

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

(unless otherwise stated slides are taken or adopted from **Bob Woodham, Jim Little** and **Fred Tung**)

Lecture 3: Image Filtering

Image as a **2D** Function

A (grayscale) image is a 2D function

grayscale image

What is the **range** of the image function? $I(X,Y) \in [0,255] \in \mathbb{Z}$

I(X, Y)

domain: $(X, Y) \in ([1, width], [1, hight])$

Since images are functions, we can perform operations on them, e.g., average

I(X, Y)

G(X,Y)

 $a = \frac{I(X,Y)}{2} + \frac{G(X,Y)}{2}$

Question:

a = ba > ba < b

33

Red pixel in camera man image = 98Red pixel in moon image = 200

Question:

 $\frac{98 + 200}{2} = \frac{\lfloor 298 \rfloor}{2} = \frac{255}{2} = 127$

 $a = \frac{I(X,Y)}{2} + \frac{G(X,Y)}{2}$

Question:

35

In Python

- from PIL import Image
- img = Image.open('cameraman.png')

- # Or do this

It is often convenient to convert images to doubles when doing processing

- import numpy as np
- imgArr = np.asfarray(img)

import matplotlib.pyplot as plt

camera = plt.(imread)'cameraman.png');

What types of transformations can we do?

I(X, Y)

Filtering

changes range of image function

I(X, Y)

Warping

changes domain of image function

What types of **filtering** can we do?

Neighborhood Operation

Point Operation

point processing

"filtering"

Examples of **Point Processing**

original

darken

I(X, Y)

I(X, Y) - 128

invert

lighten

255 - I(X, Y)

I(X, Y) + 128

lower contrast

I(X, Y)

 $I(X,Y) \times 2$

non-linear lower contrast

1/3I(X, Y) $\times 255$ 255

non-linear raise contrast

 2 $\times 255$ I(X,Y)

Examples of **Point Processing**

original

darken

I(X, Y)

I(X, Y) - 128

invert

lighten

255 - I(X, Y)

I(X, Y) + 128

lower contrast

I(X, Y)raise contrast

 $I(X,Y) \times 2$

non-linear lower contrast

1/3I(X, Y) $\times 255$ 255

non-linear raise contrast

 2 $\times 255$ I(X,Y)

Reminders

Redings:

- Today's Lecture: Forsyth & Ponce (2nd ed.) 1.1.1 1.1.3
- Next Lecture: Forsyth & Ponce (2nd ed.) 4.1, 4.5

Reminders:

- Complete Assignment 0 (ungraded) by Wednsday, September 12
- Assignment 1 will be out, September 12

