THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 4:

mage Filtering (continued)

( unless otherwise stated slides are taken or adopted fromm Bob Woodham, Jim Little and Fred Tung )



Menu for Today (september 13, 2018)

Topics:
— Linear filters — Correlation / Convolution
— Linear filter properties — Filter examples: Box, Gaussian, ...

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 4.1, 4.5
— Next Lecture: none

Reminders:

— Assignment 1: Image Filtering and Hybrid Images is out
— Conveniently, office hours of TAs who are responsible for this assignment
are on Thursday (Siddhesh 11-noon) and Friday (Borna 9-10am)

2




Today’s “fun” Example:




Lecture 3a: Re-cap Lenses

We take a “physics-based” approach to image formation
— Jreat camera as an instrument that takes measurements of the 3D world

Basic abstraction is the pinhole camera

Lenses overcome limitations of the pinhole model while trying to preserve it as
a useful abstraction

When maximum accuracy required, it is necessary to model additional details
of each particular camera (and camera setting)

— Aside: This Is called camera calibration



Lecture 3a: Re-cap Snell’s Law

M1 SIN vy = Mo SIN
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Lecture 3a: Re-cap Lenses

Thin lens equation

characterizes the relationship between f, z and z’

Some “aberrations and distortions” persist. For example:
— index of refraction depends on wavelength, A, of light
— vignetting reduces image brightness (gradually) away from the image center

The human eye functions much like a camera
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Lecture 3b: Introduction to Filterings

Point Operation

H . o

Neighborhood Operation

H H o

Slide Credit: loannis (Yannis) Gkioulekas (CMU)




| Inear Filters

Let I(X,Y) be an n X n digital image (for convenience we let width = height)

Let F(X,Y)be another m x m digital image (our “filter” or “kernel”)
)

Filter

Image

For convenience we will assume m Is odd. (Here, m = 95)
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| Inear Filters

2
1
m | —
Let k = _5_ I__?
-2
2-10 1 2
Compute a new image, I'(X,Y), as follows n
k k
I'X,Y)y= % » FIJ)I(X+iY +j)
1=—k1=—k

output filter image (signal)

Intuition: each pixel in the output Image is a linear combination of the same
pixel and its neighboring pixels in the original image



| Inear Filters

For a give X and Y, superimpose the
filter on the image centered at (X, Y")
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| Inear Filters

For a give X and Y, superimpose the
filter on the image centered at (X, Y")

Compute the new pixel value, I'(X,Y),
as the sum of m X m values, where each
value is the product of the original pixel
value in I(X, YY) and the corresponding
values In the filter
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| Inear Filters

The computation Is repeated for each
(X,Y)
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Linear Filter Example

| I(X,Y)

Image
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I'(X,Y) = Z ZFJJ (X +1i,Y +j)

1=—ki1=—k

output filter image (signal)

113 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

| I(X,Y)

Image
| oo Pl lelele]l [ITI1ITTILILITL[
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I'(X,Y) = Z ZFJJ (X +1i,Y +j)

1=—ki1=—k

output filter image (signal)

14 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

F(X,Y)

filter

I'X,Y) =

output

image I(X,Y)

Z ZFJJ (X 4+, Y + )

1=—ki1=—k
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filter

image (signal)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

F(X,Y)

filter

I'X,Y) =

output

image I(X,Y)

Z ZFJJ (X 4+, Y + )

1=—ki1=—k

10

filter

image (signal)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

image I(X’ Y)

F(X,Y)

filter

I'X,Y) = Z ZF]J (X +14,Y + )

1=—ki1=—k

output filter image (signal)

17 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

F(X,Y)

filter

I'X,Y) =

output

image I(X,Y)

N
HE N

Z ZFJJ (X 4+, Y + )

1=—ki1=—k

18

filter

image (signal)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

F(X,Y)

filter

I'X,Y) =

output

image I(X,Y)

N
HEE

Z ZFJJ (X 4+, Y + )

1=—ki1=—k

19

filter

image (signal)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

F(X,Y)

filter

I'X,Y) =

output

image I(X,Y)

N
HEE

Z ZFJJ (X 4+, Y + )

1=—ki1=—k

20

filter

image (signal)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

image I(X’ Y)

F(X,Y)

filter

N
B

I'X,Y) = Z ZF]J (X +14,Y + )

1=—ki1=—k

output filter image (signal)

01 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

filter image (signal)

29 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

| I(X,Y) I’(X,Y)
Image output
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I'(X,Y) = Z ZFJJ (X +1i,Y +j)

1=—ki1=—k

output filter image (signal)

03 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

I'X,Y) = Z ZF]J (X +14,Y + )
1=—ki1=—k

output filter image (signal)

o4 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

. I(X,Y)

Image
\ ool oo o] [T T IT 11111
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filter o o [o 500500 500 o~ ol T[T
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I'X,Y) = Z ZF]J (X +14,Y + )

1=—ki1=—k

output filter image (signal)

o5 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

N
o

N
EEEEEEE

N
EEEEEEEENCE

I'X,Y) = Z ZF]J (X +14,Y + )
1=—ki1=—k

output filter image (signal)

26 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

27
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image (signal)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

| 1(X,Y)
Image
| oo fofoooele] [T T[]
F(X,)Y) lofofofofofolofolo| [ o]0

filter

N
EEEEERG

ol B
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I'X,Y)y= % » FIJ)I(X+iY +j)

j=—ki=—k

output filter image (signal)

08 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

| 1(X,Y)
Image
| oo fofoooele] [T T[]
F(X,)Y) lofofofofofolofolo| [ o]0

filter

N
EEEERE0

ol B
HEEEERROE

ol B
HEEEEEEROCE

N
HEEEEEERCER

I'X,Y)y= % » FIJ)I(X+iY +j)

j=—ki=—k

output filter image (signal)

29 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

el B ol B
o= - ol O
N N
HEESEE8E880E8R

image (signal)

30 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filter Example

el B ol B
o] O ol O

N N
HEE58880E8R

N
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I'X,Y) = Z ZF]J (X +14,Y + )
1=—ki1=—k

output filter image (signal)

3 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



L inear Filter Example

| 0 foJofoofofolofolo
F(X,Y) Jofofofofofofooo o
filter 0 [0 o [so]sofso]s0fs0lo Jo
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filter

_
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image (signal)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



| Inear Filters

k k

I'X,Y)y= % » FIJ)I(X+iY +j)

1=—ki1=—k

output filter image (signal)

For a give X and Y, superimpose the filter on the image centered at (X, Y)

Compute the new pixel value, I'(X,Y), as the sum of m x m values, where
each value is the product of the original pixel value in I(X,Y') and the
corresponding values In the filter
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| Inear Filters

Let's do some accounting ...
k k

I'X,Y)y= % » FIJ)I(X+iY +j)

output Jj=—ki=—k

filter image (signal)

At each pixel, (X,Y), there are m x m multiplications

There are

n X n pixels in (X,Y)

Total:

When m is fixed, small constant, this is O(n

34
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X n° multiplications

). But when m =~ n thisis O(m

4).



| Inear Filters: Boundary Effects
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| Inear Filters: Boundary c=ffects

Three standard ways to deal with boundaries:

1. lgnore these locations: Make the computation undefined for the top and
bottom & rows and the leftmost and rightmost & columns
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| Inear Filters: Boundary c=ffects

Three standard ways to deal with boundaries:

1. lgnore these locations: Make the computation undefined for the top and
bottom & rows and the leftmost and rightmost & columns

2. Pad the image with zeros: Return zero whenever a value of | is required
at some position outside the defined limits of Xand Y
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| Inear Filters: Boundary Effects

o O

o O

O O O O O O O o oo o o

O O O O OO oo o o o o
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| Inear Filters: Boundary c=ffects

Three standard ways to deal with boundaries:

1. lgnore these locations: Make the computation undefined for the top and
bottom & rows and the leftmost and rightmost & columns

2. Pad the image with zeros: Return zero whenever a value of | is required
at some position outside the defined limits of Xand Y

3. Assume periodicity: The top row wraps around to the bottom row; the
leftmost column wraps around to the rightmost column
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| Inear Filters: Boundary Effects
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| Inear Filters: Boundary Effects
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A short exercise ...
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Example 1: WWarm up

Original Filter Result
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Example 1: WWarm up

Original Filter Result
(no change)
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Example 2.

Original Filter Result
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Example 2.

Original Filter Result
(sift left by 1 pixel)
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Example 3.

1111
1
o | 1]1]1
111 -
Original Filter Result

(filter sums to 1)
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Example 3.

1111
1
g | 1[1]1
1111
Original Filter Result
(filter sums to 1) (blur with a box filter)
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Example 4.

Original

Filter
(filter sums to 1)
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Result



Example 4.

0O/ 0|0 111 1
1
0 0 9 1111
O|0]|O0 1111
Original Filter Result

(filter sums to 1) (sharpening)
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[gle

Sharpen

Example 4

After

Before
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Example 4: Sharpening
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59 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Filters: Correlation vs. Convolution

Definition: Correlation

53



Linear Filters: Correlation vs. Convolution

Definition: Correlation

k k
I'X,Y)= ) » F@,)I(X+4,Y +j)
1=—k1=—k
Definition: Convolution
k k

I'(X,Y) = Z > F(i, ) I(X —i,Y — j)

o4



Linear Filters: Correlation vs. Convolution

Definition: Correlation

I'X,Y)= ) » F@,)I(X+4,Y +j)

j=—ki=—Fk

d

b

k

d

e

9

N

Filter

k

0O

+ 40

Output

1 77€J

=1a+ 2b + 3C
€ 5563 L

- 8h +

of
O



Linear Filters: Correlation vs. Convolution

Definition: Correlation

Definition: Convolution

I'X,Y)= ) » F@,)I(X+4,Y +j)

j=—ki=—Fk

I'X,Y)y= % » F(i,)I(X—iY —j)

j=—ki=—k

d

b

C

k

k

d

e

f
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Filter

k

k
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+ 60

Output

1 CBEJ

=09a+8b+ 7C
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- 2h + 1]
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Linear Filters: Correlation vs. Convolution

Definition: Correlation

Definition: Convolution

(rotated by 180)

Filter

Y

¢

I'X,Y)= ) » F@,)I(X+4,Y +j)

j=—ki=—Fk

I'X,Y)y= % » F(i,)I(X—iY —j)

j=—ki=—k

}
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Filter

k

k
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Output

1 CBEJ

=09a+8b+ 7C
€ 5563 L

- 2h + 1]
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Linear Filters: Correlation vs. Convolution

Definition: Correlation

k k
I'X,Y)= ) » F(@i,j)I(X+i,Y +j)
j=—ki=—k
Definition: Convolution
k k
I'X,Y)y= > > F@i,j)I(X —4iY —j)
j=—ki=—k
ok k
=D > Fli,—)I(X +i,Y
j=—ki=—k

Note: if F(X,Y) = F(—X, —Y) then correlation = convolution.
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Preview: \Why convolutions are important’

Who has heard of Convolutional Neural Networks (CNNs)?

What about Deep Learning?

POOLING CONVOLUTION + RELU POOLING FLATTEN FULLY p SOFTMAX

|| j \ CONNECTE j
Y Y
HIDDEN LAYERS CLASSIFICATION

Basic operations in CNNs are convolutions (with learned linear filters) followed
oy non-linear functions.

Note: [his results in non-linear filters.
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L inear rilters: Properties

L et ® denote convolution. Let I(X,Y) be a digital image

Superposition: Let I} and F, be digital filters

(Fi+F)eIX,Y)=FRoI(X,Y)+FoI(X,Y)



L inear rilters: Properties

L et ® denote convolution. Let I(X,Y) be a digital image

Superposition: Let I} and F, be digital filters

(Fi+F)eIX,Y)=FRoI(X,Y)+FoI(X,Y)

Scaling: Let F be digital filter and let &£ lbe a scalar

(kF)Q I(X,Y)=F® (kI(X,Y)) = k(F @ [(X,Y))



L inear rilters: Properties

L et ® denote convolution. Let I(X,Y) be a digital image

Superposition: Let I} and F, be digital filters

(Fi+F)eIX,Y)=FRoI(X,Y)+FoI(X,Y)

Scaling: Let F be digital filter and let &£ lbe a scalar
(kF)QI(X,Y)=F® (kI(X,Y)) =k(F®I(X,Y))

Shift Invariance: Output is local (i.e., no dependence on absolute position)
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Linear Filters: Shift Invariance

Output does not depend on absolute position
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L inear rilters: Properties

L et ® denote convolution. Let I(X,Y) be a digital image

Superposition: Let I} and F, be digital filters
(F1+F)I(X,)Y)=FIX,)Y)+ F,1(X,Y)
Scaling: Let F be digital filter and let &£ lbe a scalar
(kF)@ [(X,)Y)=F @ (kI(X,Y)) = k(F @ I(X,Y))
Shift Invariance: Output is local (i.e., no dependence on absolute position)

An operation Is linear If it satisfies both superposition and scaling
64



Linear Systems: Characterization Theorem

Any linear, shift invariant operation can be expressed as convolution

09



Example 5: Smoothing with a Box Filter

Image Credit: loannis (Yannis) Gkioulekas (CMU)

Filter has equal positive values that some up to 1

Replaces each pixel with the average of itself and its local neighlborhood

— Box filter is also referred to as average filter or mean filter

06



Example 5: Smoothing with a Box Filter

Forsyth & Ponce (2nd ed.) Figure 4.1 (left and middle)
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Example 5: Smoothing with a Box Filter

What happens if we increase the width (size) of the box filter”?
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Example 5: Smoothing with a Box Filter

3X3

Ox9

35x35

Gonzales & Woods (3rd ed.) Figure 3.3
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Example 6: Smoothing with a Gaussian

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Image in which the center point iIs 1 and every other point is O
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Example 6: Smoothing with a Gaussian

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Image in which the center point iIs 1 and every other point is O

01]0(0]10]O0
1111 0[010|0|O
%111 010111010
1|1 | 1 010101010
010101010

Filter

Image

[a



Example 6: Smoothing with a Gaussian

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Image in which the center point iIs 1 and every other point is O

0|o|o0|0]|O 0o|ofo|0]|O
1111 0|o0|o0|0]|O 0lglsls]|O
%111 o|lo|1|0]|o0 0|glsls|O
11111 0|0|0|0]|O 0|glslslO
0|o0|o0|0]|O 0|ofo0|0]|O

Filter

Image Result
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Example 6: Smoothing with a Gaussian

Smoothing with a box doesn’t model lens defocus well
— Smoothing with a box filter depends on direction
— Image in which the center point iIs 1 and every other point is O

Smoothing with a (circular) pillbox is a better model for defocus (in geometric optics)
The Gaussian is a good general smoothing model

— for phenomena (that are the sum of other small effects)
— whenever the Central Limit Theorem applies
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Example 6: Smoothing with a Gaussian

Idea: \Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

1 x? 4 y?
GO’ (aj? y) — ) 52 CXP 207

Forsyth & Ponce (2nd ed.)
Figure 4.2
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Summary

— The correlation of F(X ,‘Y) and I(X,Y)is:
k k

— Visual interpretation: Superimpose the filter ' on the image I at (X, Y),
oerform an element-wise multiply, and sum up the values

— Convolution is like correlation except filter "flipped”
f F(X,Y)=F(—X,—-Y)then correlation = convolution.

— Characterization Theorem: Any linear, spatially invariant operation can be
expressed as a convolution

l4s



