

CPSC 425: Computer Vision

Lecture 4: Image Filtering (continued)

(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Menu for Today (September 13, 2018)

Topics:

- Linear filters
- Linear filter properties

- Correlation / Convolution
- Filter examples: Box, Gaussian, ...

Redings:

- Today's Lecture: Forsyth & Ponce (2nd ed.) 4.1, 4.5
- Next Lecture: none

Reminders:

- Assignment 1: Image Filtering and Hybrid Images is out
- Conveniently, office hours of TAs who are responsible for this assignment are on **Thursday** (Siddhesh 11-noon) and **Friday** (Borna 9-10am)

Today's "fun" Example:

Lecture 3a: Re-cap Lenses

We take a "physics-based" approach to image formation

- Treat camera as an instrument that takes measurements of the 3D world

Basic abstraction is the pinhole camera

Lenses overcome limitations of the pinhole model while trying to preserve it as a useful abstraction

When **maximum accuracy** required, it is necessary to model additional details of each particular camera (and camera setting)

Aside: This is called camera calibration

Lecture 3a: Re-cap Snell's Law

$$n_1 \sin \alpha_1 = n_2 \sin \alpha_2$$

Lecture 3a: Re-cap Lenses

Thin lens equation

$$\frac{1}{z'} - \frac{1}{z} = \frac{1}{f}$$

characterizes the relationship between f, z and z'

Some "aberrations and distortions" persist. For example:

- index of refraction depends on wavelength, λ , of light
- vignetting reduces image brightness (gradually) away from the image center

The human eye functions much like a camera

Lecture 3b: Introduction to Filterings

Point Operation

point processing

Neighborhood Operation

"filtering"

Let I(X,Y) be an $n \times n$ digital image (for convenience we let width = height)

Let F(X,Y) be another $m \times m$ digital image (our "filter" or "kernel")

For convenience we will assume m is odd. (Here, m=5)

Let
$$k = \left\lfloor \frac{m}{2} \right\rfloor$$

Compute a new image, I'(X,Y), as follows

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output filter image (signal)

Intuition: each pixel in the output image is a linear combination of the same pixel and its neighboring pixels in the original image

For a give X and Y, superimpose the filter on the image centered at (X, Y)

For a give X and Y, superimpose the filter on the image centered at (X, Y)

Compute the new pixel value, I'(X,Y), as the sum of $m \times m$ values, where each value is the product of the original pixel value in I(X,Y) and the corresponding values in the filter

The computation is repeated for each (X,Y)

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output
$$j=-k = -k$$
 filter image (signal)

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output
$$j=-k = -k$$
 filter image (signal)

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output
$$j=-k \ i=-k \ \text{filter} \qquad \text{image (signal)}$$

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output
$$j=-k = -k$$
 filter image (signal)

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output
$$j=-k = -k$$
 filter image (signal)

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output filter image (signal)

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output
$$j=-k = -k$$
 filter image (signal)

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output
$$j=-k = -k$$
 filter image (signal)

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output
$$j=-k = -k$$
 filter image (signal)

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output
$$j=-k = -k$$
 filter image (signal)

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output
$$j=-k = -k$$
 filter image (signal)

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output
$$j=-k \ i=-k$$
 filter image (signal)

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output
$$j=-k \ i=-k$$
 filter image (signal)

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output
$$j=-k \ i=-k$$
 filter image (signal)

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output
$$j=-k = -k$$
 filter image (signal)

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output
$$j=-k \ i=-k$$
 filter image (signal)

output

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

image (signal)

filter

j = -k i = -k

Output
$$I'(X,Y)$$

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

0 10 20 30 30 30 30 20 10

10 10 10 10 0 0 0 0

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output filter image (signal)

Output
$$I'(X,Y)$$

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

0 10 20 30 30 30 30 20 10

10 10 10 10 0 0 0 0

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output
$$j=-k = -k$$
 filter image (signal)

output

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

image (signal)

filter

j = -k i = -k

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output filter image (signal)

For a give X and Y, superimpose the filter on the image centered at (X,Y)

Compute the new pixel value, I'(X,Y), as the sum of $m \times m$ values, where each value is the product of the original pixel value in I(X,Y) and the corresponding values in the filter

Let's do some accounting ...

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(I,J) I(X+i,Y+j)$$
 output filter image (signal)

At each pixel, (X,Y), there are $m \times m$ multiplications

There are

 $n \times n$ pixels in (X, Y)

Total:

 $m^2 \times n^2$ multiplications

When m is fixed, small constant, this is $\mathcal{O}(n^2)$. But when $m \approx n$ this is $\mathcal{O}(m^4)$.

Linear Filters: Boundary Effects

Linear Filters: **Boundary** Effects

Three standard ways to deal with boundaries:

1. **Ignore these locations:** Make the computation undefined for the top and bottom k rows and the leftmost and rightmost k columns

Three standard ways to deal with boundaries:

- 1. **Ignore these locations:** Make the computation undefined for the top and bottom k rows and the leftmost and rightmost k columns
- 2. **Pad the image with zeros**: Return zero whenever a value of I is required at some position outside the defined limits of *X* and *Y*

Three standard ways to deal with boundaries:

- 1. **Ignore these locations:** Make the computation undefined for the top and bottom k rows and the leftmost and rightmost k columns
- 2. **Pad the image with zeros**: Return zero whenever a value of I is required at some position outside the defined limits of *X* and *Y*
- 3. **Assume periodicity**: The top row wraps around to the bottom row; the leftmost column wraps around to the rightmost column

A short exercise ...

Example 1: Warm up

0	0	0
0	1	0
0	0	0

Original

Filter

Result

Example 1: Warm up

Original

Filter

Result
(no change)

Example 2:

0	0	0
0	0	1
0	0	0

Original

Filter

Result

Example 2:

Original

Filter

Result
(sift left by 1 pixel)

Example 3:

Original

Filter (filter sums to 1)

Result

Example 3:

Original

Filter
(filter sums to 1)

Result
(blur with a box filter)

Example 4:

0	0	0	
0	2	0	
0	0	0	

$$-\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Original

Filter
(filter sums to 1)

Result

Example 4:

0	0	0
0	2	0
0	0	0

$$- \frac{1}{9} \frac{1}{1} \frac{1}{1}$$

Original

Filter
(filter sums to 1)

Result
(sharpening)

Example 4: Sharpening

Before

After

Example 4: Sharpening

Before

After

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Definition: Correlation

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j)I(X+i,Y+j)$$

Definition: Correlation

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j)I(X+i,Y+j)$$

Definition: Convolution

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j)I(X-i,Y-j)$$

Definition: Correlation

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j)I(X+i,Y+j)$$

Filter

Image

$$= 1a + 2b + 3c$$

 $+ 4d + 5e + 6f$
 $+ 7g + 8h + 9i$

Definition: Correlation

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j)I(X+i,Y+j)$$

Definition: Convolution

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j)I(X-i,Y-j)$$

а	b	С
d	Φ	f
g	h	i

Filter

Image

$$= 9a + 8b + 7c$$

 $+ 6d + 5e + 4f$
 $+ 3g + 2h + 1i$

Definition: Correlation

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j)I(X+i,Y+j)$$

Definition: Convolution

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j)I(X-i,Y-j)$$

Filter (rotated by 180)

ļ	Ч	б
J	Ф	р
Э	q	ខ

а	р	С
d	Φ	f
g	h	i

Filter

1	2	3
4	5	6
7	8	9

Image

= 9a + 8b + 7c+ 6d + 5e + 4f+3g + 2h + 1i

Output

Definition: Correlation

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j)I(X+i,Y+j)$$

Definition: Convolution

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j)I(X-i,Y-j)$$

$$= \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(-i,-j)I(X+i,Y+j)$$

Note: if F(X,Y) = F(-X,-Y) then correlation = convolution.

j = -k i = -k

Preview: Why convolutions are important?

Who has heard of Convolutional Neural Networks (CNNs)?

What about **Deep Learning**?

Basic operations in CNNs are convolutions (with learned linear filters) followed by non-linear functions.

Note: This results in non-linear filters.

Let \otimes denote convolution. Let I(X,Y) be a digital image

Superposition: Let F_1 and F_2 be digital filters

$$(F_1+F_2)\otimes I(X,Y)=F_1\otimes I(X,Y)+F_2\otimes I(X,Y)$$

Let \otimes denote convolution. Let I(X,Y) be a digital image

Superposition: Let F_1 and F_2 be digital filters

$$(F_1+F_2)\otimes I(X,Y)=F_1\otimes I(X,Y)+F_2\otimes I(X,Y)$$

Scaling: Let F be digital filter and let k be a scalar

$$(kF)\otimes I(X,Y)=F\otimes (kI(X,Y))=k(F\otimes I(X,Y))$$

Let \otimes denote convolution. Let I(X,Y) be a digital image

Superposition: Let F_1 and F_2 be digital filters

$$(F_1+F_2)\otimes I(X,Y)=F_1\otimes I(X,Y)+F_2\otimes I(X,Y)$$

Scaling: Let F be digital filter and let k be a scalar

$$(kF)\otimes I(X,Y)=F\otimes (kI(X,Y))=k(F\otimes I(X,Y))$$

Shift Invariance: Output is local (i.e., no dependence on absolute position)

Linear Filters: Shift Invariance

Output does **not** depend on absolute position

Let \otimes denote convolution. Let I(X,Y) be a digital image

Superposition: Let F_1 and F_2 be digital filters

$$(F_1+F_2)\otimes I(X,Y)=F_1\otimes I(X,Y)+F_2\otimes I(X,Y)$$

Scaling: Let F be digital filter and let k be a scalar

$$(kF)\otimes I(X,Y)=F\otimes (kI(X,Y))=k(F\otimes I(X,Y))$$

Shift Invariance: Output is local (i.e., no dependence on absolute position)

An operation is linear if it satisfies both superposition and scaling

Linear Systems: Characterization Theorem

Any linear, shift invariant operation can be expressed as convolution

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Filter has equal positive values that some up to 1

Replaces each pixel with the average of itself and its local neighborhood

— Box filter is also referred to as average filter or mean filter

Forsyth & Ponce (2nd ed.) Figure 4.1 (left and middle)

What happens if we increase the width (size) of the box filter?

Gonzales & Woods (3rd ed.) Figure 3.3

Smoothing with a box doesn't model lens defocus well

- Smoothing with a box filter depends on direction
- Image in which the center point is 1 and every other point is 0

Smoothing with a box doesn't model lens defocus well

- Smoothing with a box filter depends on direction
- Image in which the center point is 1 and every other point is 0

Filter

0	0	0	0	0
0	0	0	0	0
0	0	1	0	0
0	0	0	0	0
0	0	0	0	0

Image

Smoothing with a box doesn't model lens defocus well

- Smoothing with a box filter depends on direction
- Image in which the center point is 1 and every other point is 0

Filter

0	0	0	0	0
0	0	0	0	0
0	0	1	0	0
0	0	0	0	0
0	0	0	0	0

Image

0	0	0	0	0
0	1 9	1 9	1 9	0
0	1 9	1 9	1 9	0
0	1 9	1 9	1 9	0
0	0	0	0	0

Result

Smoothing with a box doesn't model lens defocus well

- Smoothing with a box filter depends on direction
- Image in which the center point is 1 and every other point is 0

Smoothing with a (circular) pillbox is a better model for defocus (in geometric optics)

The Gaussian is a good general smoothing model

- for phenomena (that are the sum of other small effects)
- whenever the Central Limit Theorem applies

Idea: Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2+y^2}{2\sigma^2}}$$

Forsyth & Ponce (2nd ed.)
Figure 4.2

Summary

— The correlation of F(X,Y) and I(X,Y) is:

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j)I(X+i,Y+j)$$

- **Visual interpretation**: Superimpose the filter F on the image I at (X,Y), perform an element-wise multiply, and sum up the values
- Convolution is like correlation except filter "flipped" if F(X,Y)=F(-X,-Y) then correlation = convolution.
- Characterization Theorem: Any linear, spatially invariant operation can be expressed as a convolution