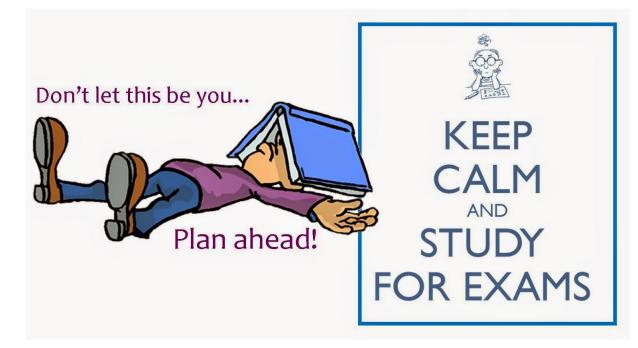


THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision



Lecture 35: Review

Menu for Today (November 30, 2018)

Topics:

- Final Review

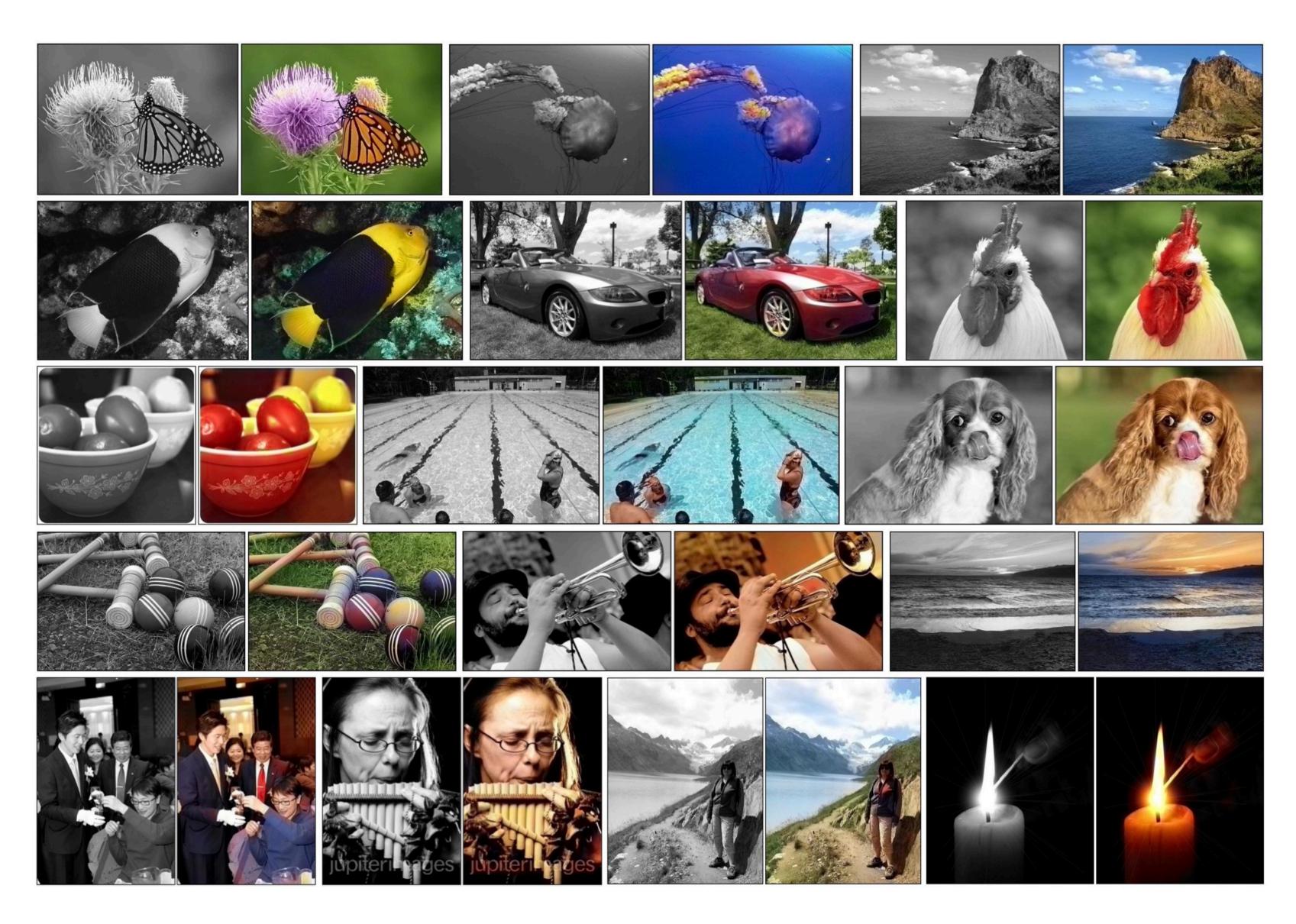
Redings:

- Today's Lecture: N/A
- Next Lecture: N/A

Reminders:

- Assignment 5: Scene Recognition with Bag of Words due today
- Midterm is now graded from 47 points (+6% for everyone)
- Additional office hours, Piazza, etc.

Today's "fun" Example: Colorful Image Colorization



Final Exam Details

2.5 hours

- **Closed** book, **no** calculators — Equations will be given
- Format similar to midterm exam
- Part A: Multiple-part true/false
 Part B: Short answer
- No coding questions

4

How to study?

understand the material

- It easy to look at the slides and think "This all makes sense"
- Look at each algorithm, concept,
 - what are properties of the algorithm / concept?
 - what does each step do?
 - is this step important? can you imagine doing it another way?

Look at the Lectures Notes and Assignment and think critically if you truly

— what are parameters? what would be the effect of changing those?

Course Review: Reading

- Lecture **slides**
- Assigned **readings** from Forsyth & Ponce (2nd ed.) Paper "Texture Synthesis by Non-parametric Sampling" Paper "Distinctive Image Features from Scale-Invariant Keypoints"

- **Assignments** 1-5
- iClicker questions
- Lecture exercises
- Practice **problems** (with solutions) -4 more sets will be up tonight.

Course Review: Cameras and Lenses

Pinhole camera

Projections (and projection equations) - perspective, weak perspective, orthographic

Lenses

Human eye

Course Review: Filters

Correlation and convolution Box, pillbox, Gaussian filters Separability

Non-linear filters: median, bilateral

Template matching

8

Course Review: Edge and Corners

Estimating the **image gradient Canny** edge detection Marr/Hildreth edge detection Boundary detection

Harris corner detection

Course Review: Texture

Texture representation

Laplacian pyramid, oriented pyramid

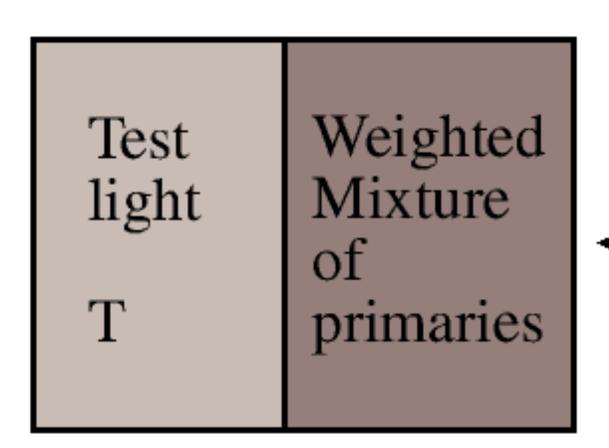
Texture **synthesis** (Efros and Leung paper)

Course Review: Colour

Human colour perception RGB and CIE XYZ colour spaces Uniform colour space HSV colour space

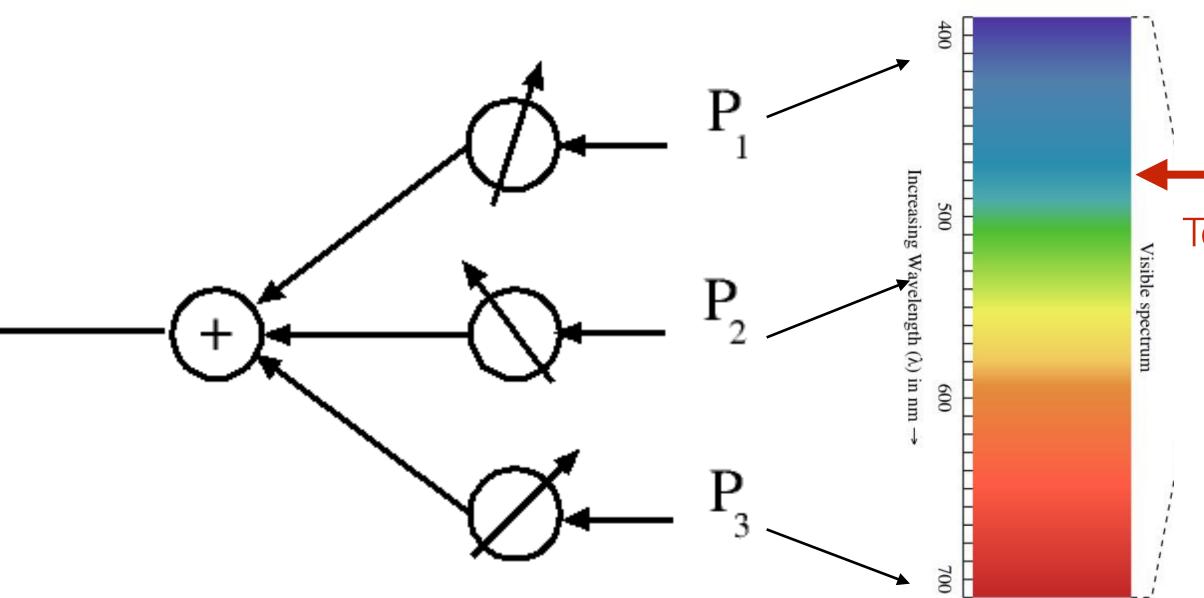
11

Color Matching Experiments



to match. The other a weighted mixture of three primaries (fixed lights)

 $T = w_1 P_1$

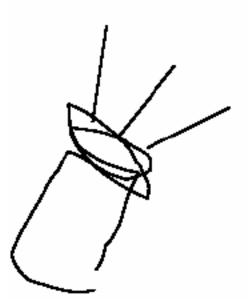


- Forsyth & Ponce (2nd ed.) Figure 3.2
- Show a split field to subjects. One side shows the light whose colour one wants

$$+w_2P_2+w_3P_3$$

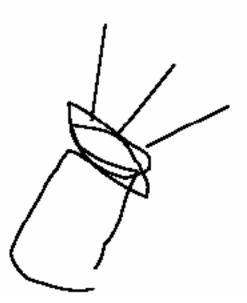
Test Light

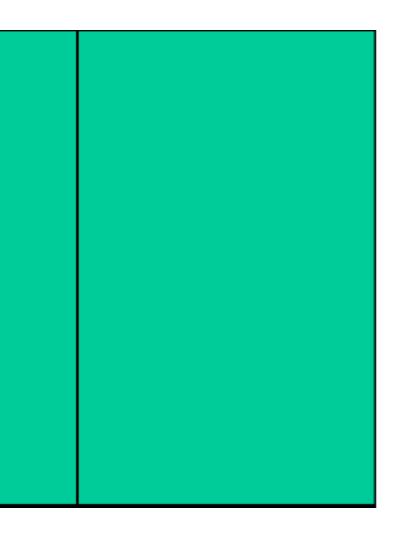
Example 1: Color Matching Experiment

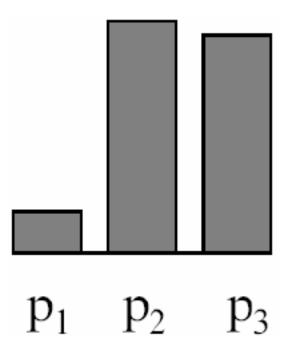


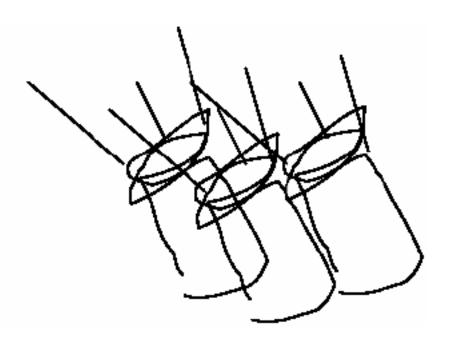
knobs here

Example 1: Color Matching Experiment



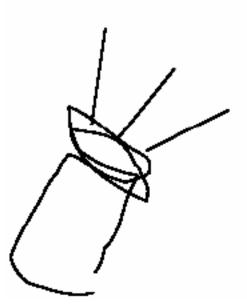


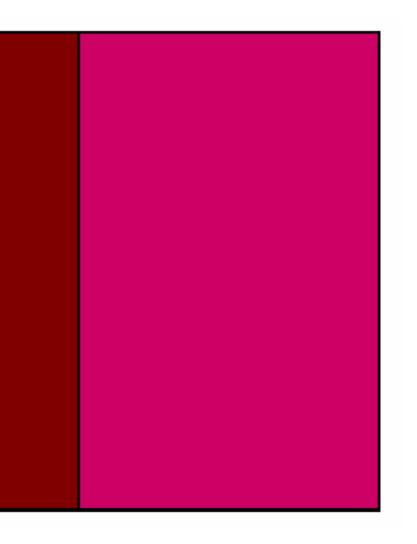


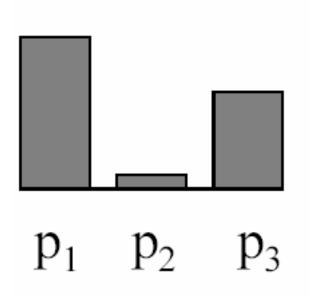


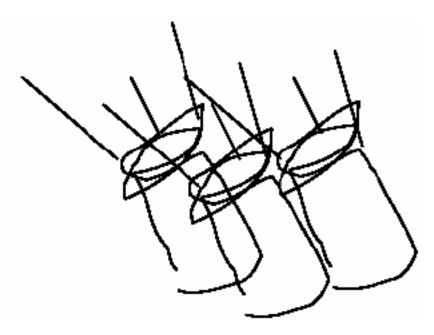
knobs here

Example 2: Color Matching Experiment



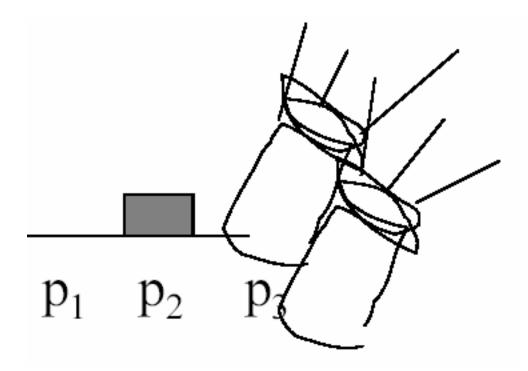


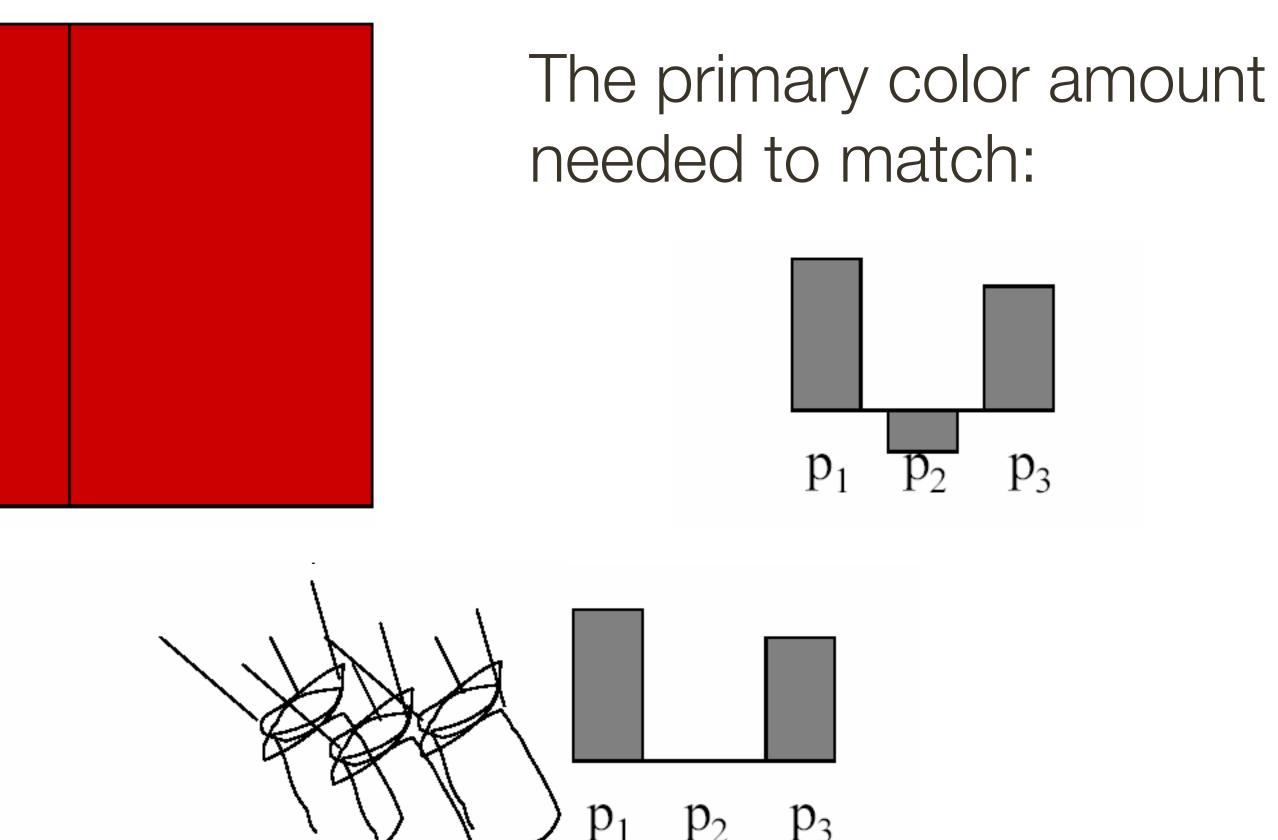




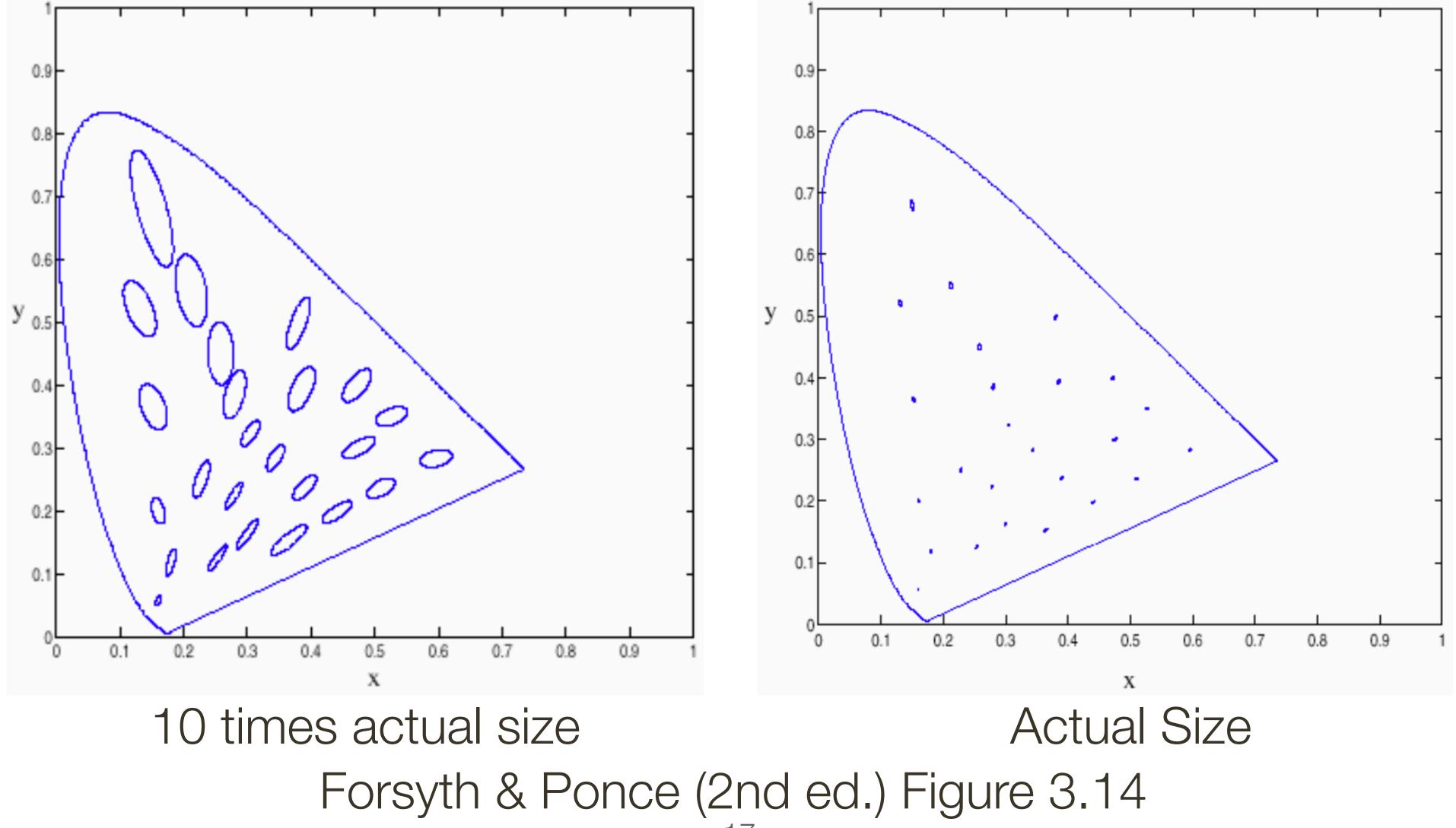
Example 2: Color Matching Experiment

We say a "negative" amount of P_2 was needed to make a match, because we added it to the test color side





Uniform Colour Spaces McAdam Ellipses: Each ellipse shows colours perceived to be the same



Uniform Colour Spaces

McAdam ellipses demonstrate that differences in x, y are a poor guide to differences in perceived colour

guide to differences in perceived colour - example: CIE LAB

A uniform colour space is one in which differences in coordinates are a good

HSV Colour Space

More natural description of colour for human interpretation

Hue: attribute that describes a pure colour - e.g. 'red', 'blue'

Saturation: measure of the degree to which a pure colour is diluted by white light pure spectrum colours are fully saturated

Value: intensity or brightness

Hue + saturation also referred to as **chromaticity**.

Course Review: Local Invariant Features

Keypoint detection using Difference of Gaussian pyramid

Keypoint orientation assignment

Keypoint descriptor

Matching with nearest and second-nearest neighbors

SIFT and object recognition

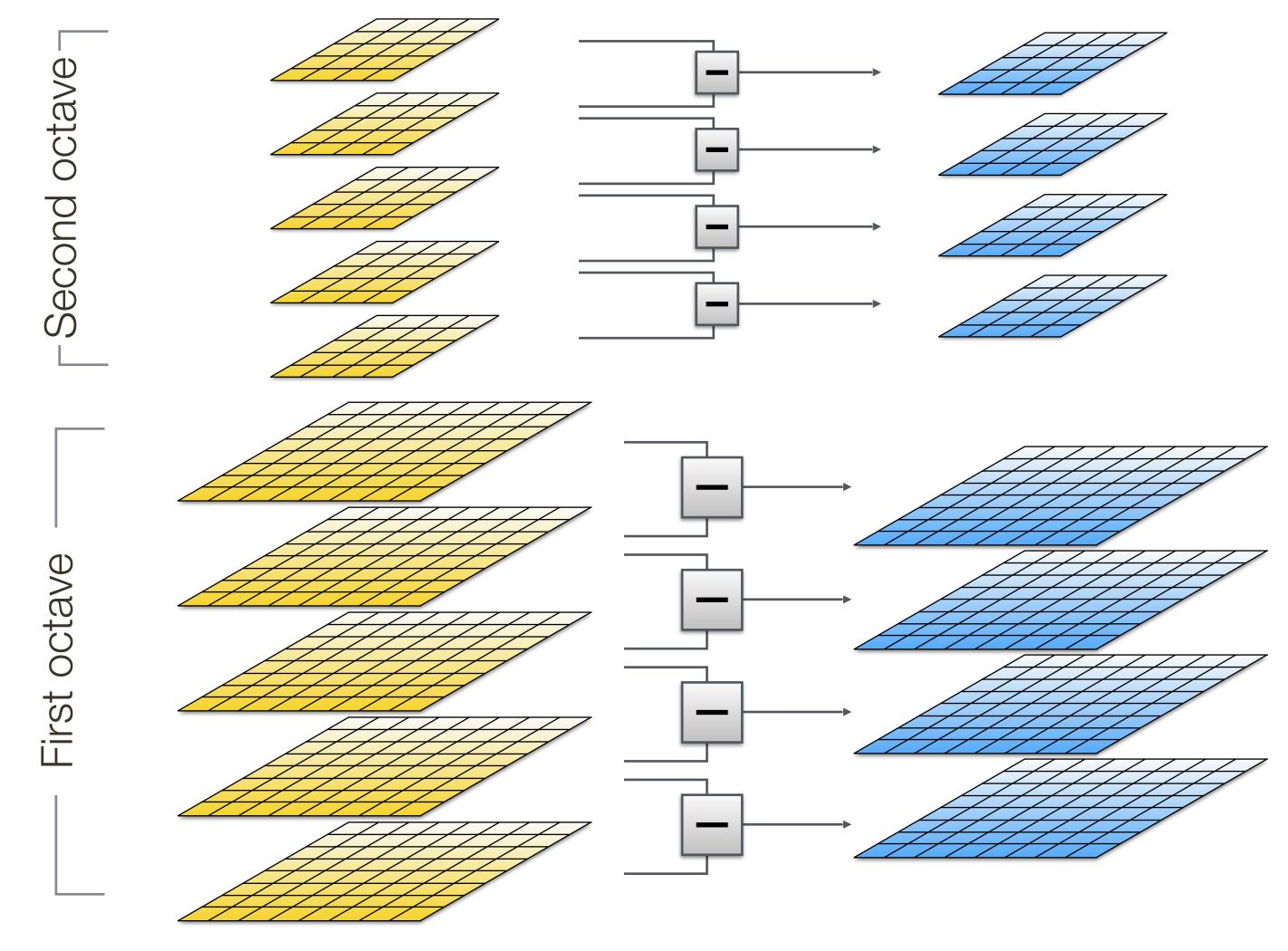
Scale Invariant Feature Transform (SIFT)



- SIFT describes both a **detector** and **descriptor**
 - 1. Multi-scale extrema detection
 - 2. Keypoint localization
 - 3. Orientation assignment
 - 4. Keypoint descriptor

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Multi-scale Extrema Detection

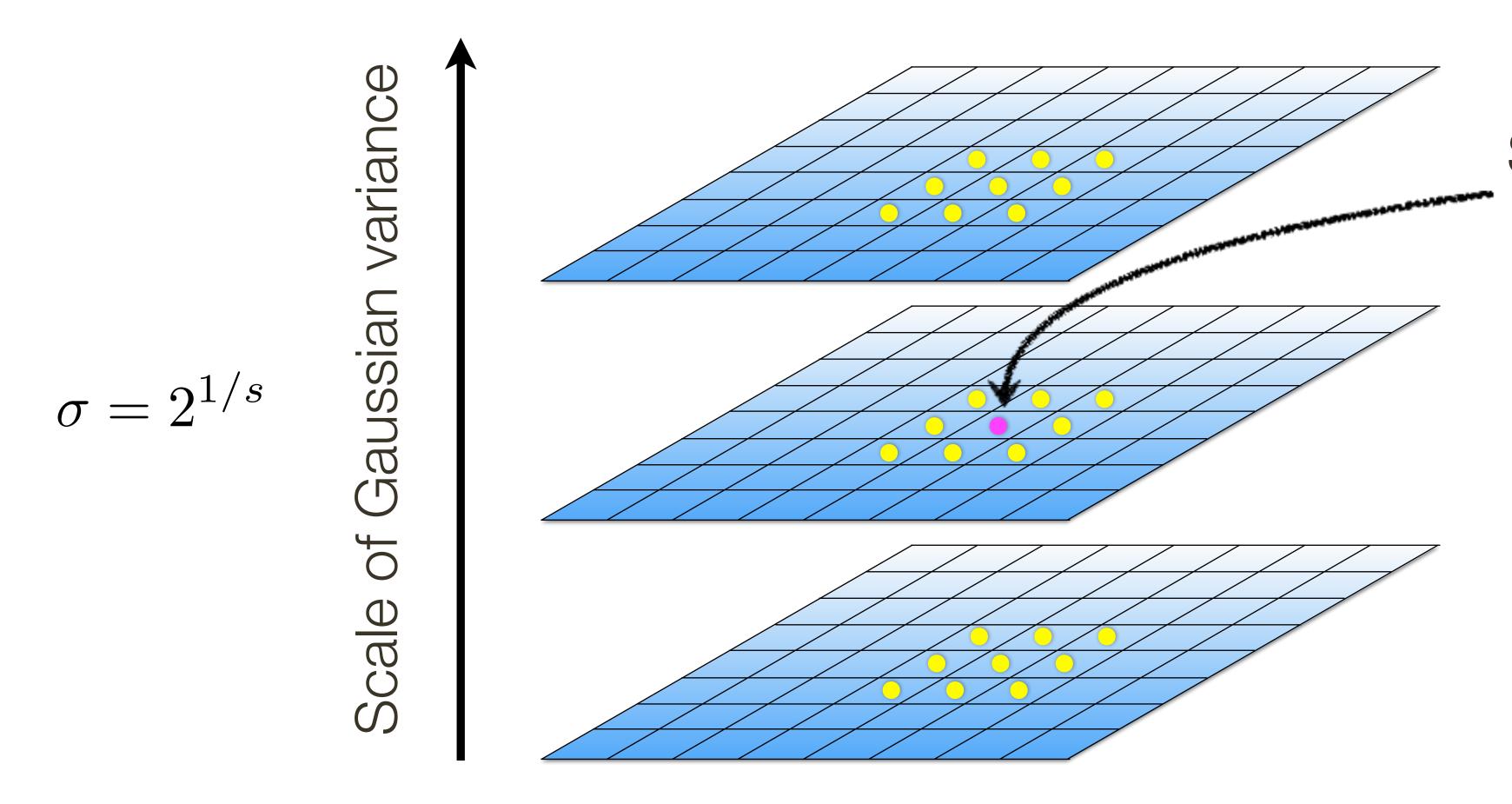


Half the size

Difference of Gaussian (DoG)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Multi-scale Extrema Detection Detect maxima and minima of Difference of Gaussian in scale space



Selected if larger than all 26 neighbors

Difference of Gaussian (DoG)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

2. Keypoint Localization

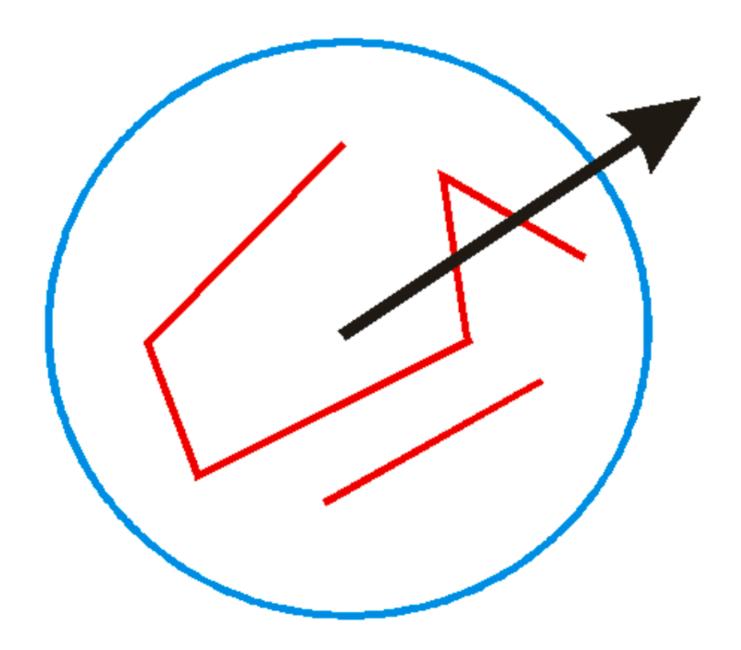
- After keypoints are detected, we reare **poorly localized** along an edge

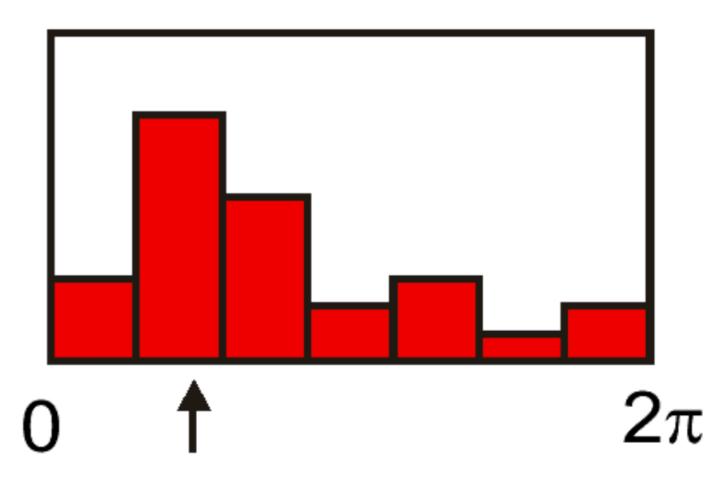
- Lowe suggests computing the ratio of the eigenvalues of ${\bf C}$ (recall Harris corners) and checking if it is greater than a threshold

- After keypoints are detected, we remove those that have low contrast or

3. Orientation Assignment

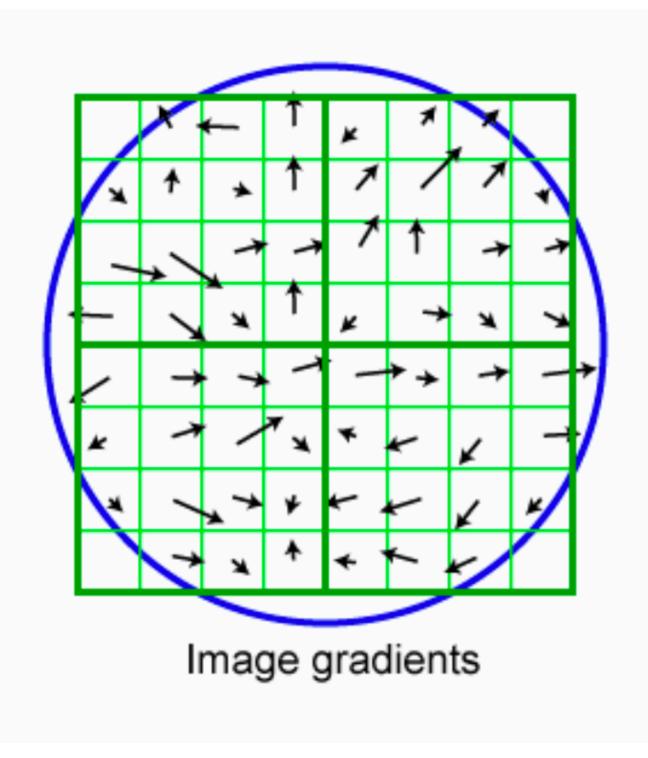
- Create **histogram** of local gradient directions computed at selected scale
- Assign canonical orientation at peak of smoothed histogram
- Each key specifies stable 2D coordinates (x, y, scale, orientation)

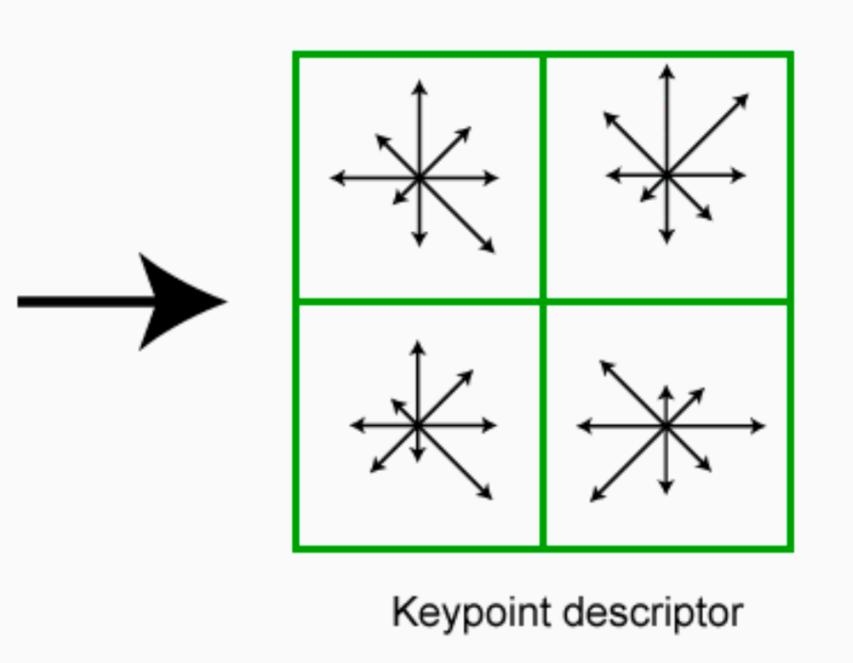




4. SIFT Descriptor

Thresholded image gradients are sampled over 16 × 16 array of locations in scale space (weighted by a Gaussian with sigma half the size of the window)
Create array of orientation histograms
8 orientations × 4 × 4 histogram array





Course Review: Fitting Data to a Model

RANSAC

Hough transform

RANSAC (RANdom SAmple Consensus)

- sample)
- Size of consensus set is model's **support**
- 3. Repeat for N samples; model with biggest support is most robust fit
 - Points within distance t of best model are inliers
 - Fit final model to all inliers

1. Randomly choose minimal subset of data points necessary to fit model (a

2. Points within some distance threshold, t, of model are a **consensus set**.

Slide Credit: Christopher Rasmussen

RANSAC: How many samples?

Let ω be the fraction of inliers (i.e., points on line)

- Let n be the number of points needed to define hypothesis (n = 2 for a line in the plane)
- Suppose k samples are chosen
- The probability that a single sample of n points is correct (all inliers) is

The probability that all k samples fail is Choose k large enough (to keep this below a target failure rate)

$$\omega^n$$

$$(-\omega^n)^k$$

RANSAC: *k* Samples Chosen (p = 0.99)

Sample size	Proportion of outliers						
n	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

Figure Credit: Hartley & Zisserman

Discussion of RANSAC

Advantages:

- General method suited for a wide range of model fitting problems
- Easy to implement and easy to calculate its failure rate

Disadvantages:

- Many real problems have high rate of outliers (but sometimes selective choice of random subsets can help)

The Hough transform can handle high percentage of outliers

- Only handles a moderate percentage of outliers without cost blowing up

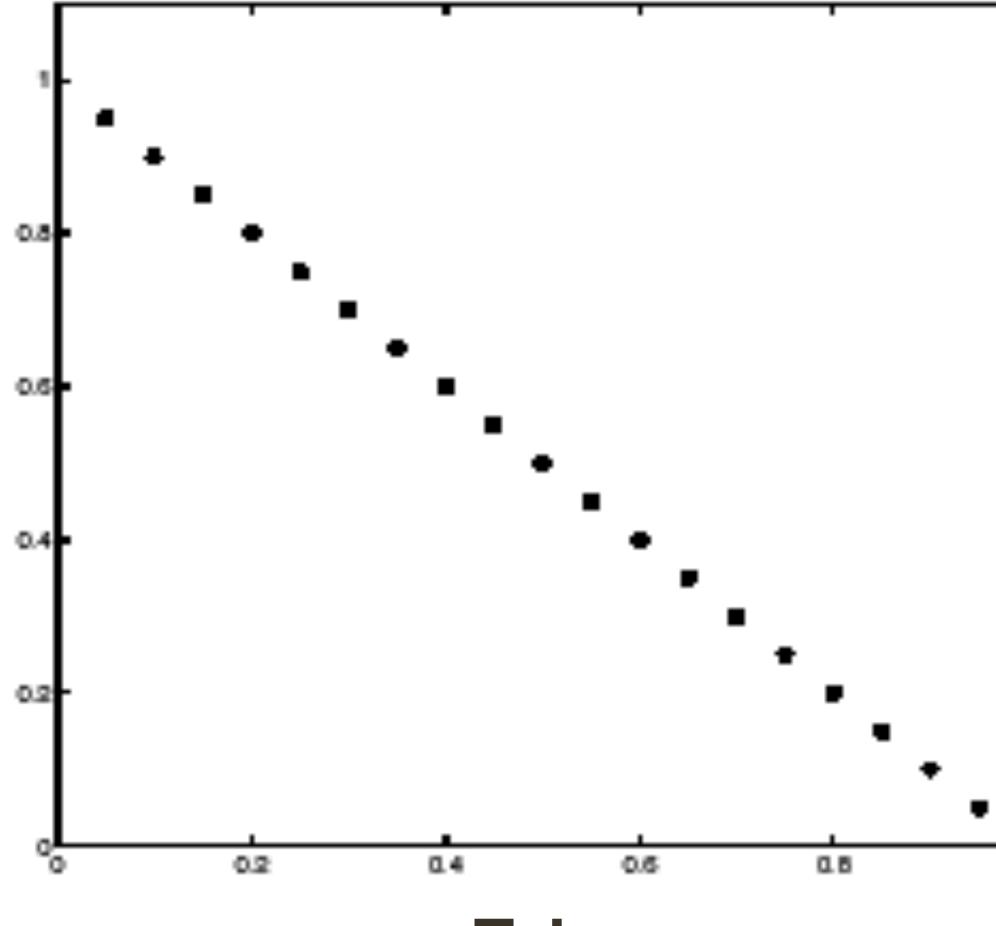
Hough Transform

Idea of **Hough transform**:

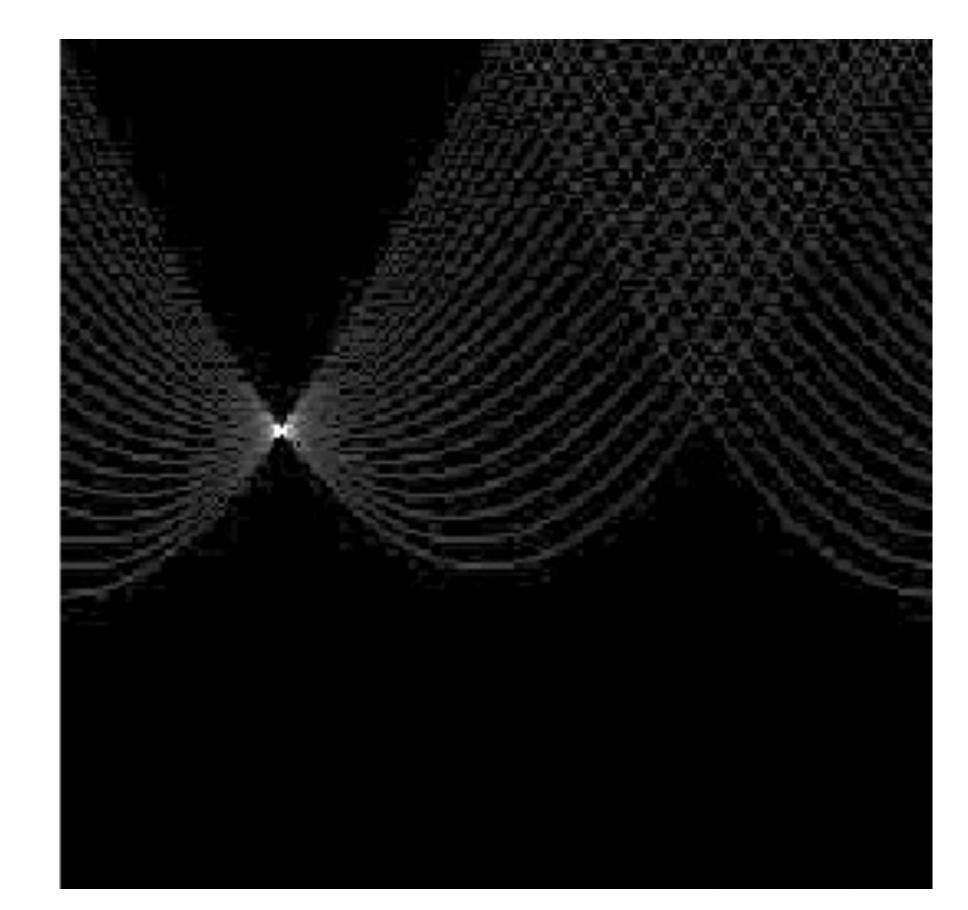
- For each token vote for all models to which the token could belong
- Return models that get many votes

Example: For each point, vote for all lines that could pass through it; the true lines will pass through many points and so receive many votes

Example: Clean Data

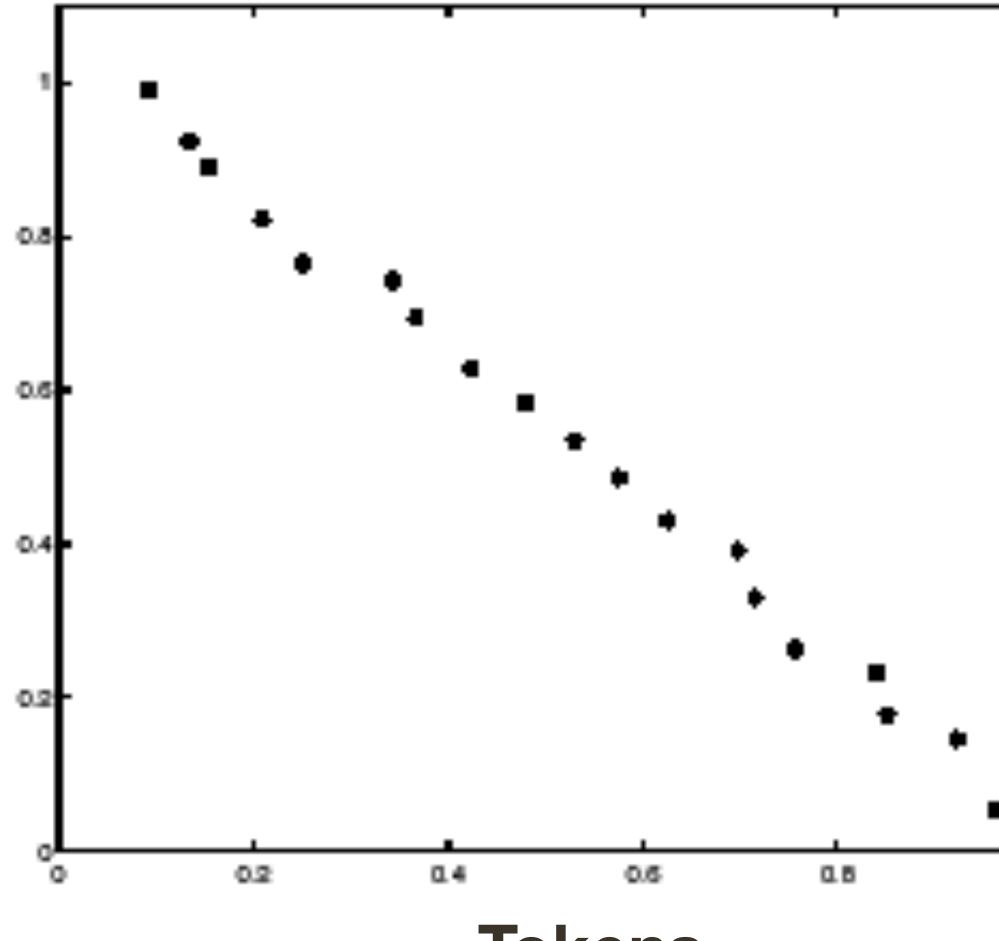


Tokens

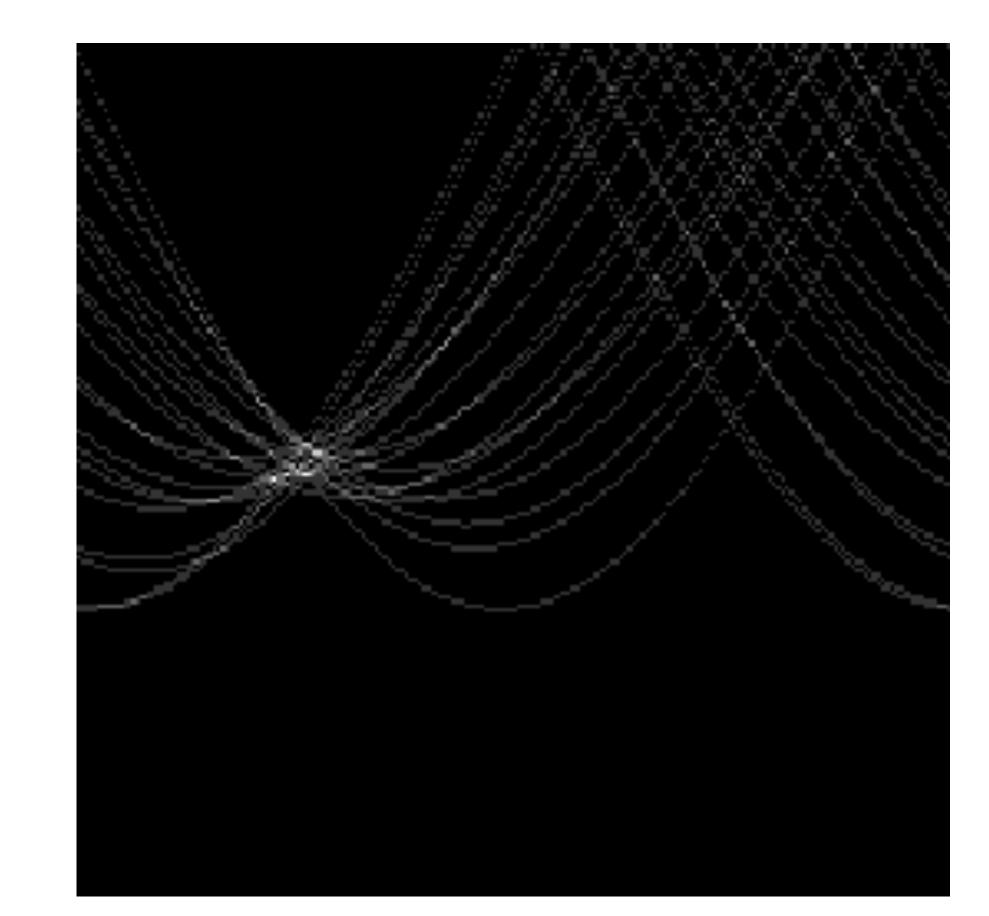


Votes Horizontal axis is θ Vertical Axis is r Forsyth & Ponce (2nd ed.) Figure 10.1 (Top) 33

Example: Some Noise

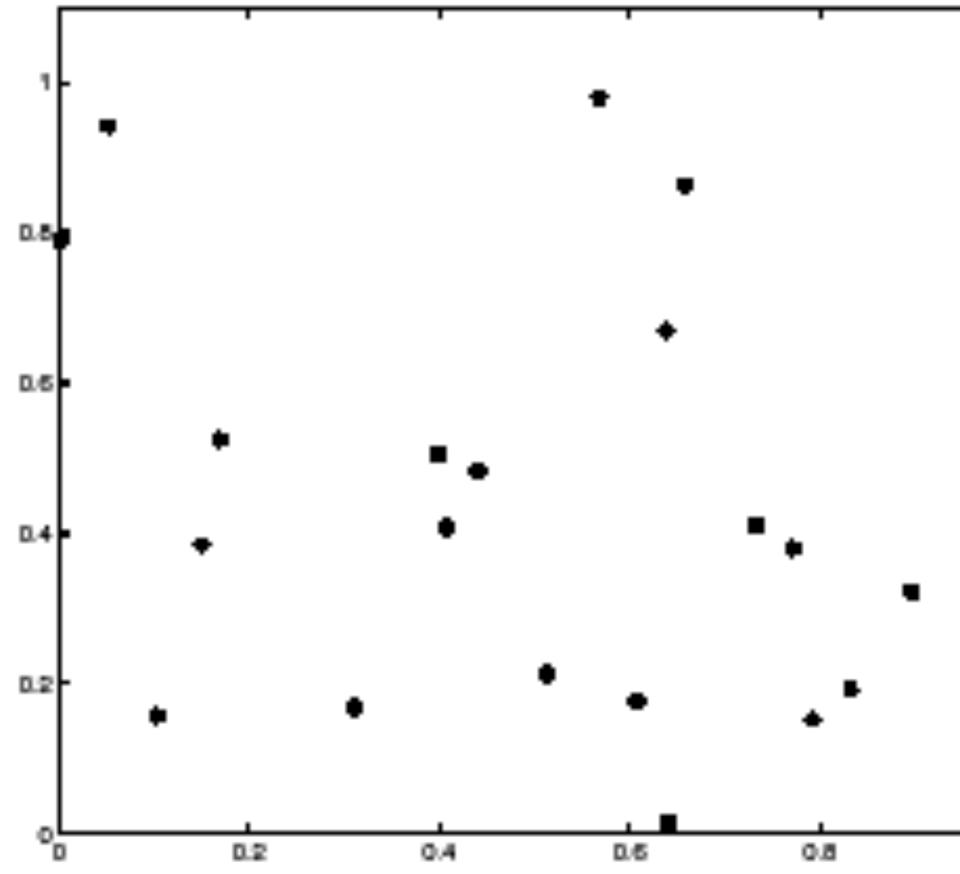


Tokens

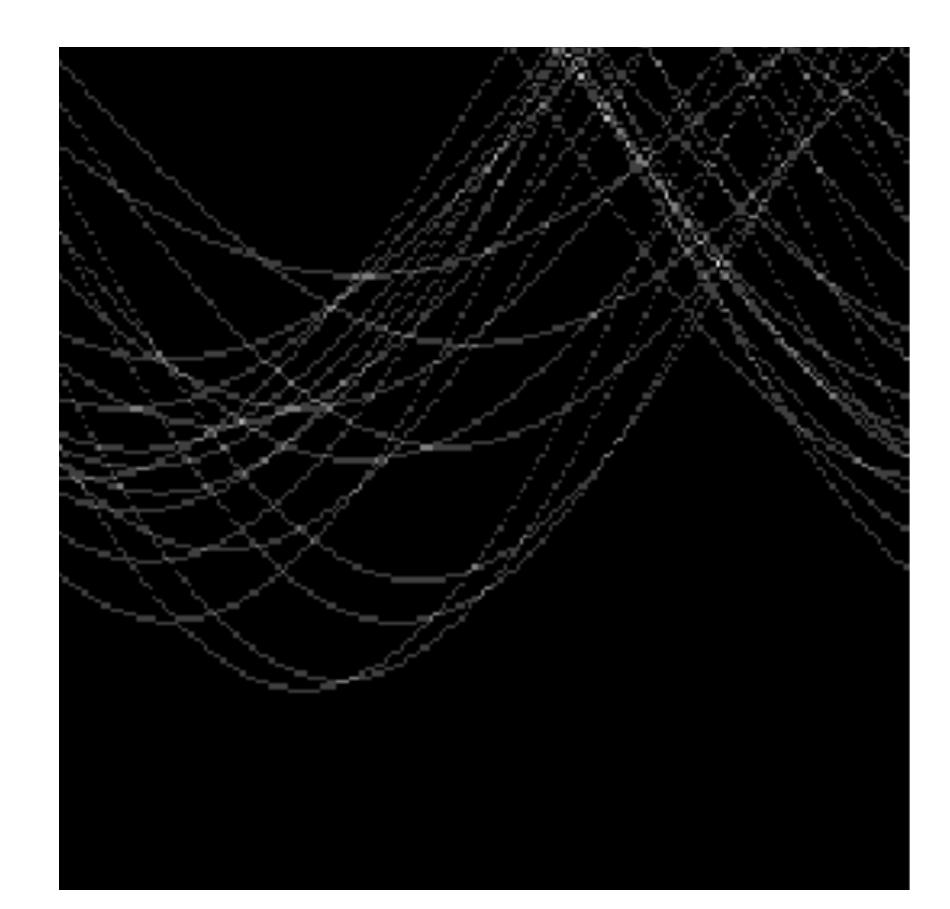


ч. Votes Horizontal axis is θ Vertical Axis is r Forsyth & Ponce (2nd ed.) Figure 10.1 (Bottom) 34

Example: Too Much Noise



Tokens



Votes Horizontal axis is θ Vertical Axis is r Forsyth & Ponce (2nd ed.) Figure 10.2 35

Sample Question

RANSAC to recognize clusters of 3 consistent features?

In his SIFT paper, why did Lowe choose to use a Hough transform rather than

Course Review: Stereo

Epipolar constraint

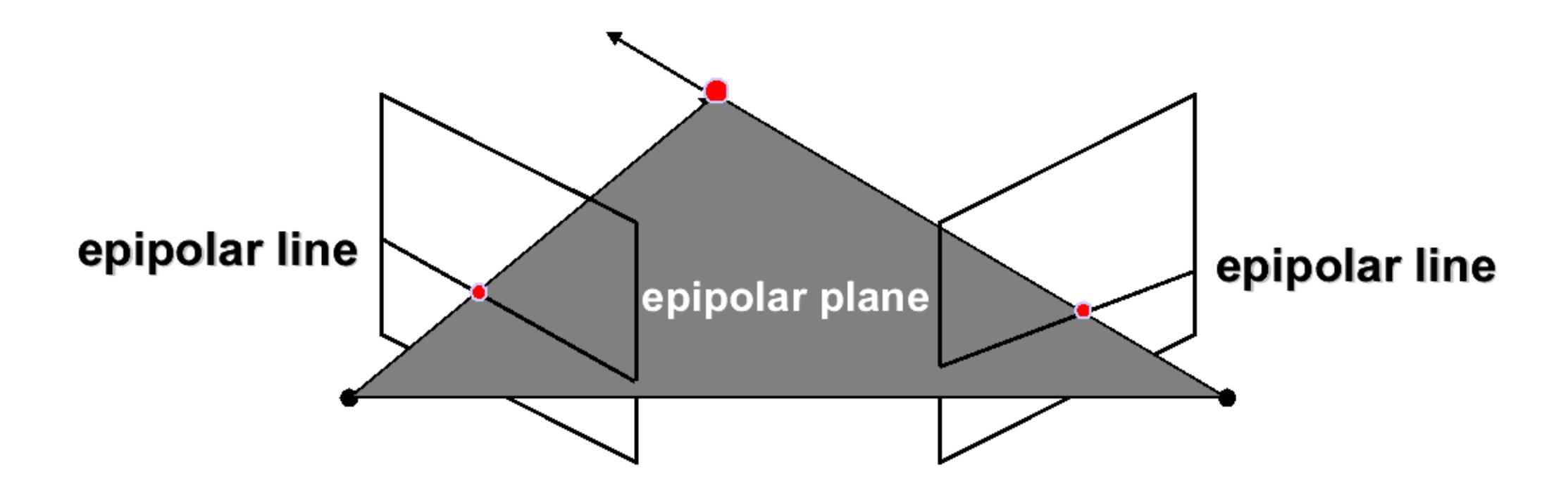
Rectified images

Computing correspondences

Ordering constraint

37

The **Epipolar** Constraint



Matching points lie along corresponding epipolar lines Greatly reduces cost and ambiguity of matching

- Reduces correspondence problem to 1D search along conjugate epipolar lines

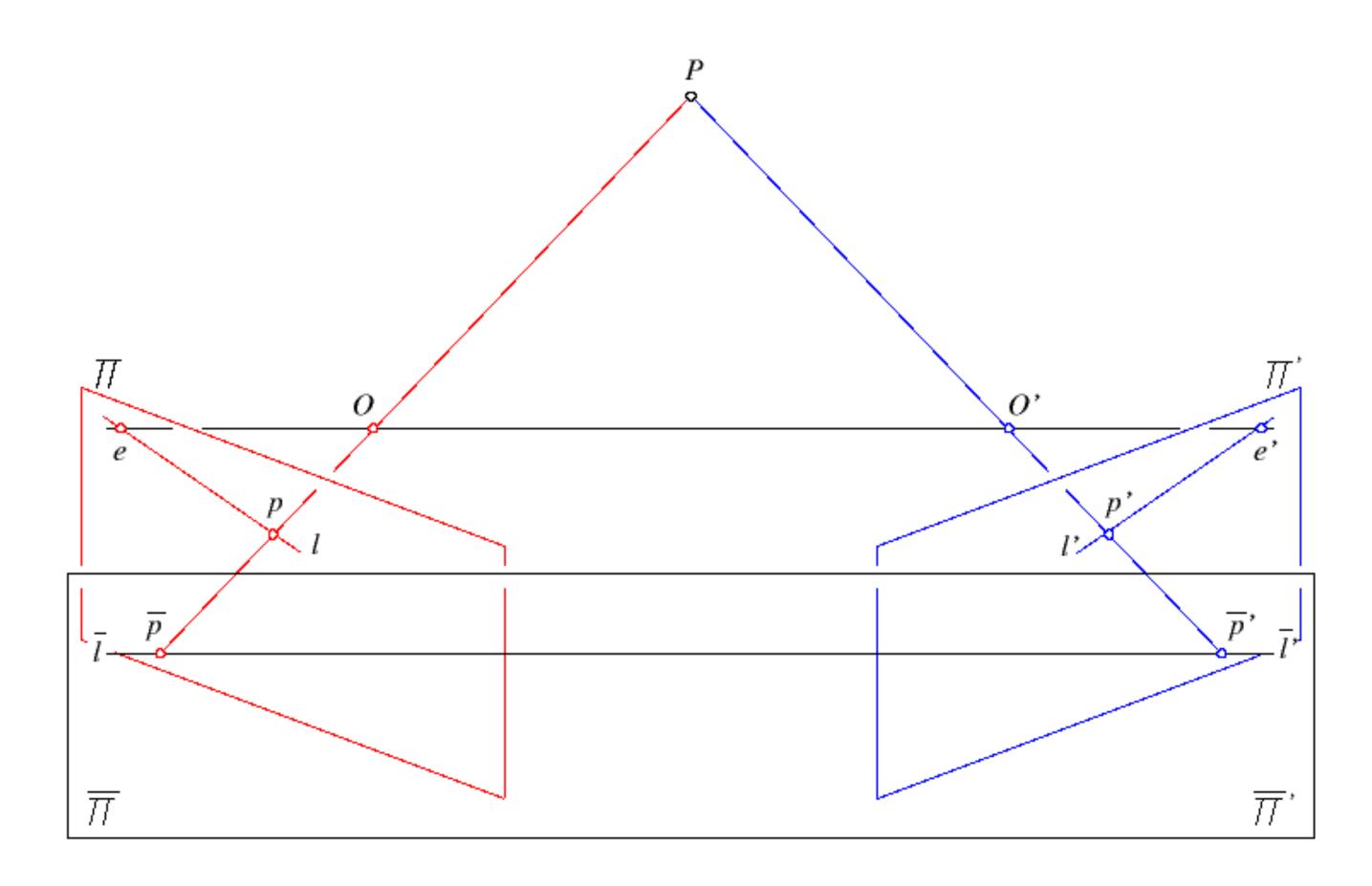
Slide credit: Steve Seitz

Simplest Case: Rectified Images

- Image planes of cameras are **parallel**
- Focal **points** are at same height
- Focal **lengths** same
- Then, epipolar lines fall along the horizontal scan lines of the images
- scan lines
- Simplifies algorithms
- Improves efficiency

We assume images have been **rectified** so that epipolar lines correspond to

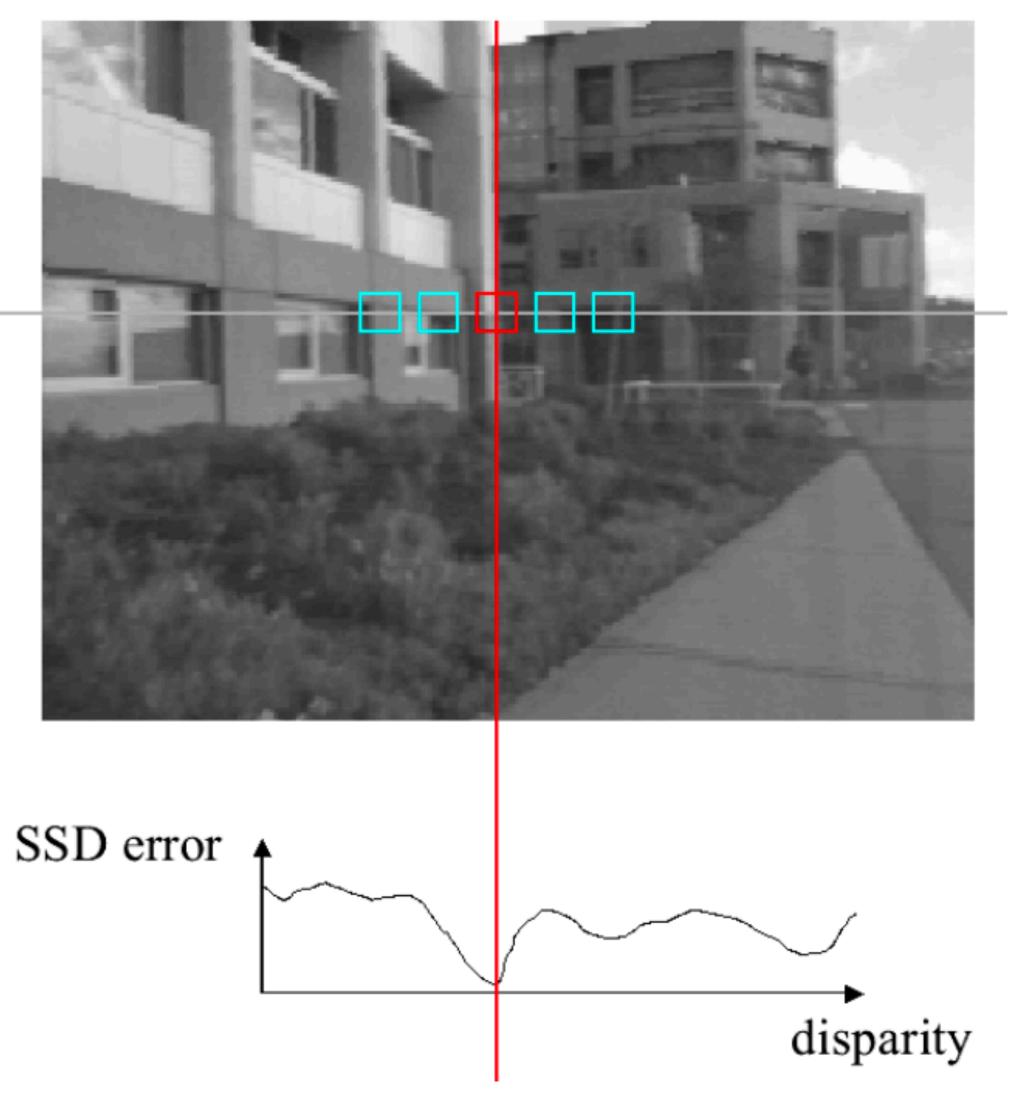
Rectified Stereo Pair



Method: Correlation

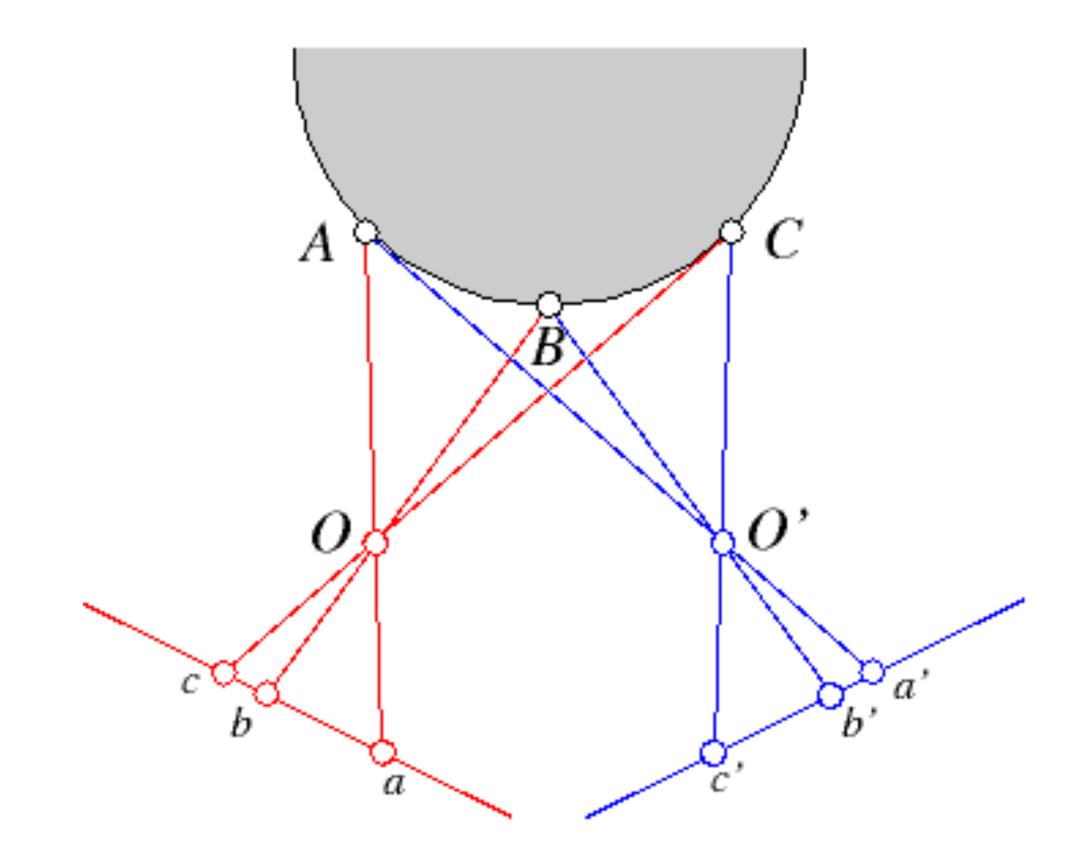
Left

Right

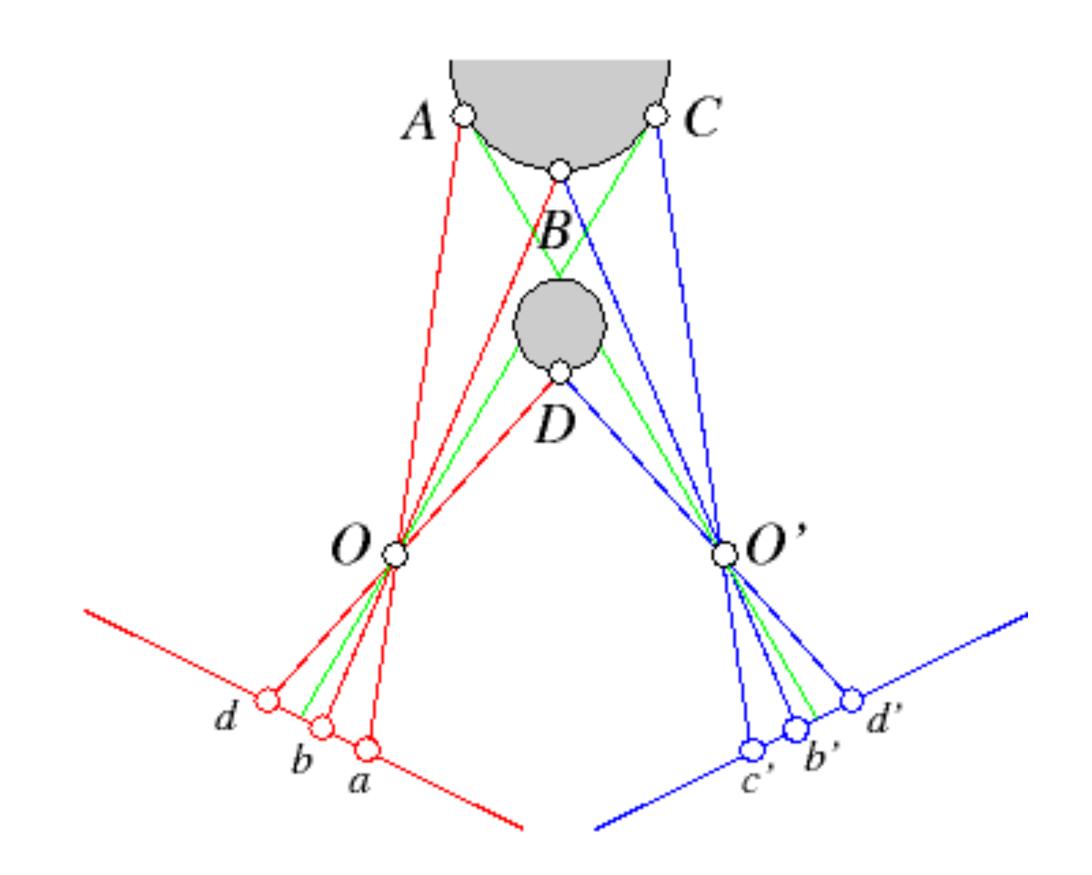


Ordering Constraints

Ordering constraint ...



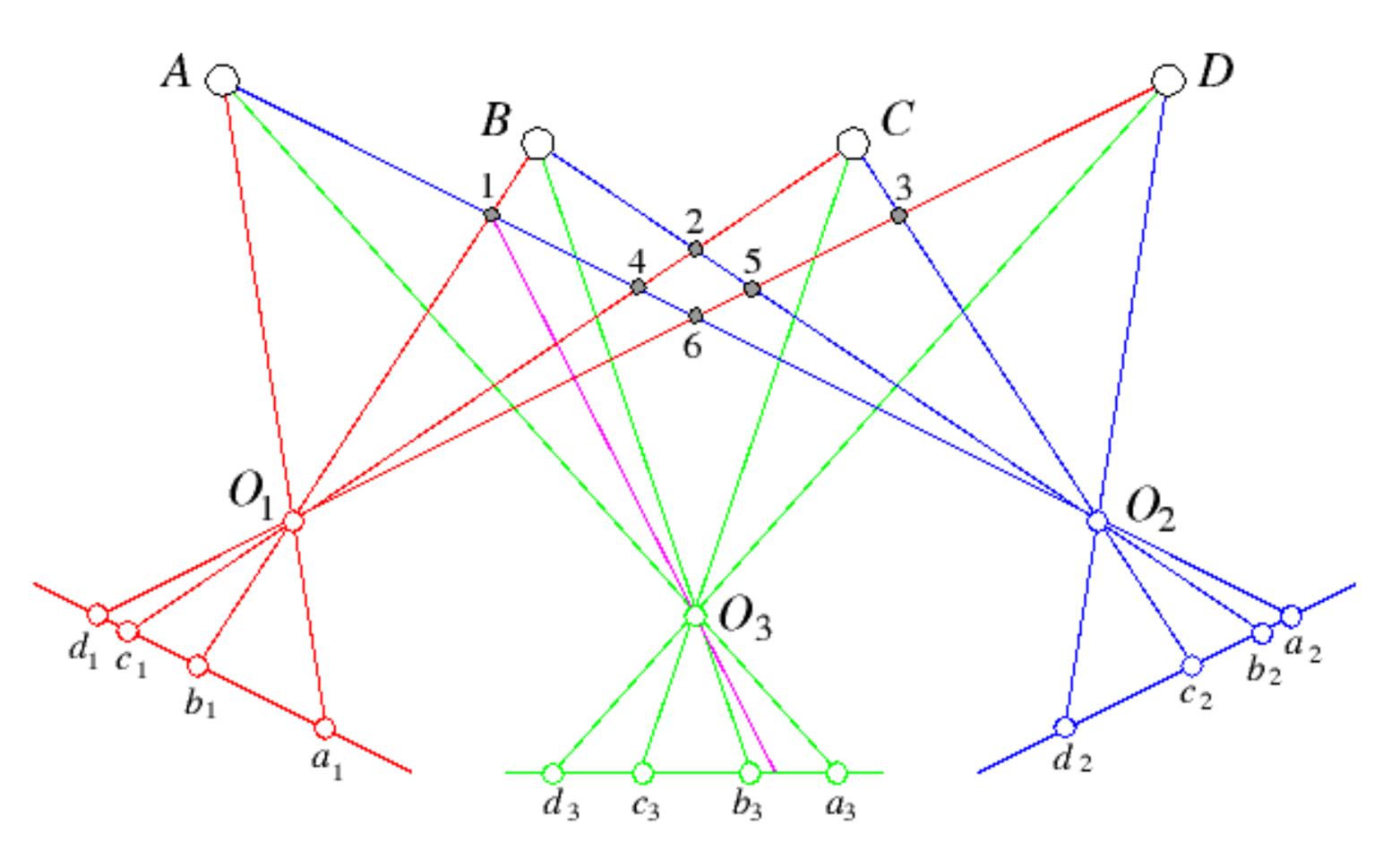
.... and a failure case



Forsyth & Ponce (2nd ed.) Figure 7.13

Idea: Use More Cameras

Adding a third camera reduces ambiguity in stereo matching



Forsyth & Ponce (2nd ed.) Figure 7.17

Please get your iClickers — Quiz

Sample Question

True or false: The ordering constraint always holds in stereo vision.

Course Review: Motion and Optical Flow

Motion (geometric), optical flow (radiometric) **Optical flow** constraint equation Lucas-Kanade method

Optical Flow Constraint Equation

Consider image intensity also to be a function of time, t. We write I(x, y, t)

Applying the **chain rule for differentiation**, we obtain

$$\frac{dI(x,y,t)}{dt}$$

where subscripts denote partial differentiation

Define $u = \frac{dx}{dt}$ and $v = \frac{dy}{dt}$. Then [u, v] is the 2-D motion and the space of all such u and v is the **2-D velocity space** Suppose $\frac{dI(x, y, t)}{dt} = 0$. Then we obtain the (classic) optical flow constraint dtequation $I_x u + I_y v + I_t = 0$

$$I_x \frac{dx}{dt} + I_y \frac{dy}{dt} + I_t$$

How do we compute ...

$$\begin{bmatrix} I_x = \frac{\partial I}{\partial x} & I_y = \frac{\partial I}{\partial y} \end{bmatrix}$$
spatial derivative

Forward difference Sobel filter Scharr filter

. . .

$I_x u + I_y v + I_t = 0$

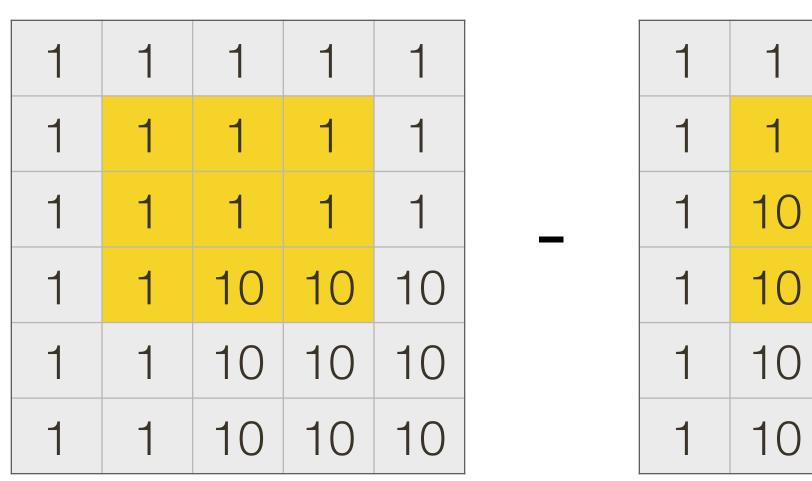
$$I_t = \frac{\partial I}{\partial t}$$
 temporal derivative

Frame differencing

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

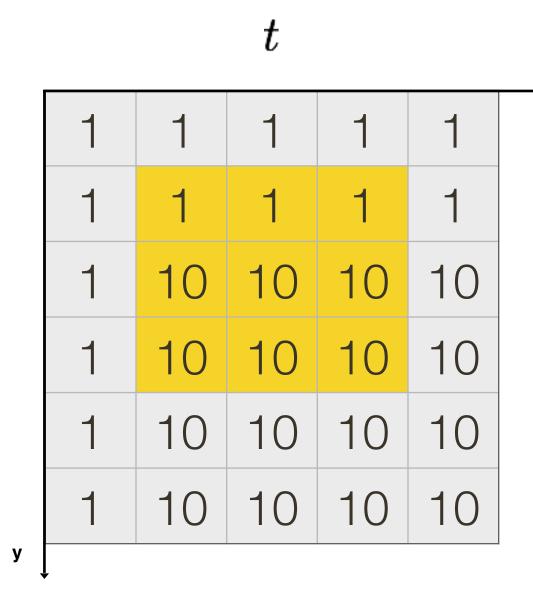
Frame Differencing: Example

t+1



(example of a forward temporal difference)

t		
1	1	1
1	1	1
10	10	10
10	10	10
10	10	10
	10	



$$I_x = \frac{\partial I}{\partial x}$$

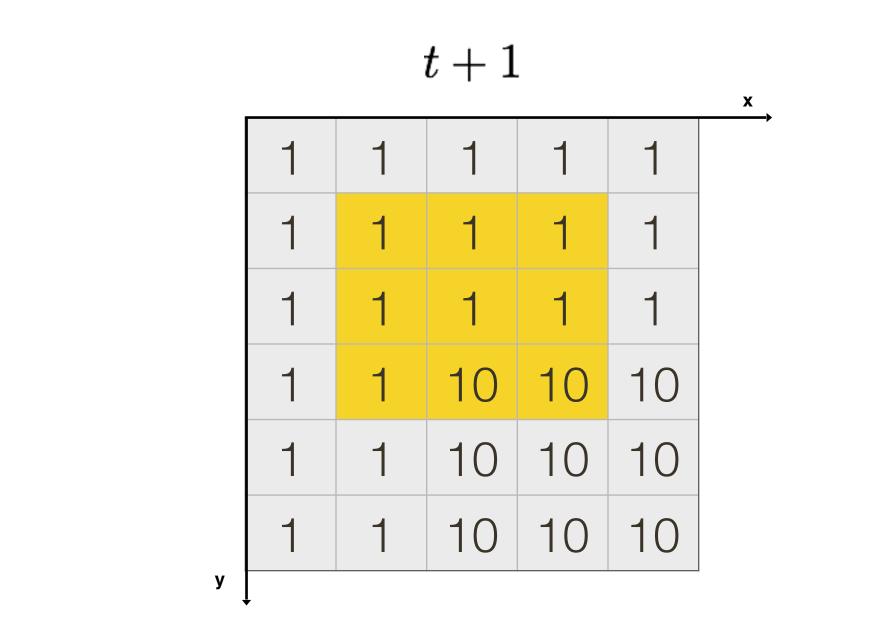
					X
-	0	0	0	_	
-	0	0	0	_	
-	9	0	0	-	
_	9	0	0	_	
_	9	0	0	-	
-	9	0	0	-	
	-	10-	1		

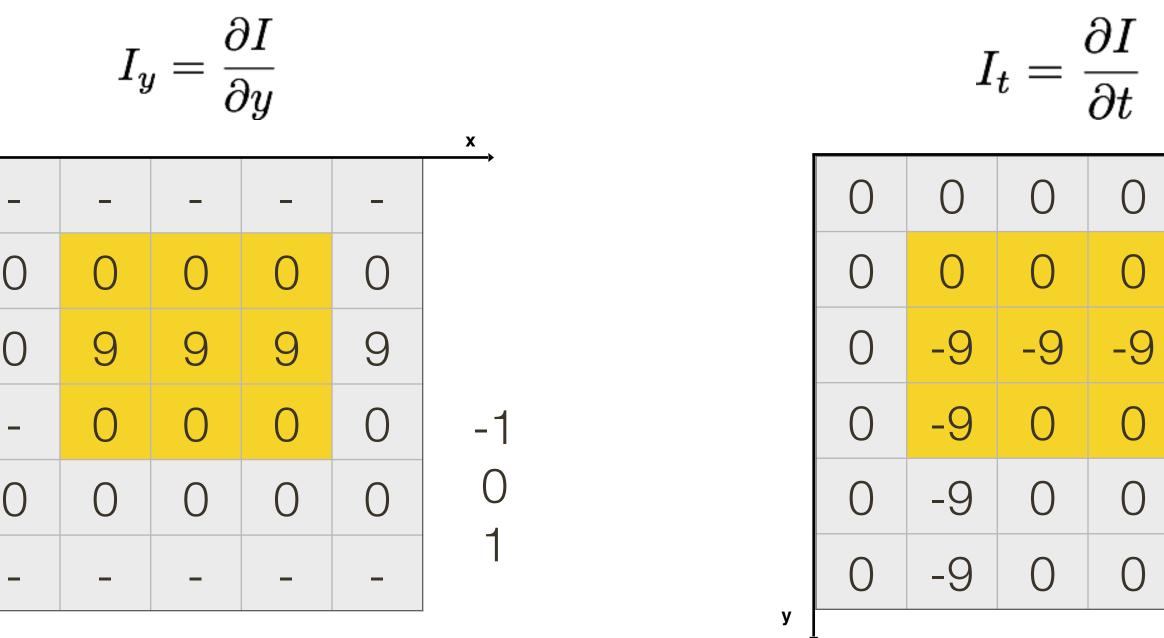
У

Ι	-
0	(
0	Q
Ι	(
0	(
-	-

У

Х





Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Х

0

0

-9

0

 \cap

U

How do we compute ...

 $I_x u + I$

$$\begin{bmatrix} I_x = \frac{\partial I}{\partial x} & I_y = \frac{\partial I}{\partial y} \\ \text{spatial derivative} & u = \frac{dx}{dt} & v = \frac{dy}{dt} \\ \text{optical flow} & \text{temporal derivative} \end{bmatrix}$$

Forward difference Sobel filter Scharr filter

. . .

How do you compute this?

$$I_y v + I_t = 0$$

Frame differencing

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lucas-Kanade Summary

A dense method to compute motion, [u, v] at every location in an image

Key Assumptions:

- **1**. Motion is slow enough and smooth enough that differential methods apply (i.e., that the partial derivatives, I_x , I_y , I_t , are well-defined)
- **2.** The optical flow constraint equation
- **3**. A window size is chosen so that motion, [u, v], is constant in the window
- **4.** A window size is chosen so that the rank of $\mathbf{A}^T \mathbf{A}$ is 2 for the window

n holds (i.e.,
$$\frac{dI(x, y, t)}{dt} = 0$$
)

Please get your iClickers — Quiz

Sample Question

Describe two examples of imaging sit not coincide.

Describe two examples of imaging situations where motion and optical flow do

Course Review: Clustering

Two basic approaches: agglomerative and divisive clustering

Dendrograms

Inter-cluster distance measures

K-means clustering

Segmentation by clustering

Course Review: Classification

Bayes' risk, loss functions

Underfitting, overfitting

Cross-validation

Receiver Operating Characteristic (ROC) curve

Parametric vs. non-parametric classifiers

- K-nearest neighbour
- Support vector machines
- Decision trees

Course Review: Image Classification

Visual words, codebooks

Bag of words representation

Spatial pyramid

VLAD

Sample Question

How do we construct a codebook (vocabulary) of local descriptors, say SIFT?

Course Review: Object Detection

Sliding window

Viola-Jones face detection

Deformable part model

Object proposals

Course Review: Convolutional Neural Networks

Neuron, activation function

Backpropagation (you only need to know properties)

Convolutional neural network architecture

Convolutional neural network layers

R-CNN

Hope you enjoyed the course!