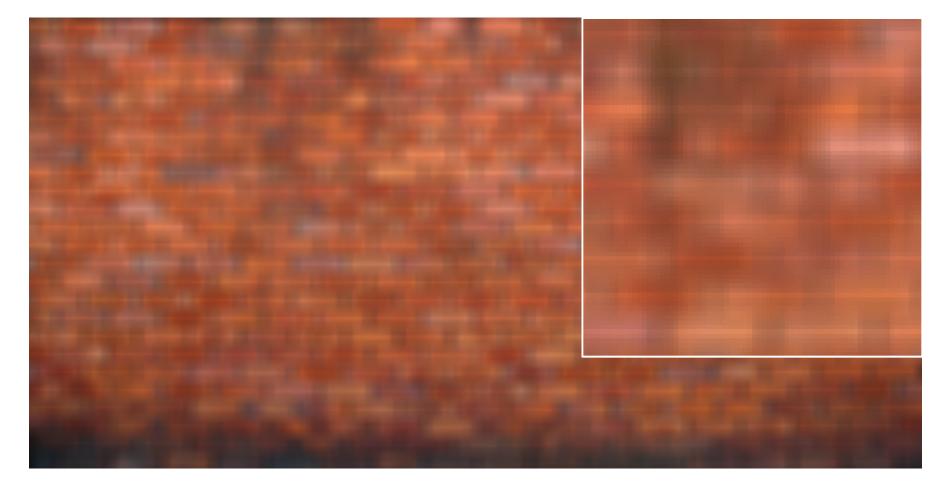
Box vs. Gaussian Filter



original



7x7 Gaussian



7x7 box

Fun: How to get shadow effect?

University of British Columbia

Fun: How to get shadow effect?

University of British Columbia

Blur with a Gaussian kernel, then compose the blurred image with the original (with some offset)

Quantized an truncated 3x3 Gaussian filter:

$G_{\sigma}(-1,1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$	$G_{\sigma}(0,1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$	$G_{\sigma}(1,1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$
$G_{\sigma}(-1,0) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$	$G_{\sigma}(0,0) = \frac{1}{2\pi\sigma^2}$	$G_{\sigma}(1,0) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$
$G_{\sigma}(-1, -1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$	$G_{\sigma}(0,-1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$	$G_{\sigma}(1,-1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$

With $\sigma = 1$:

0.059	0.097	0.059
0.097	0.159	0.097
0.059	0.097	0.059

What is the problem with this filter?

Quantized an truncated 3x3 Gaussian filter:

$G_{\sigma}(-1,1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$	$G_{\sigma}(0,1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$	$G_{\sigma}(1,1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$
$G_{\sigma}(-1,0) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$	$G_{\sigma}(0,0) = \frac{1}{2\pi\sigma^2}$	$G_{\sigma}(1,0) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$
$G_{\sigma}(-1, -1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$	$G_{\sigma}(0,-1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{1}{2\sigma^2}}$	$G_{\sigma}(1,-1) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{2}{2\sigma^2}}$

With $\sigma = 1$:

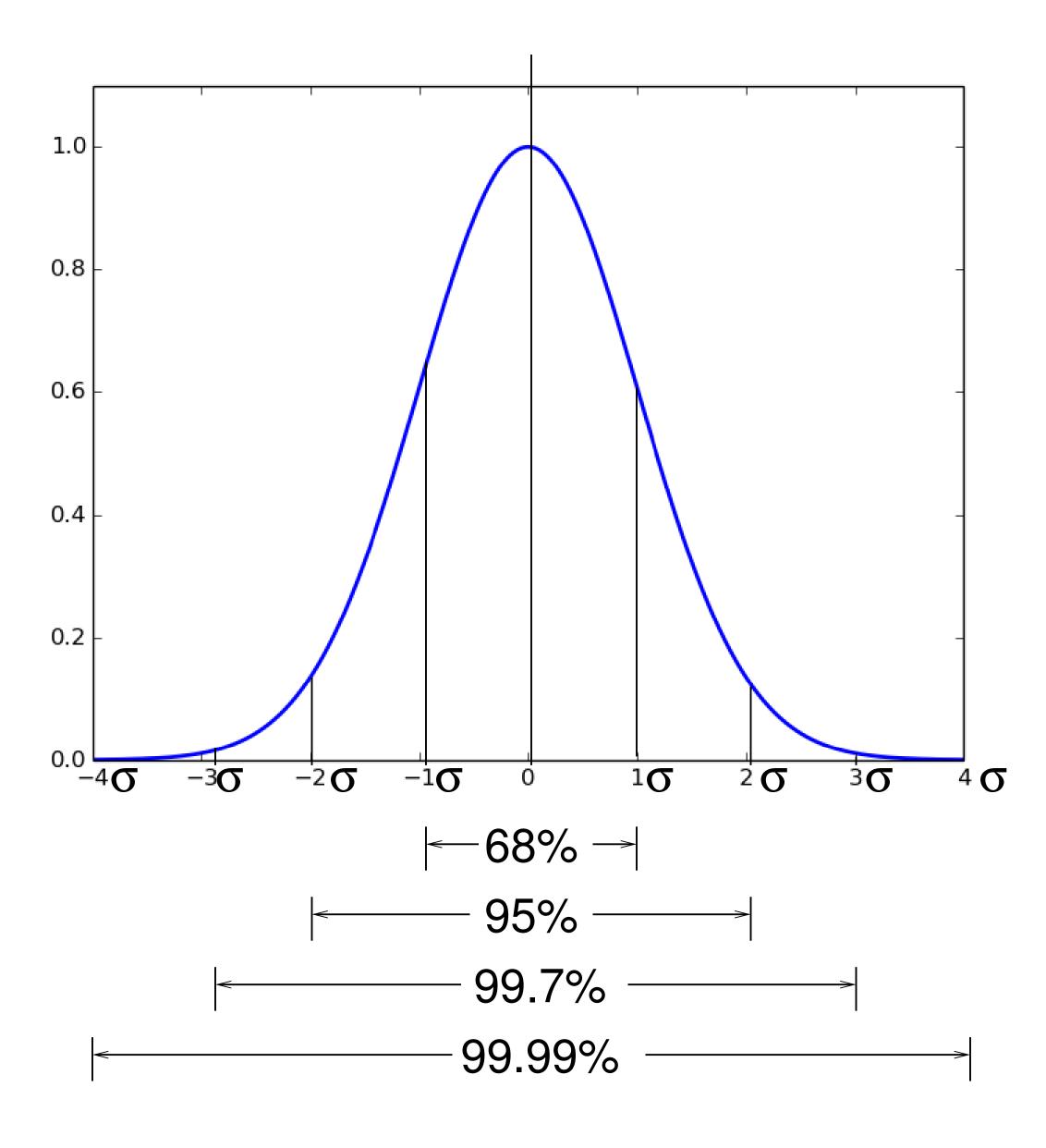
0.059	0.097	0.059
0.097	0.159	0.097
0.059	0.097	0.059

What is the problem with this filter?

does not sum to 1

truncated too much

Gaussian: Area Under the Curve



With
$$\sigma = 1$$
:

0.059	0.097	0.059
0.097	0.159	0.097
0.059	0.097	0.059

Better version of the Gaussian filter:

- sums to 1 (normalized)
- captures $\pm 2\sigma$

	84
.03	1_
2	273

1	4	7	4	1
4	16	26	16	4
7	26	41	26	7
4	16	26	16	4
1	4	7	4	1

In general, you want the Gaussian filter to capture $\pm 3\sigma$, for $\sigma = 1 = 7x7$ filter

A 2D function of x and y is **separable** if it can be written as the product of two functions, one a function only of x and the other a function only of y

Both the 2D box filter and the 2D Gaussian filter are separable

Both can be implemented as two 1D convolutions:

- First, convolve each row with a 1D filter
- Then, convolve each column with a 1D filter
- Aside: or vice versa

The **2D Gaussian** is the only (non trivial) 2D function that is both separable and rotationally invariant.

Separability: Box Filter Example

Standard (3x3)

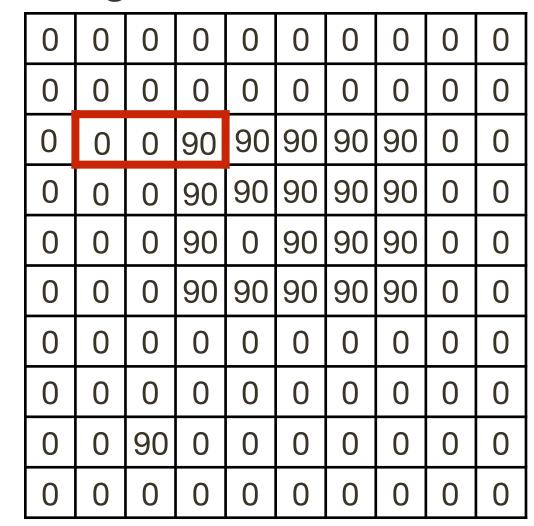
0 0	0	0	0	0	0	0	0	0	0	0
0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 0 0 0 0 0 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0	0	0	0	0	0	0	0	0	0	0
0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0	0	0	0	90	90	90	90	90	0	0
0 0 0 90 90 90 90 90 0 <td>0</td> <td>0</td> <td>0</td> <td>90</td> <td>90</td> <td>90</td> <td>90</td> <td>90</td> <td>0</td> <td>0</td>	0	0	0	90	90	90	90	90	0	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0	0	0	0	90	0	90	90	90	0	0
0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0	0	0	0	90	90	90	90	90	0	0
0 0 90 0 0 0 0 0 0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	90	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0

I(X,Y)

$$F(X,Y) = F(X)F(Y)$$
 filter
$$\frac{1}{1}\frac{1}{1}\frac{1}{1}$$

	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
	0	10	20	30	30	30	20	10	
	10	10	10	10	0	0	0	0	
	10	30	10	10	0	0	0	0	

image

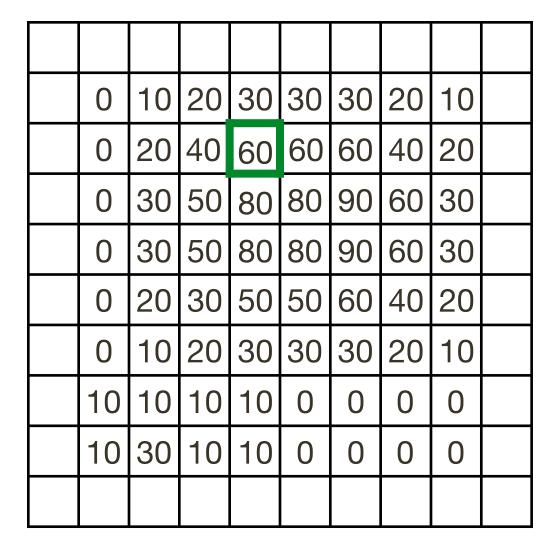


F(X)filter

	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
	0	30	60	90	90	90	60	30	
	0	30	60	90	90	90	60	30	
	0	30	30	60	60	90	60	30	
	0	30	60	90	90	90	60	30	
	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
	30	30	30	30	0	0	0	0	
	0	0	0	0	0	0	0	0	

F(Y)filter

I'(X,Y)output



For example, recall the 2D Gaussian:

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2+y^2}{2\sigma^2}}$$

The 2D Gaussian can be expressed as a product of two functions, one a function of x and another a function of y

For example, recall the 2D Gaussian:

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2+y^2}{2\sigma^2}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$
function of x function of y

The 2D Gaussian can be expressed as a product of two functions, one a function of x and another a function of y

For example, recall the 2D Gaussian:

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2+y^2}{2\sigma^2}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$
function of x function of y

The 2D Gaussian can be expressed as a product of two functions, one a function of x and another a function of y

In this case the two functions are (identical) 1D Gaussians

Naive implementation of 2D Gaussian:

At each pixel, (X,Y), there are $m\times m$ multiplications There are $n\times n$ pixels in (X,Y)

Total: $m^2 \times n^2$ multiplications

Naive implementation of 2D Gaussian:

At each pixel, (X, Y), there are $m \times m$ multiplications There are $n \times n$ pixels in (X, Y)

Total: $m^2 \times n^2$ multiplications

Separable 2D Gaussian:

Naive implementation of 2D Gaussian:

At each pixel, (X, Y), there are $m \times m$ multiplications There are $n \times n$ pixels in (X, Y)

Total: $m^2 \times n^2$ multiplications

Separable 2D Gaussian:

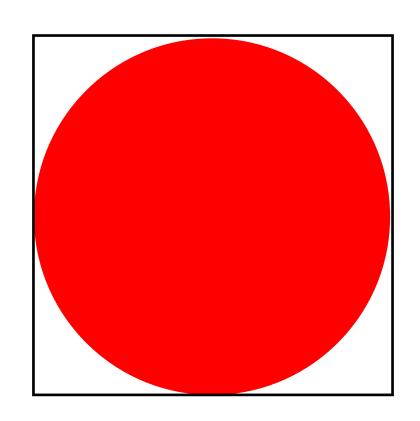
At each pixel, (X,Y), there are 2m multiplications There are $n\times n$ pixels in (X,Y)

Total: $2m \times n^2$ multiplications

Let the radius (i.e., half diameter) of the filter be r

In a contentious domain, a 2D (circular) pillbox filter, f(x, y), is defined as:

$$f(x,y) = \frac{1}{\pi r^2} \begin{cases} 1 & \text{if } x^2 + y^2 \le r^2 \\ 0 & \text{otherwise} \end{cases}$$



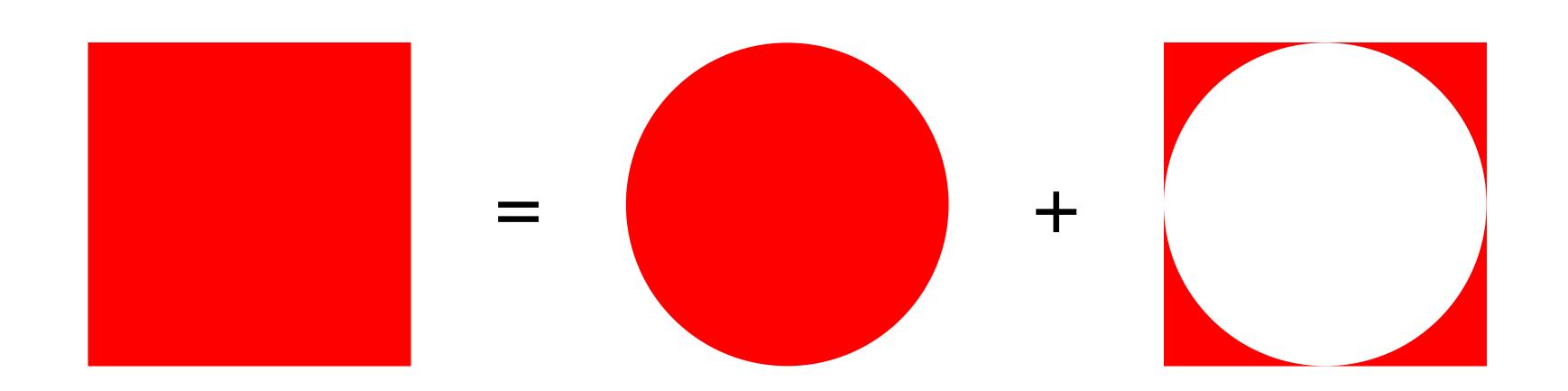
The scaling constant, $\frac{1}{\pi r^2}$, ensures that the area of the filter is one

Recall that the 2D Gaussian is the only (non trivial) 2D function that is both separable and rotationally invariant.

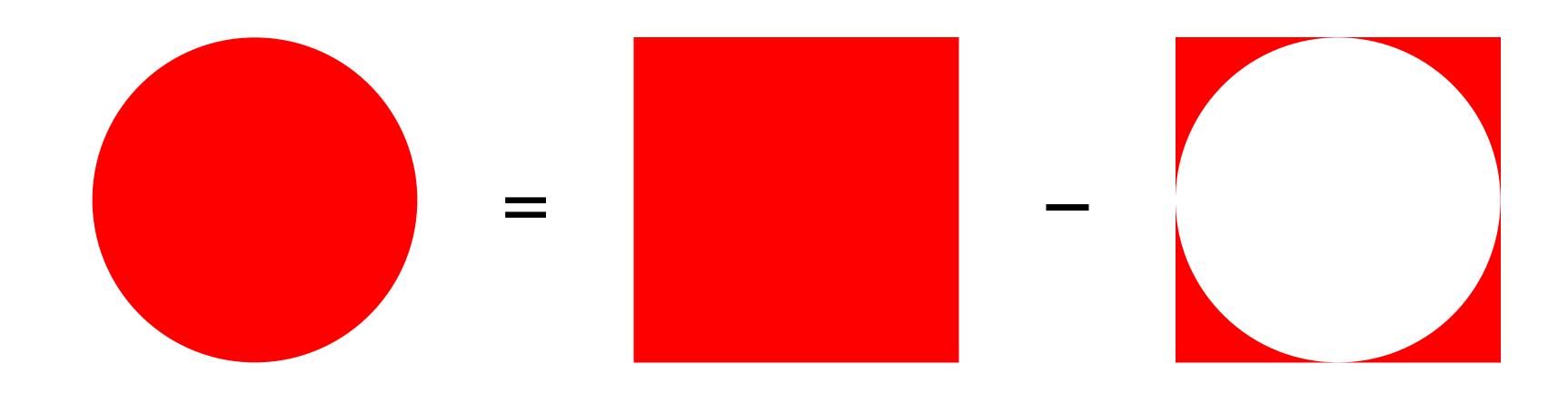
A 2D pillbox is rotationally invariant but not separable.

There are occasions when we want to convolve an image with a 2D pillbox. Thus, it worth exploring possibilities for **efficient implementation**.

A 2D box filter can be expressed as the sum of a 2D pillbox and some "extra corner bits"



Therefore, a 2D pillbox filter can be expressed as the difference of a 2D box filter and those same "extra corner bits"

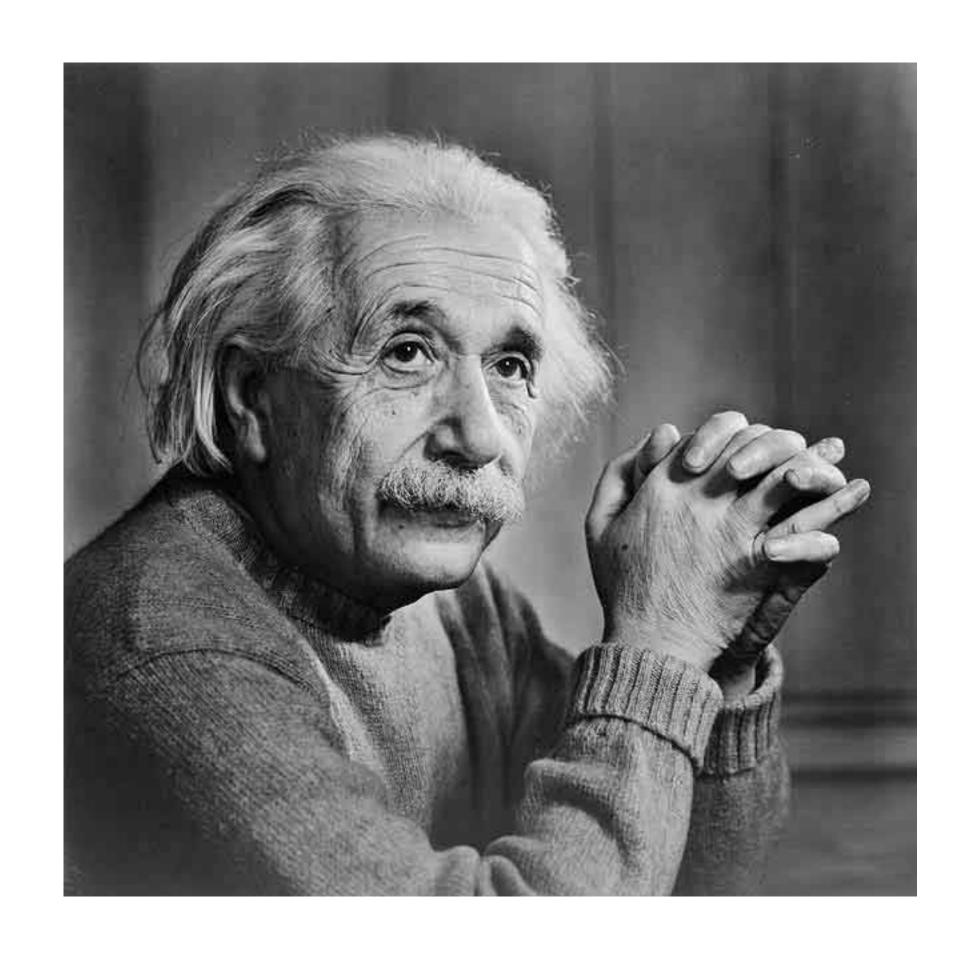


Implementing convolution with a 2D pillbox filter as the difference between convolution with a box filter and convolution with the "extra corner bits" filter allows us to take advantage of the separability of a box filter

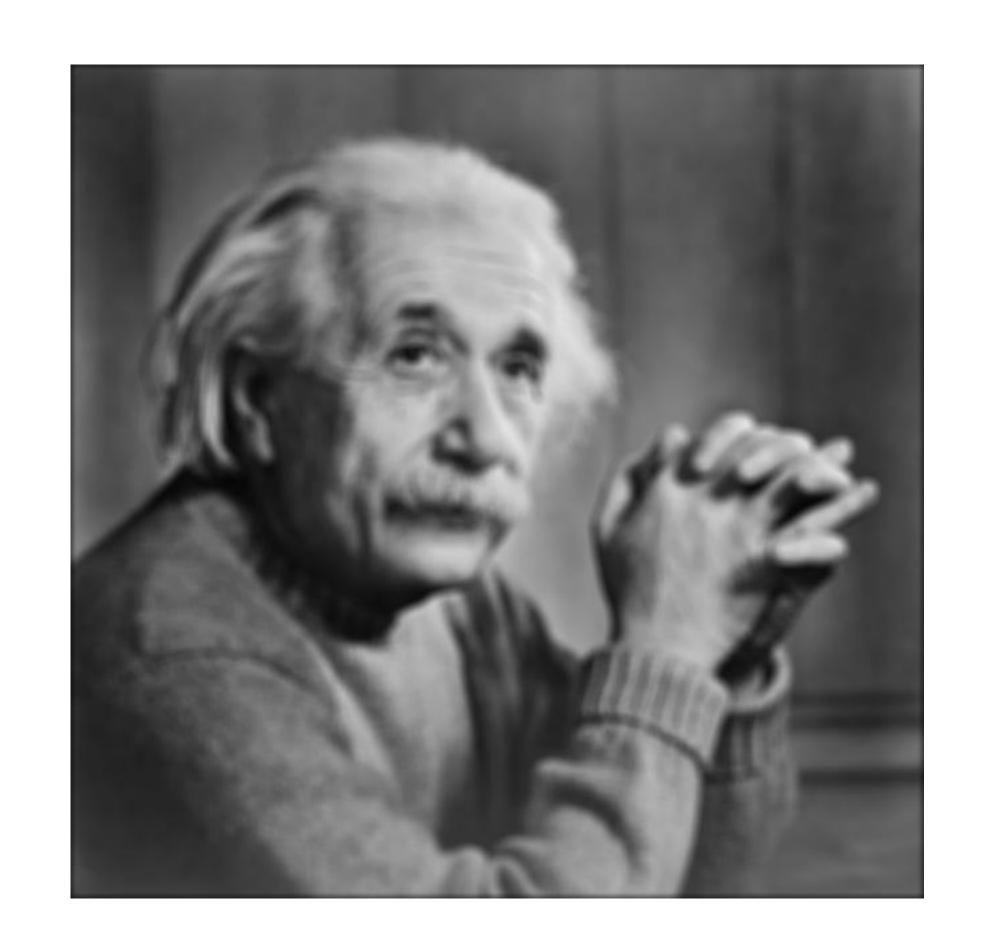
Further, we can postpone scaling the output to a single, final step so that convolution involves filters containing all 0's and 1's

— This means the required convolutions can be implemented without any multiplication at all

Example 7: Smoothing with a Pillbox



Original



11 x 11 Pillbox

Let z be the product of two numbers, x and y, that is,

$$z = xy$$

Let z be the product of two numbers, x and y, that is,

$$z = xy$$

Taking logarithms of both sides, one obtains

$$\ln z = \ln x + \ln y$$

Let z be the product of two numbers, x and y, that is,

$$z = xy$$

Taking logarithms of both sides, one obtains

$$\ln z = \ln x + \ln y$$

Therefore.

$$z = \exp^{\ln z} = \exp^{(\ln x + \ln y)}$$

Let z be the product of two numbers, x and y, that is,

$$z = xy$$

Taking logarithms of both sides, one obtains

$$\ln z = \ln x + \ln y$$

Therefore.

$$z = \exp^{\ln z} = \exp^{(\ln x + \ln y)}$$

Interpretation: At the expense of two ln() and one exp() computations, multiplication is reduced to admission

Speeding Up Rotation

Another analogy: **2D** rotation of a point by an angle α about the origin

The standard approach, in Euclidean coordinates, involves a matrix multiplication

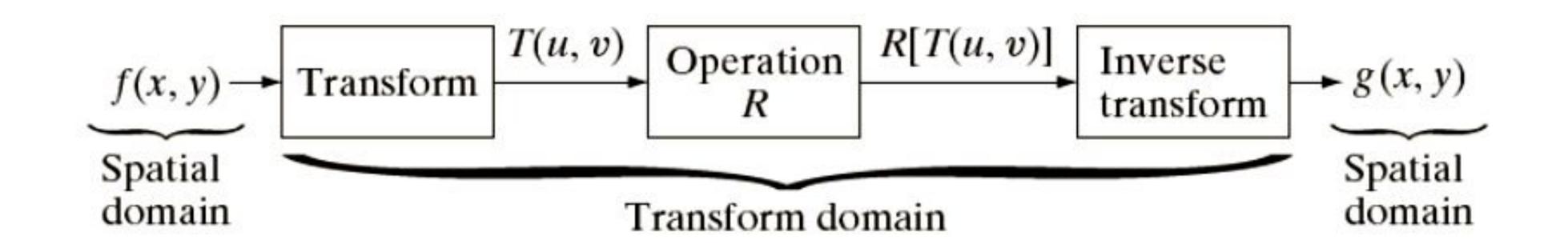
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Suppose we transform to polar coordinates

$$(x,y) \rightarrow (\rho,\theta) \rightarrow (\rho,\theta+\alpha) \rightarrow (x',y')$$

Rotation becomes addition, at expense of one polar coordinate transform and one inverse polar coordinate transform

Similarly, some image processing operations become cheaper in a transform domain



Gonzales & Woods (3rd ed.) Figure 2.39

Convolution Theorem:

Let
$$i'(x,y)=f(x,y)\otimes i(x,y)$$
 then $\mathcal{I}'(w_x,w_y)=\mathcal{F}(w_x,w_y)\;\mathcal{I}(w_x,w_y)$

where $\mathcal{I}'(w_x, w_y)$, $\mathcal{F}(w_x, w_y)$, and $\mathcal{I}(w_x, w_y)$ are Fourier transforms of i'(x, y), f(x, y) and i(x, y)

At the expense of two **Fourier** transforms and one inverse Fourier transform, convolution can be reduced to (complex) multiplication

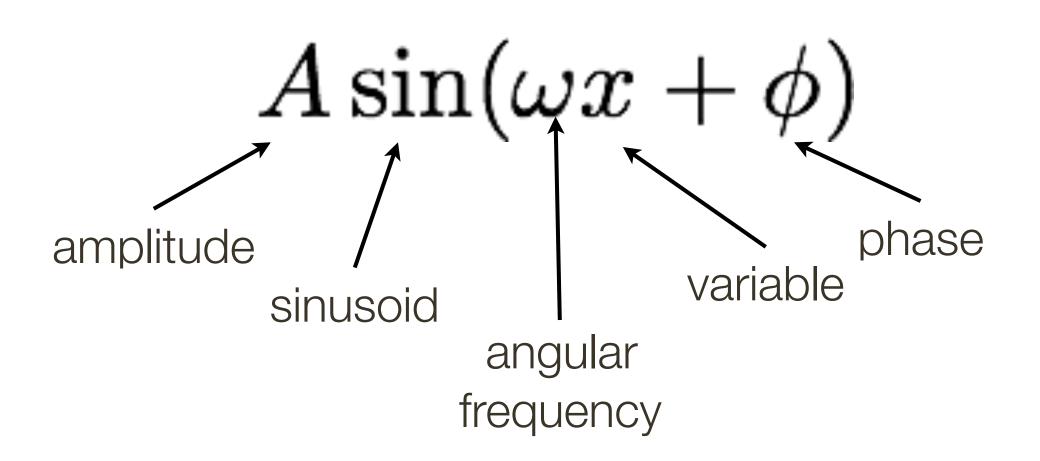
Existential Choice

Basic building block:

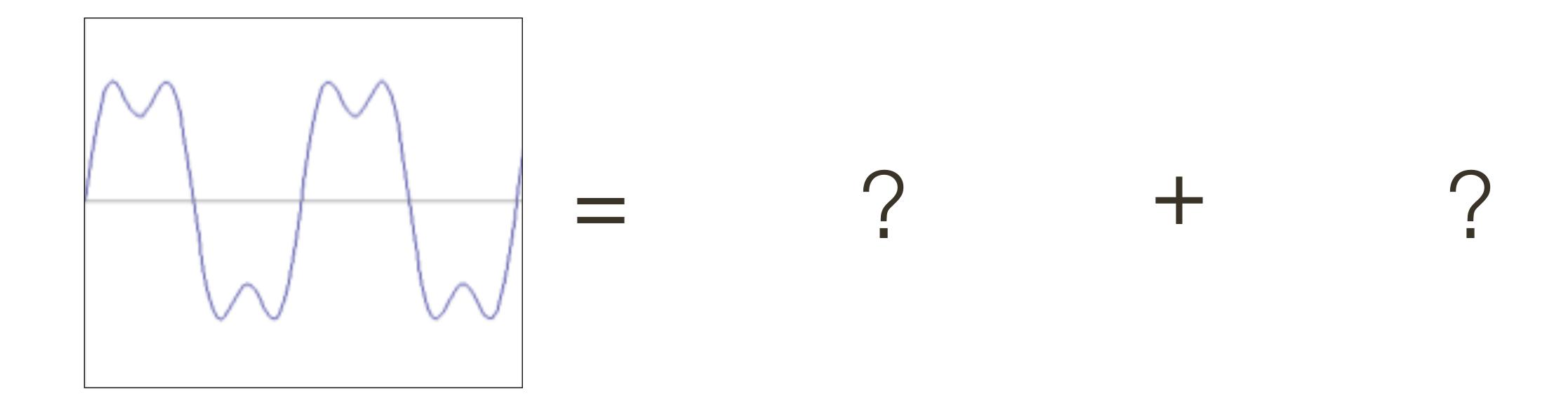
$$A\sin(\omega x + \phi)$$

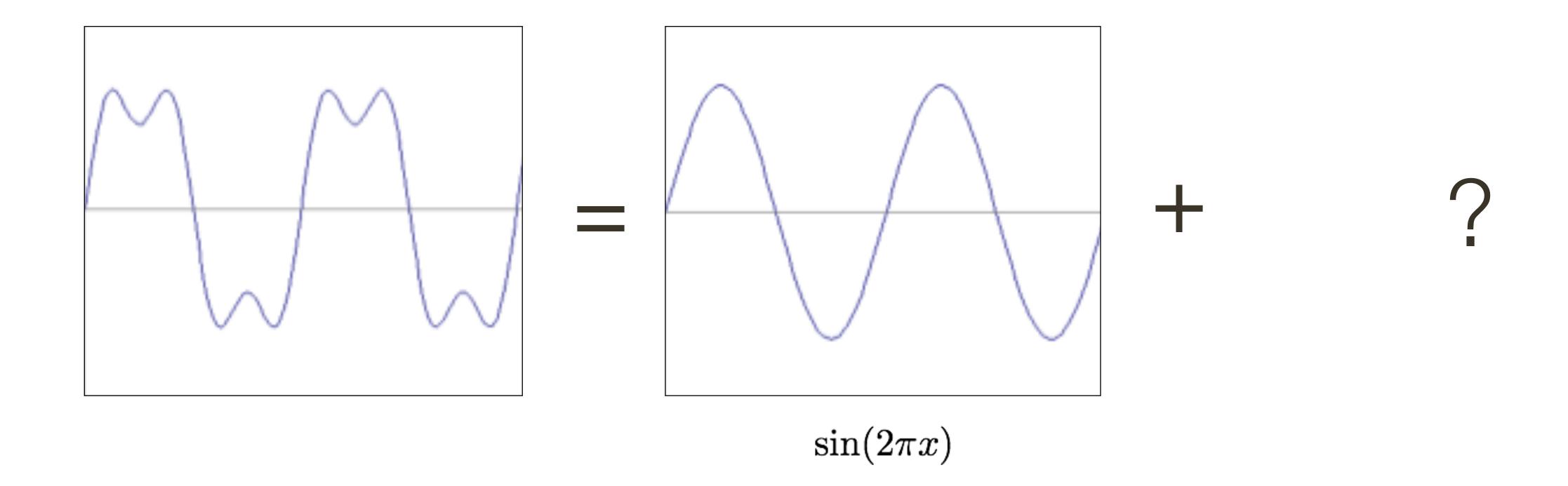
Fourier's claim: Add enough of these to get any periodic signal you want!

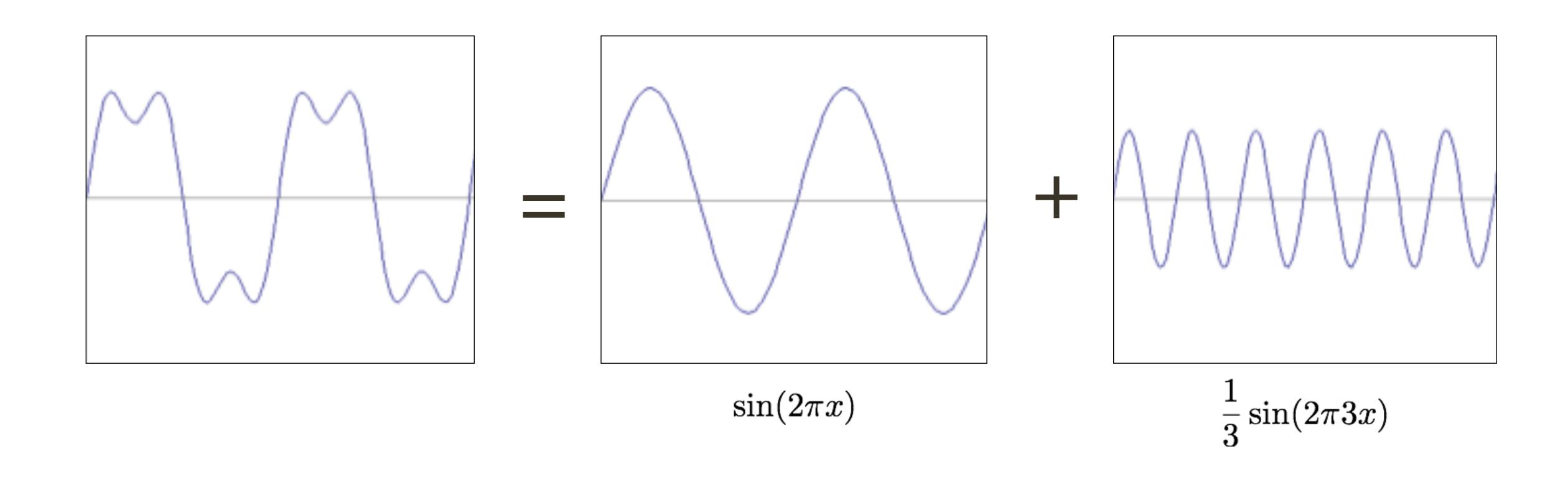
Basic building block:

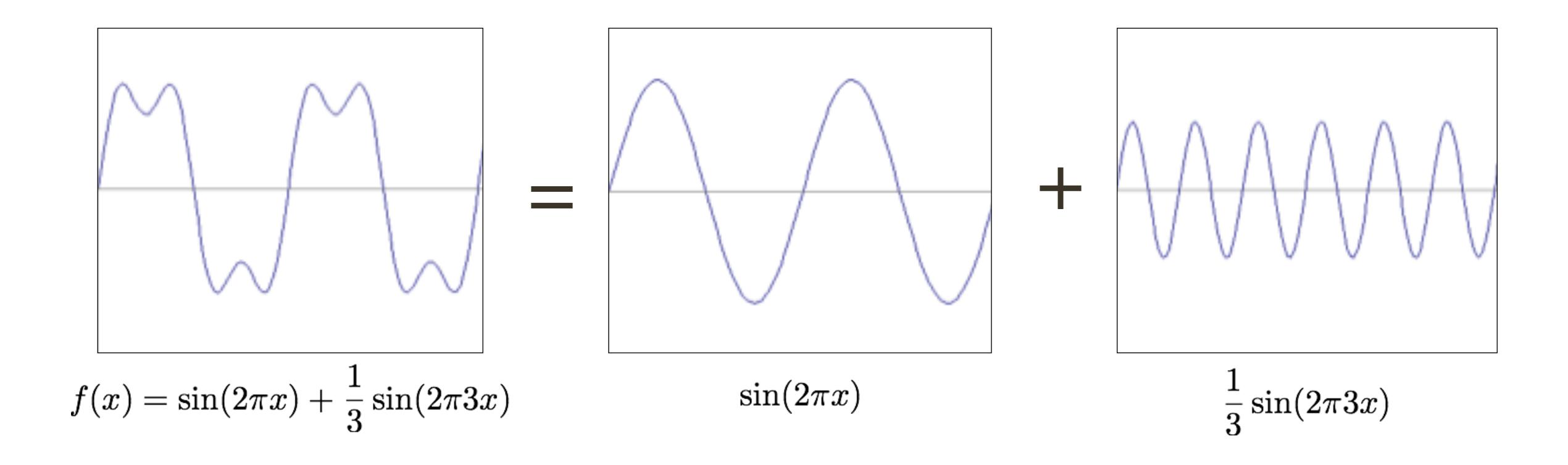


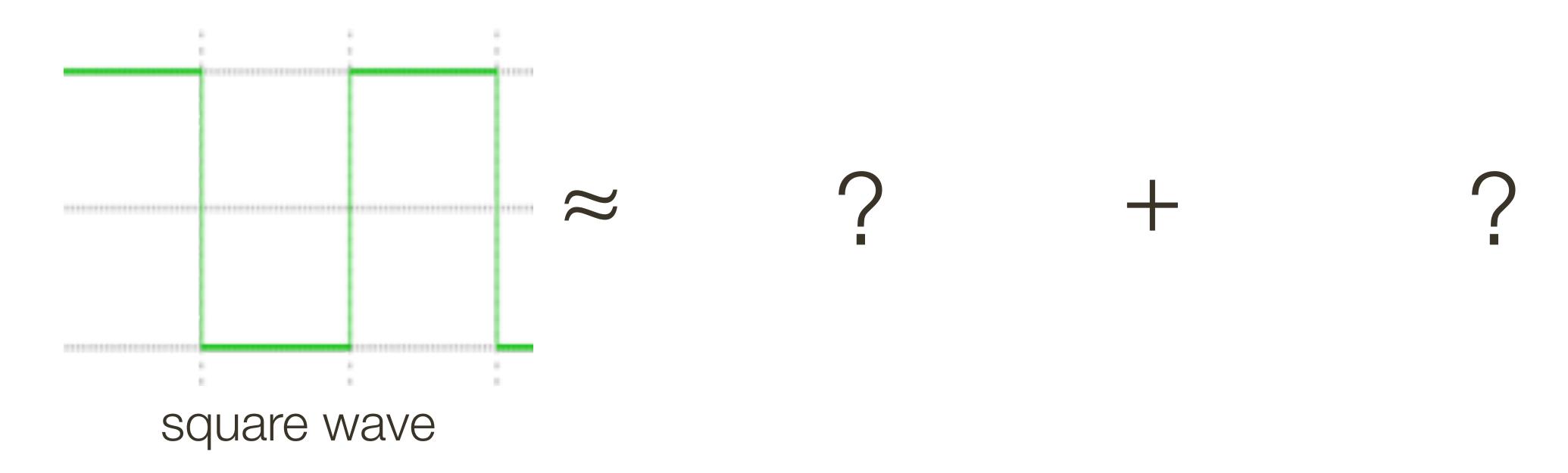
Fourier's claim: Add enough of these to get any periodic signal you want!

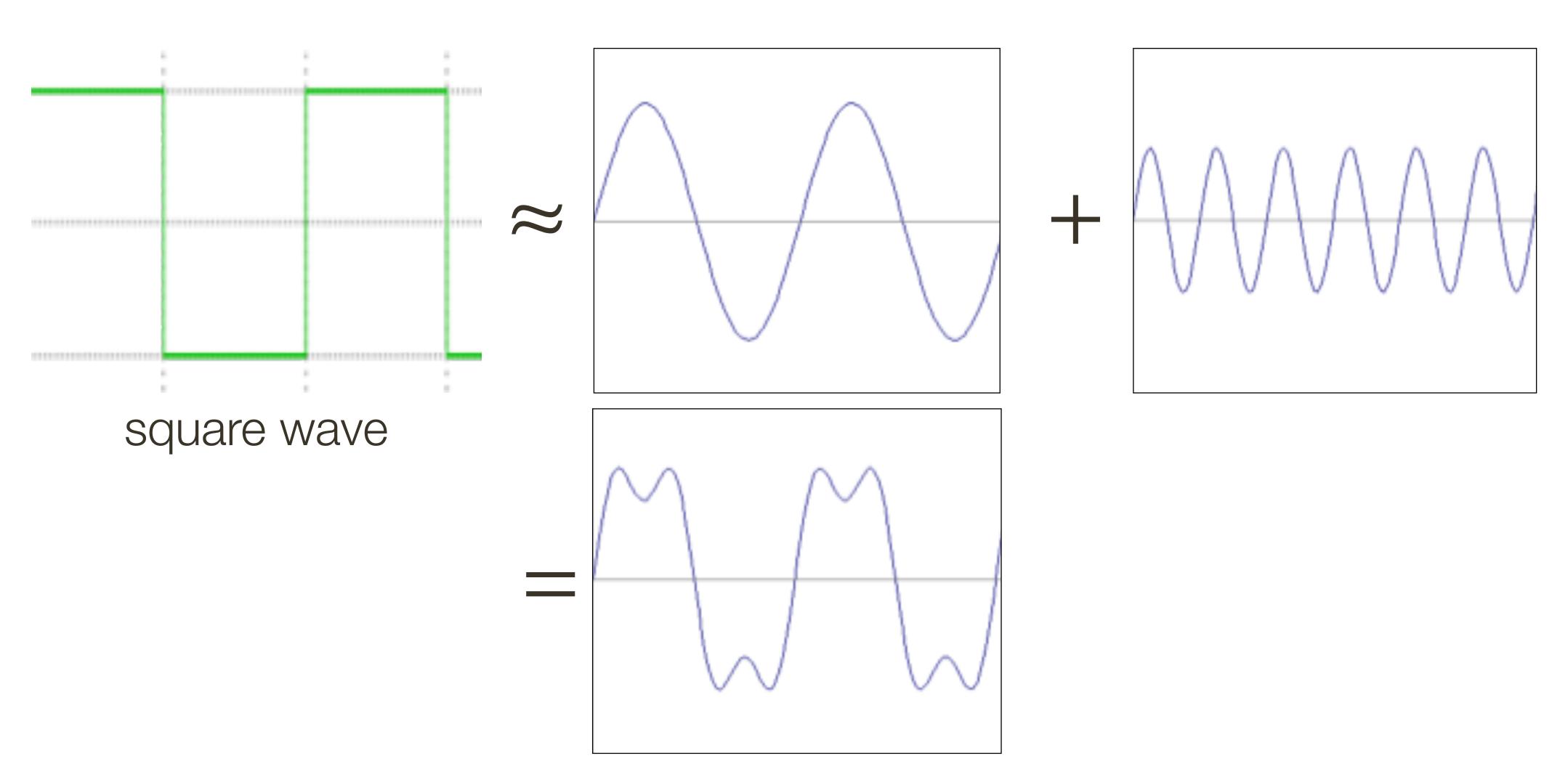


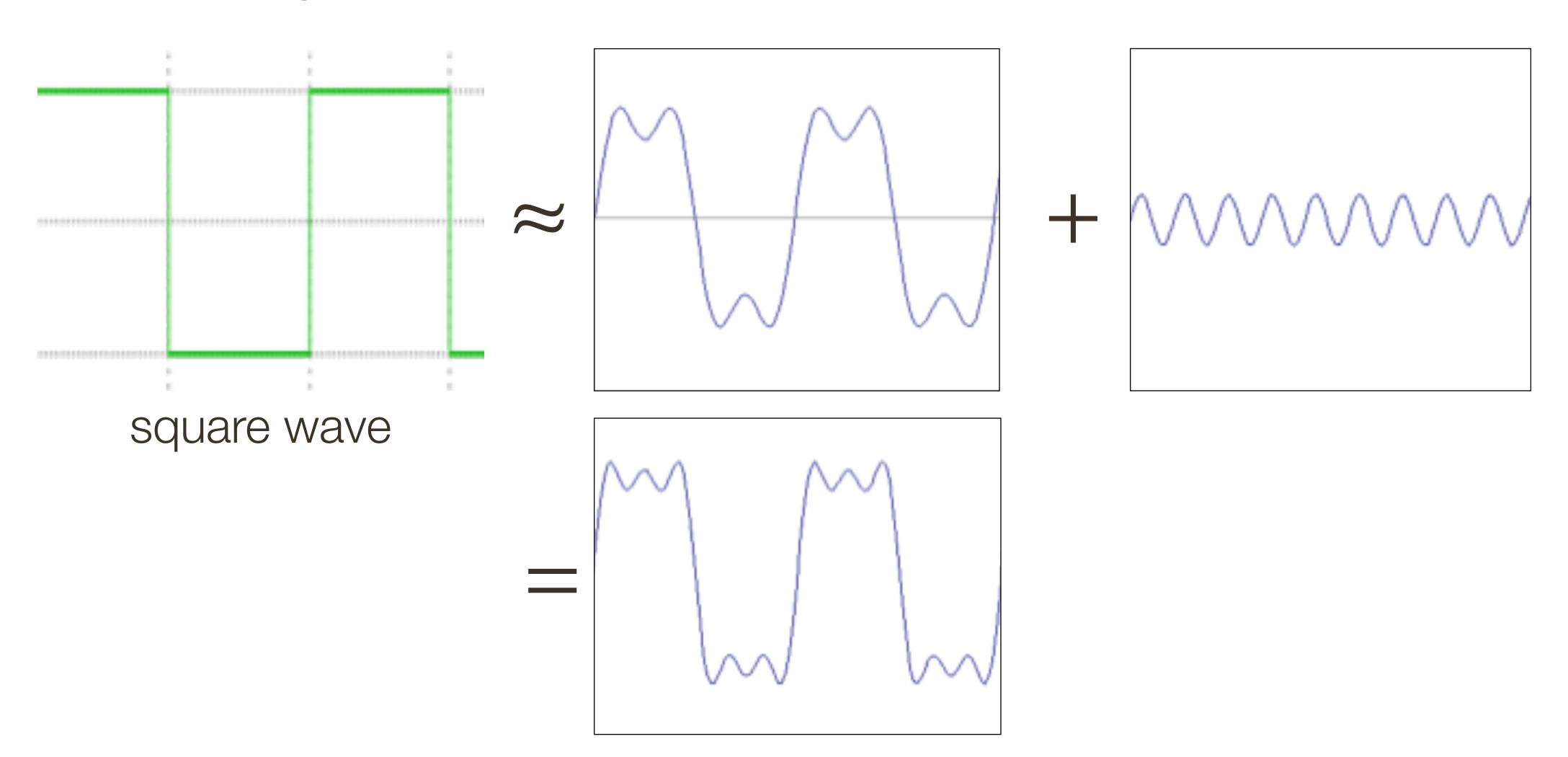


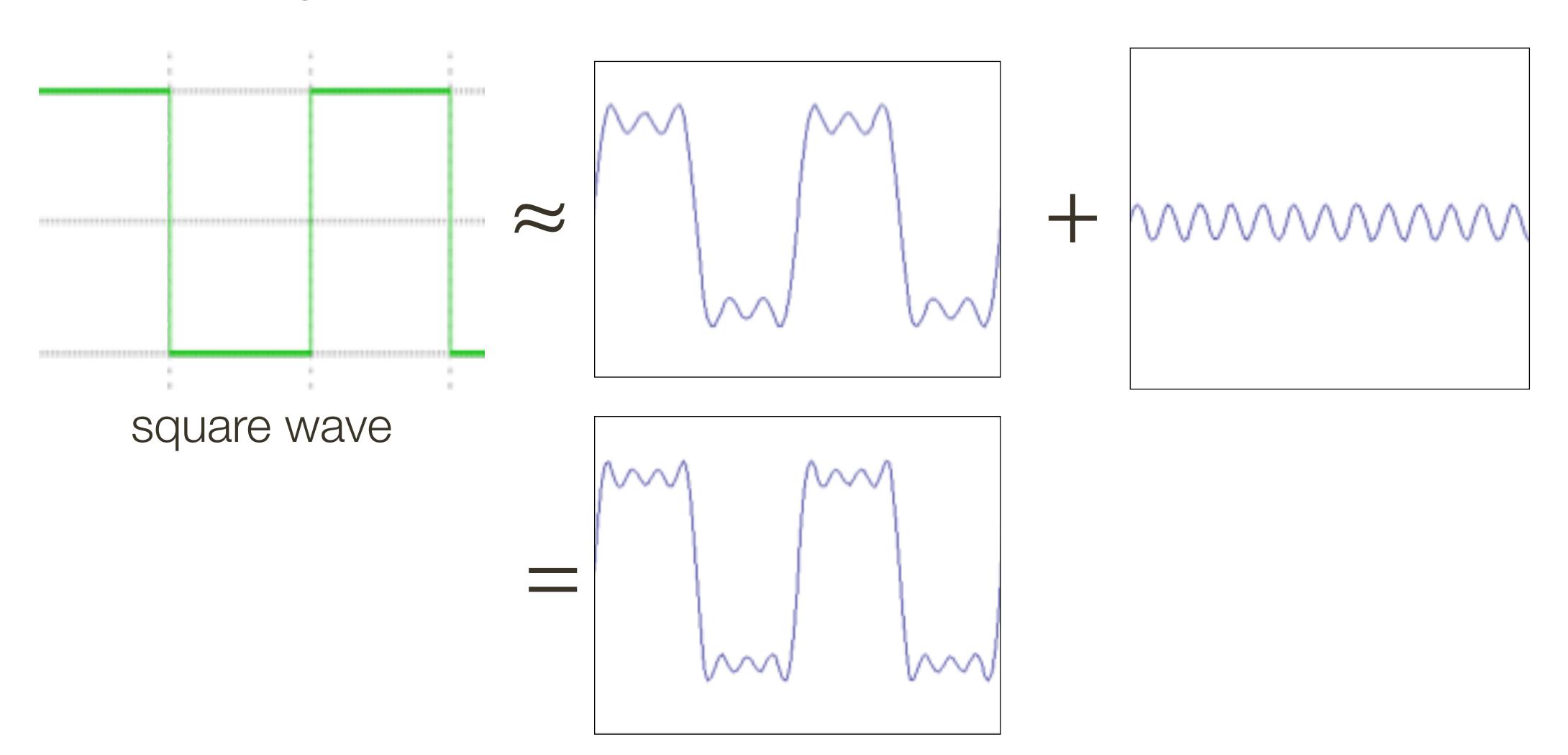




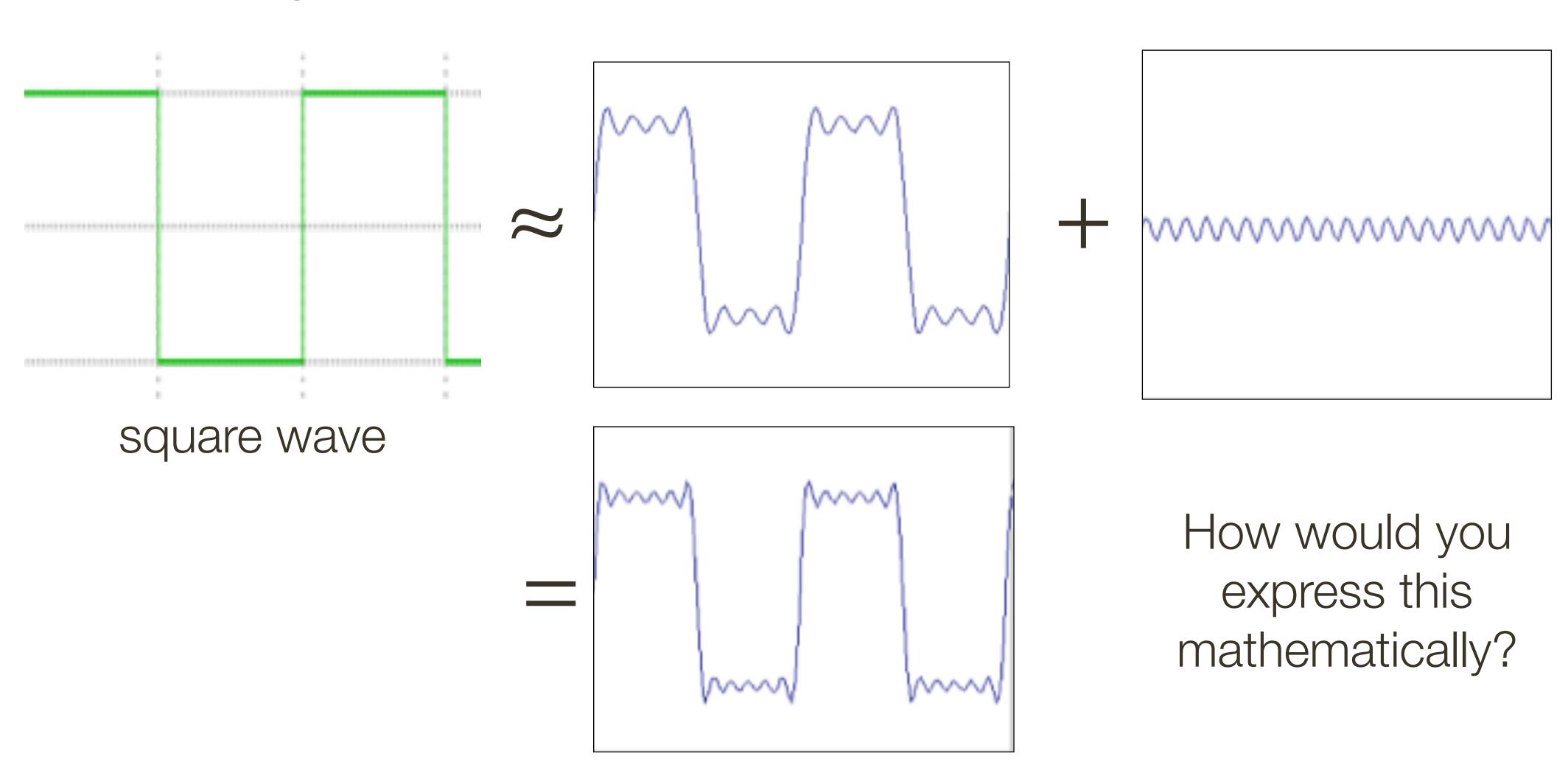




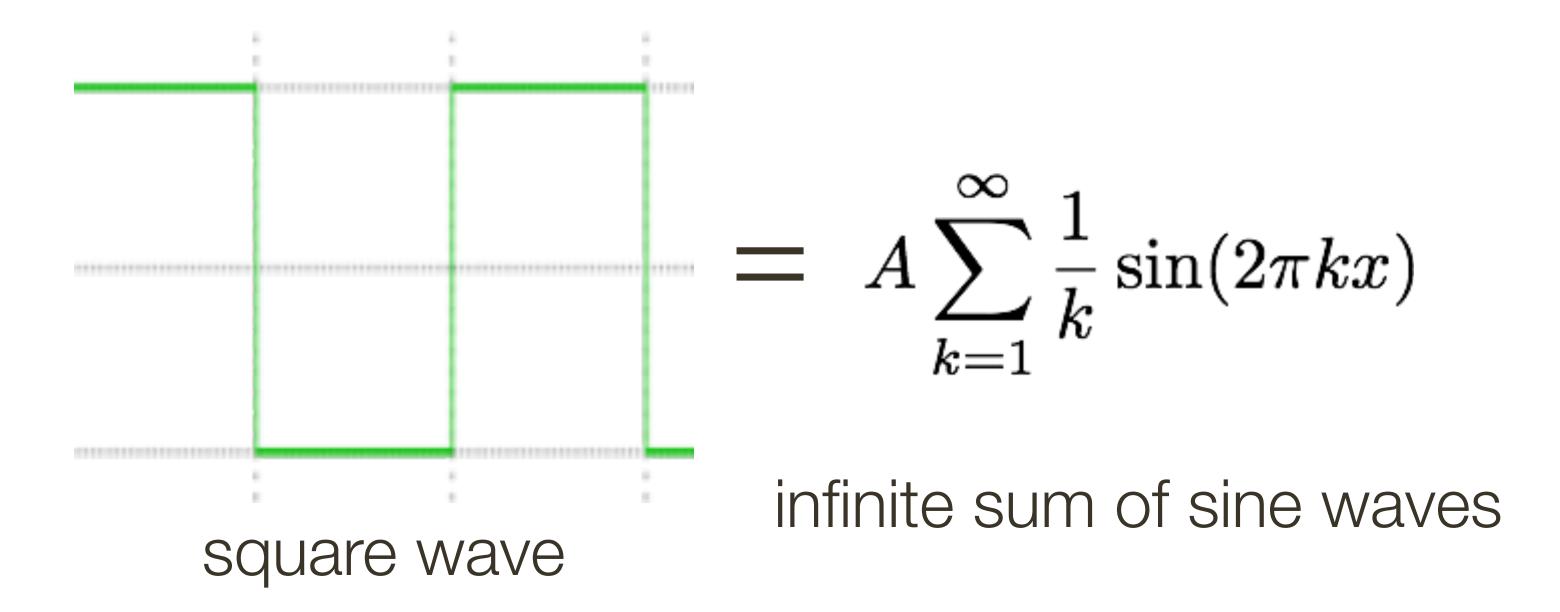




How would you generate this function?



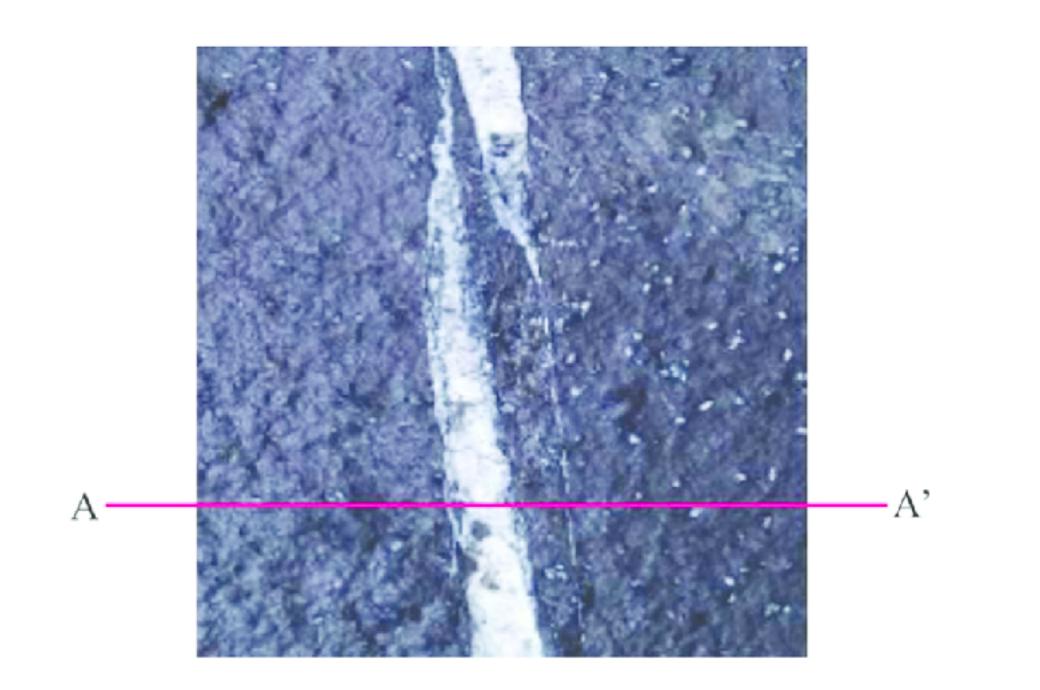
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Basic building block:

$$A\sin(\omega x + \phi)$$

Fourier's claim: Add enough of these to get any periodic signal you want!



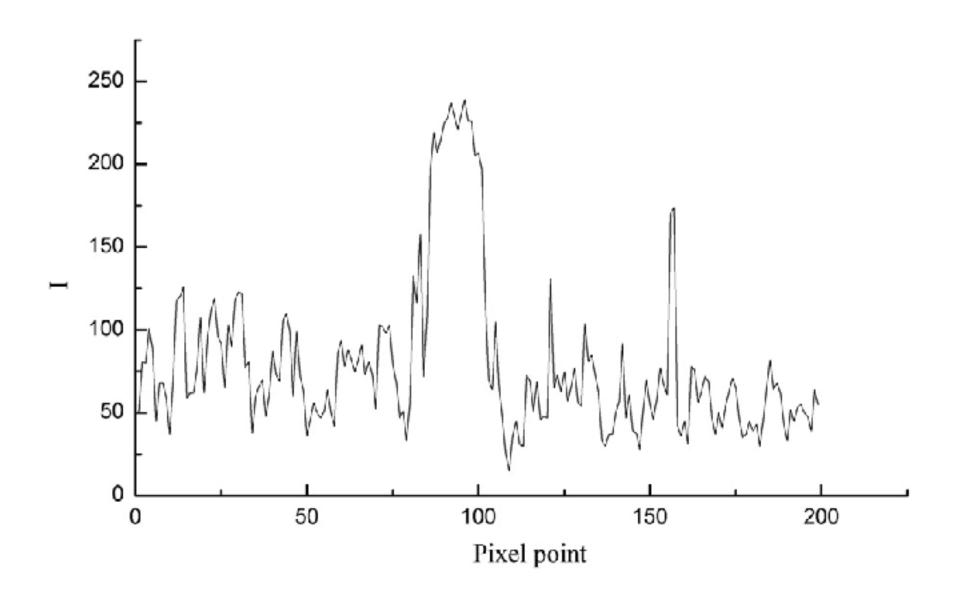
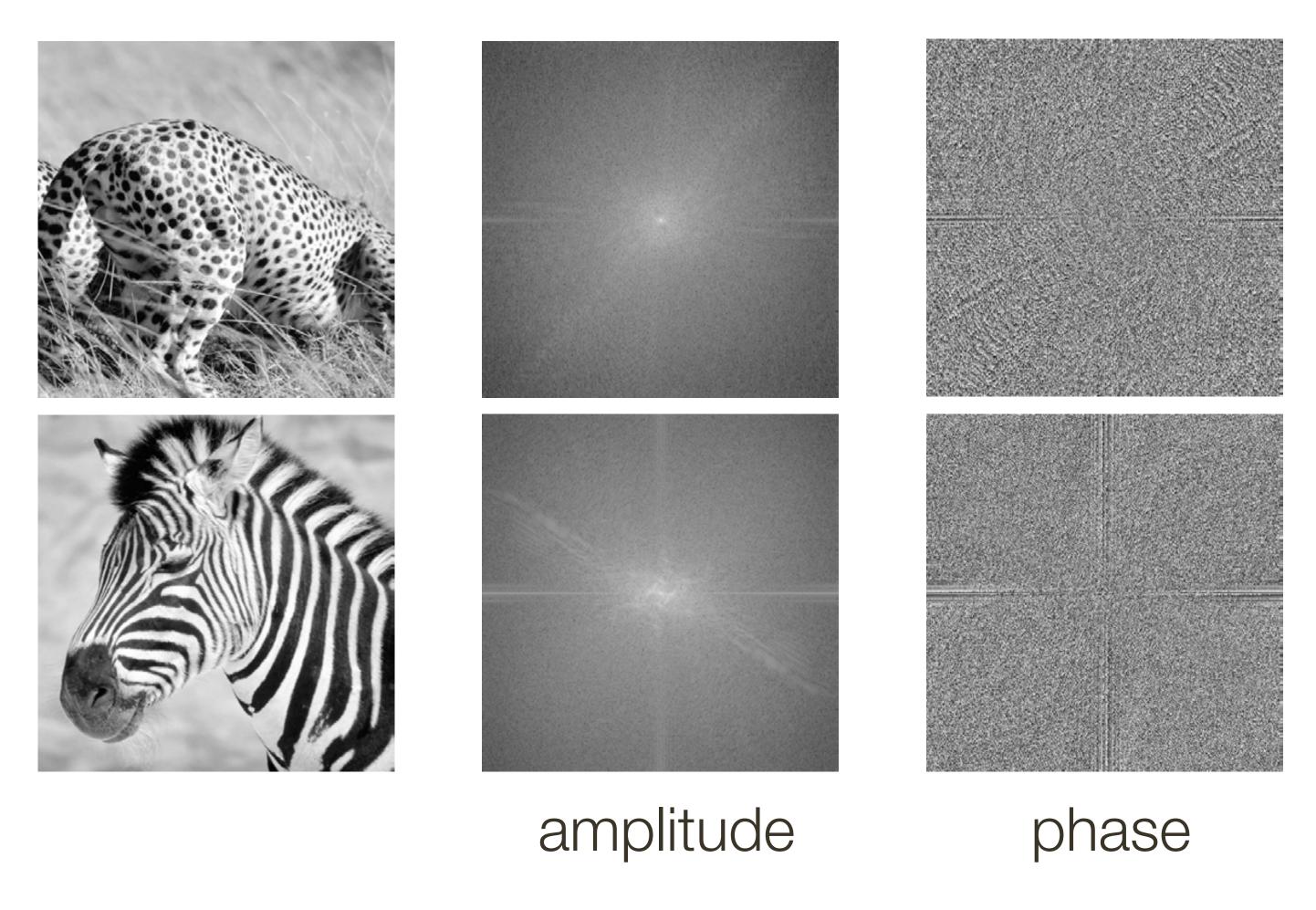
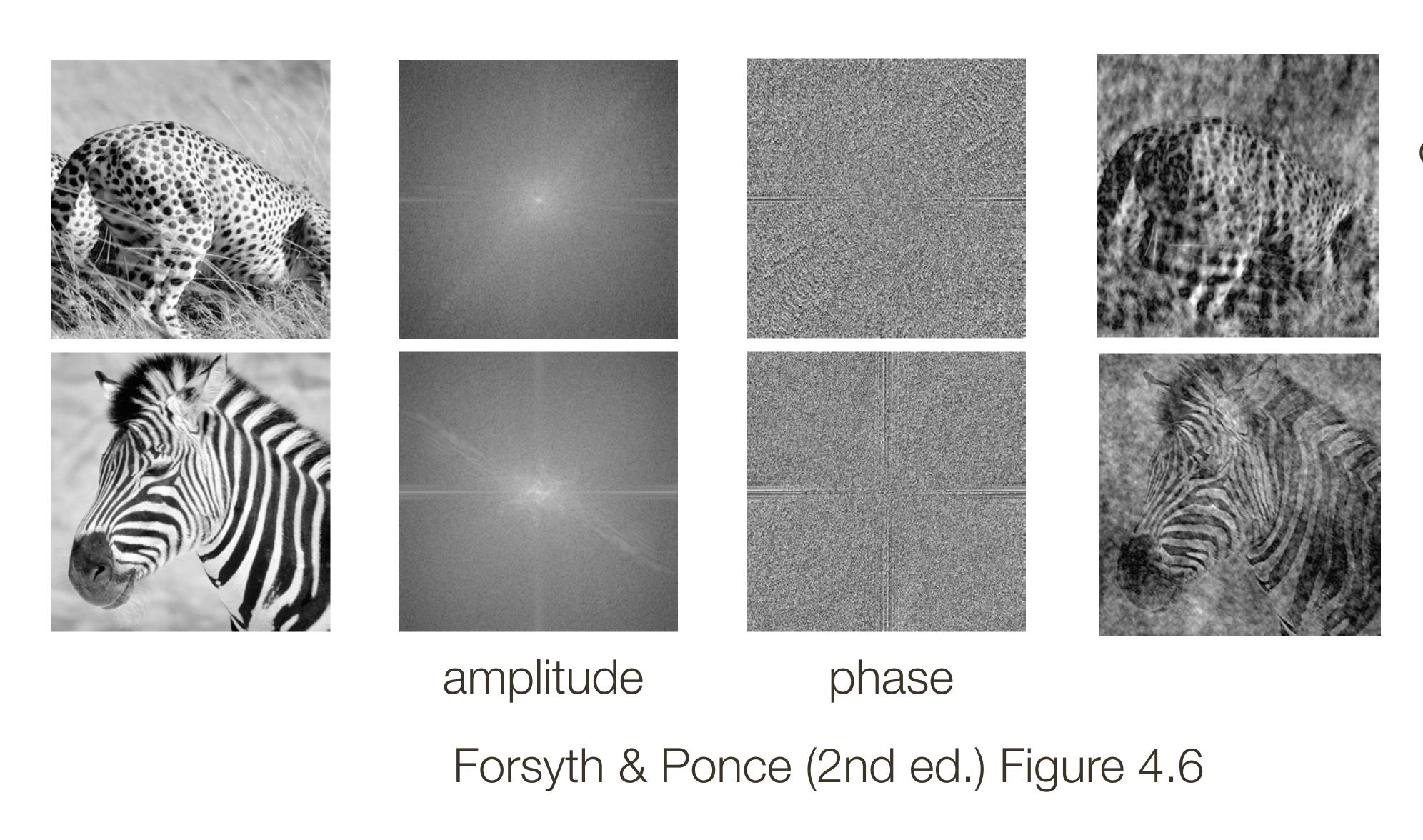


Image from: Numerical Simulation and Fractal Analysis of Mesoscopic Scale Failure in Shale Using Digital Images



Forsyth & Ponce (2nd ed.) Figure 4.6



cheetah phase with zebra amplitude

zebra phase with cheetah amplitude

Convolution Theorem:

Let
$$i'(x,y)=f(x,y)\otimes i(x,y)$$
 then $\mathcal{I}'(w_x,w_y)=\mathcal{F}(w_x,w_y)\;\mathcal{I}(w_x,w_y)$

where $\mathcal{I}'(w_x, w_y)$, $\mathcal{F}(w_x, w_y)$, and $\mathcal{I}(w_x, w_y)$ are Fourier transforms of i'(x, y), f(x, y) and i(x, y)

At the expense of two **Fourier** transforms and one inverse Fourier transform, convolution can be reduced to (complex) multiplication

General implementation of convolution:

At each pixel, (X,Y), there are $m \times m$ multiplications

There are

 $n \times n$ pixels in (X, Y)

Total:

 $m^2 \times n^2$ multiplications

Convolution if FFT space:

Cost of FFT/IFFT for image: $\mathcal{O}(n^2 \log n)$

Cost of FFT/IFFT for filter: $\mathcal{O}(m^2 \log m)$

Cost of convolution: $O(n^2)$

Summary

We covered two additional linear filters: Gaussian, pillbox

Separability (of a 2D filter) allows for more efficient implementation (as two 1D filters)