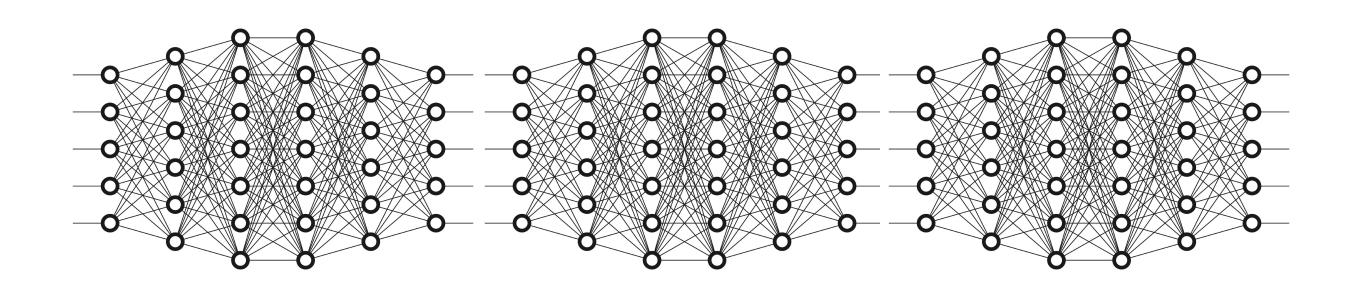


THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision



Lecture 34: Convolutional Neural Networks

Menu for Today (November 28, 2018)

Topics:

- Convolutional Layers
- Convolutional Neural Networks

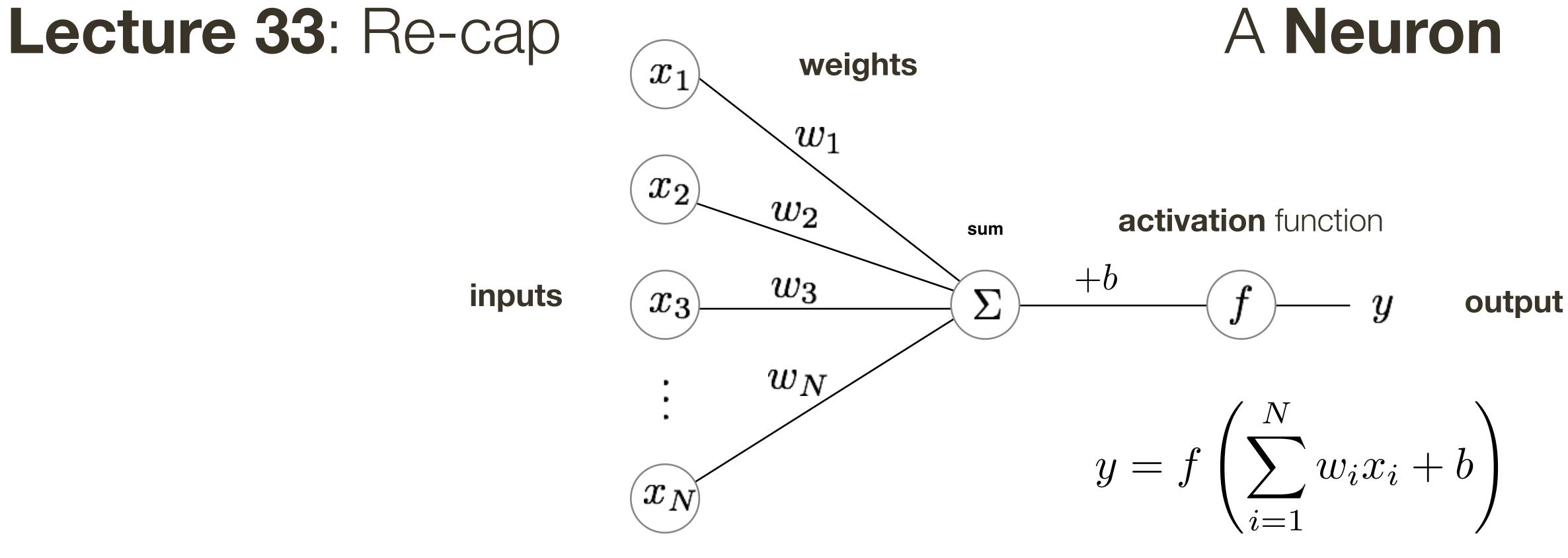
Redings: - Today's Lecture: N/A

- Next Lecture: N/A

Reminders:

Pooling Layer - R-CNN

Assignment 5: Scene Recognition with Bag of Words due last day of classes



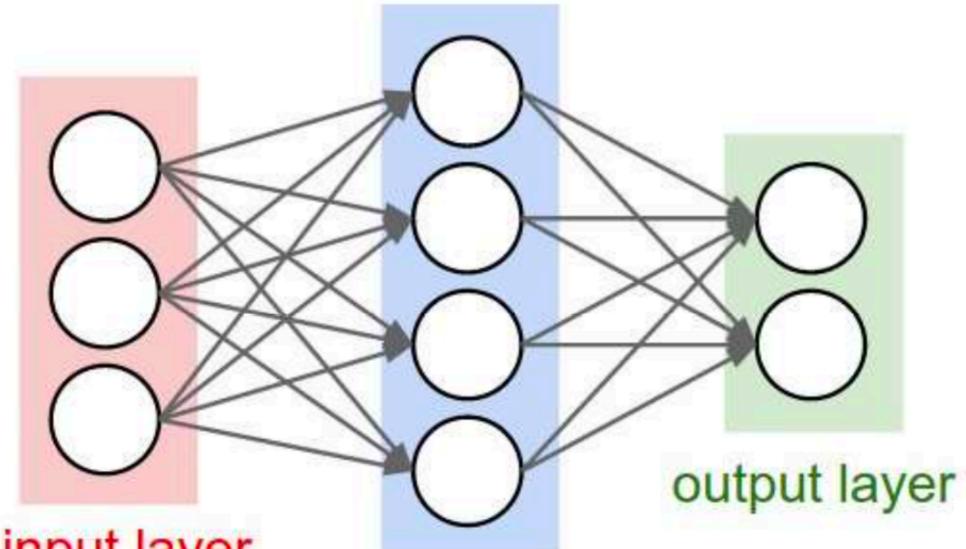
— The basic unit of computation in a neural network is a neuron.

- A neuron accepts some number of input signals, computes their weighted sum, and applies an activation function (or non-linearity) to the sum.

- Common activation functions include sigmoid and rectified linear unit (ReLU) 3

Lecture 33: Re-cap

A neural network comprises neurons connected in an acyclic graph The outputs of neurons can become inputs to other neurons Neural networks typically contain multiple layers of neurons



input layer

Neural Network

hidden layer

Figure credit: Fei-Fei and Karpathy

Example of a neural network with three inputs, a single hidden layer of four neurons, and an output layer of two neurons

Lectu

Suppose the network input is: (x, y, z) = (-2, 5, -4)

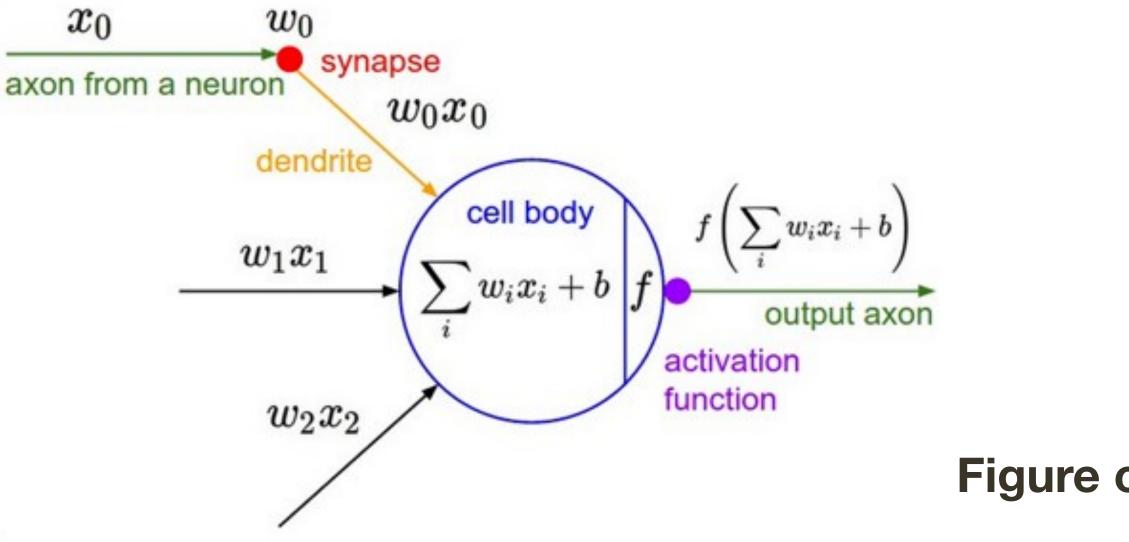
Then: q = x + y = 3 f = qz = -12 (forward pass)

$$\frac{\partial f}{\partial q} = z = -4 \qquad \qquad \frac{\partial f}{\partial x} = -4$$

$$\frac{\partial f}{\partial y} = -4$$
 $\frac{\partial f}{\partial z} = 3$ (backward p

Lecture 33: Re-cap

Chaining products and sums may seem like a simple example. But recall the basic unit in a neural network.



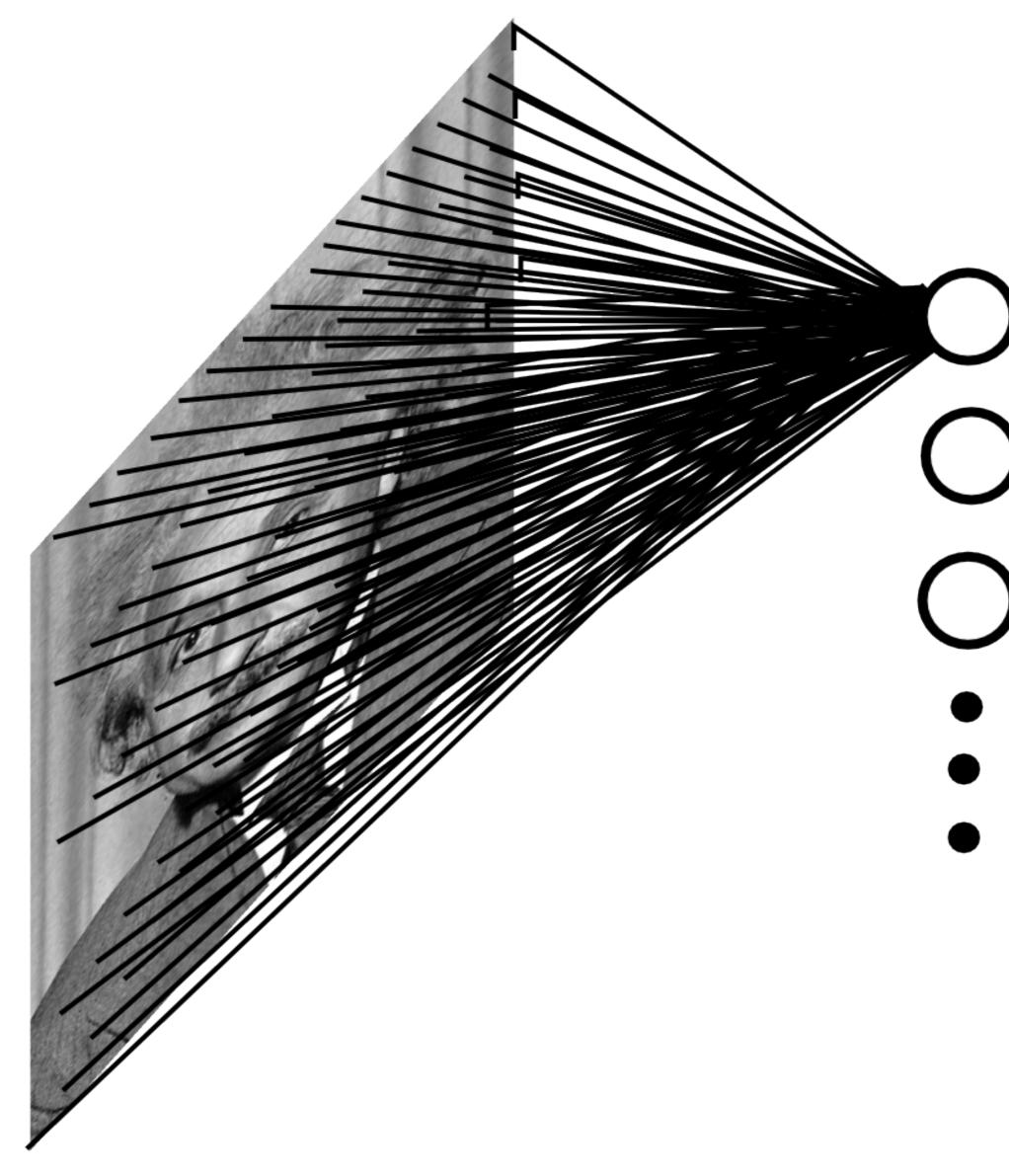
It consists of products, sums, and activation functions (e.g. ReLU, which is a max), which we can chain together

Common loss functions are also differentiable

Backpropagation

Figure credit: Fei-Fei and Karpathy

Fully Connected Layer



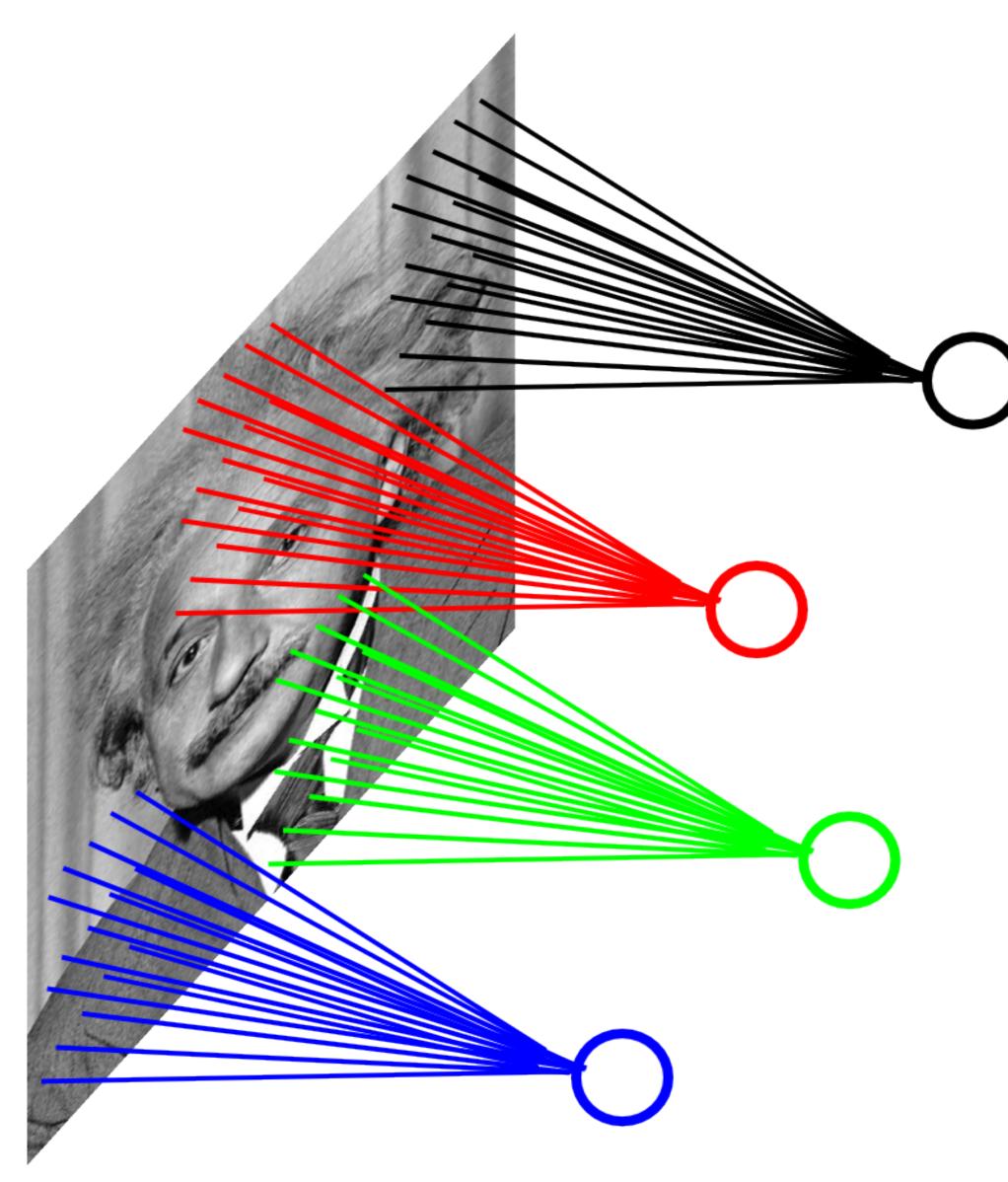
Example: 200 x 200 image (small) x 40K hidden units

= ~ 2 Billion parameters (for one layer!)

Spatial correlations are generally local

Waste of resources + we don't have enough data to train networks this large

Locally Connected Layer

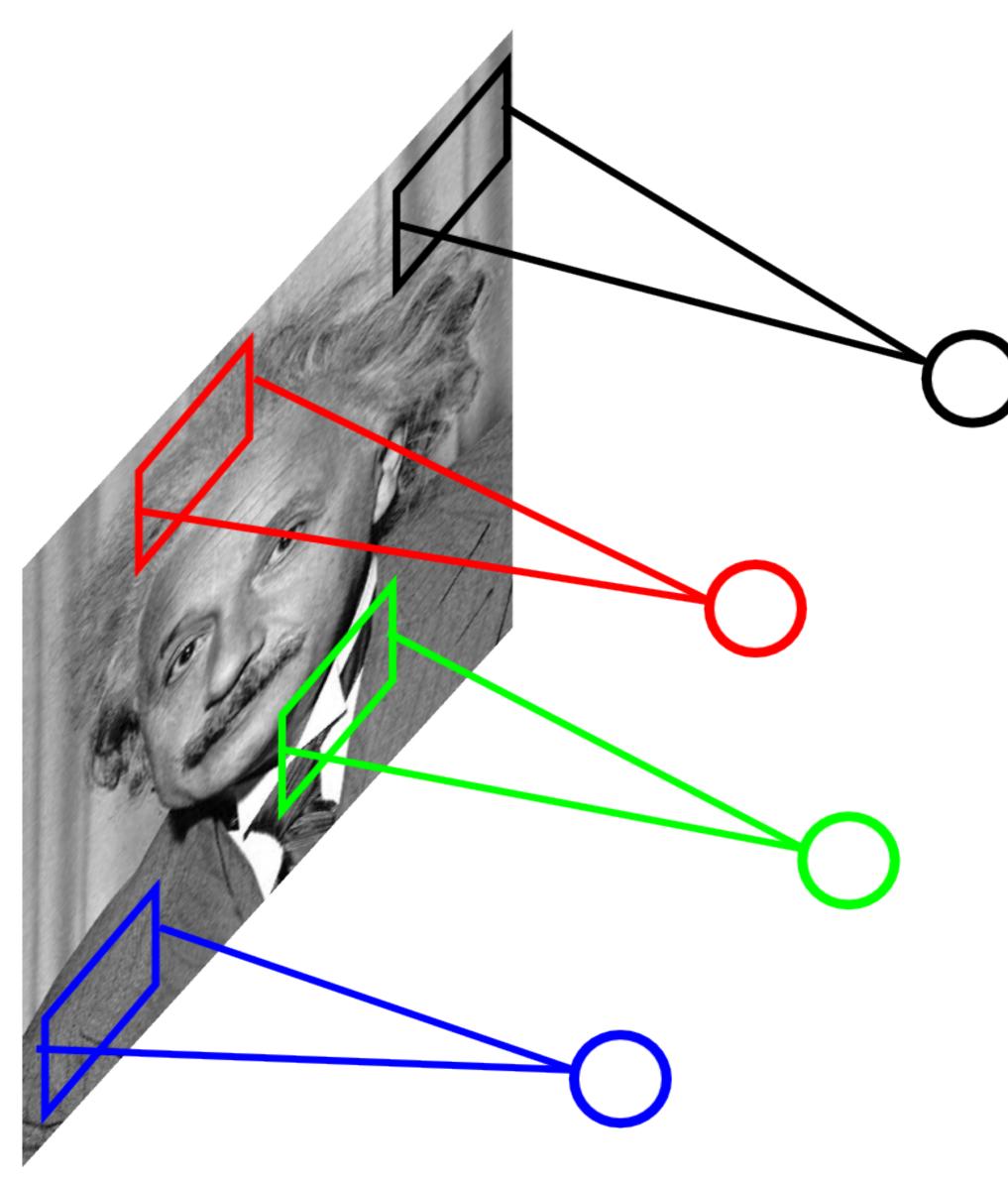


Example: 200 x 200 image (small) x 40K hidden units

Filter size: 10 x 10

= ~ 4 Million parameters

Locally Connected Layer

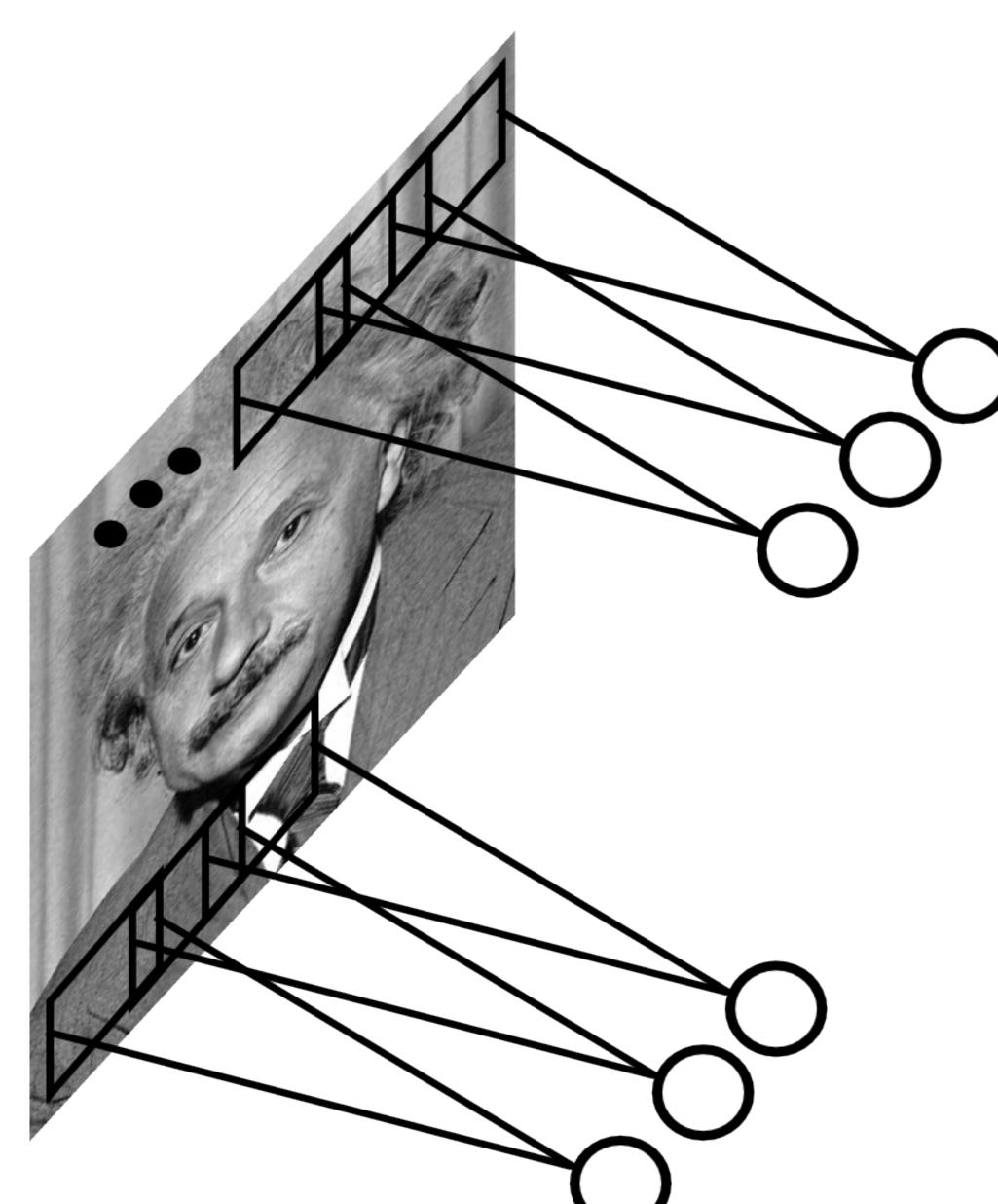


Example: 200 x 200 image (small) x 40K hidden units

Filter size: 10 x 10

= ~ 4 Million parameters

Stationarity — statistics is similar at different locations



Example: 200 x 200 image (small) x 40K hidden units

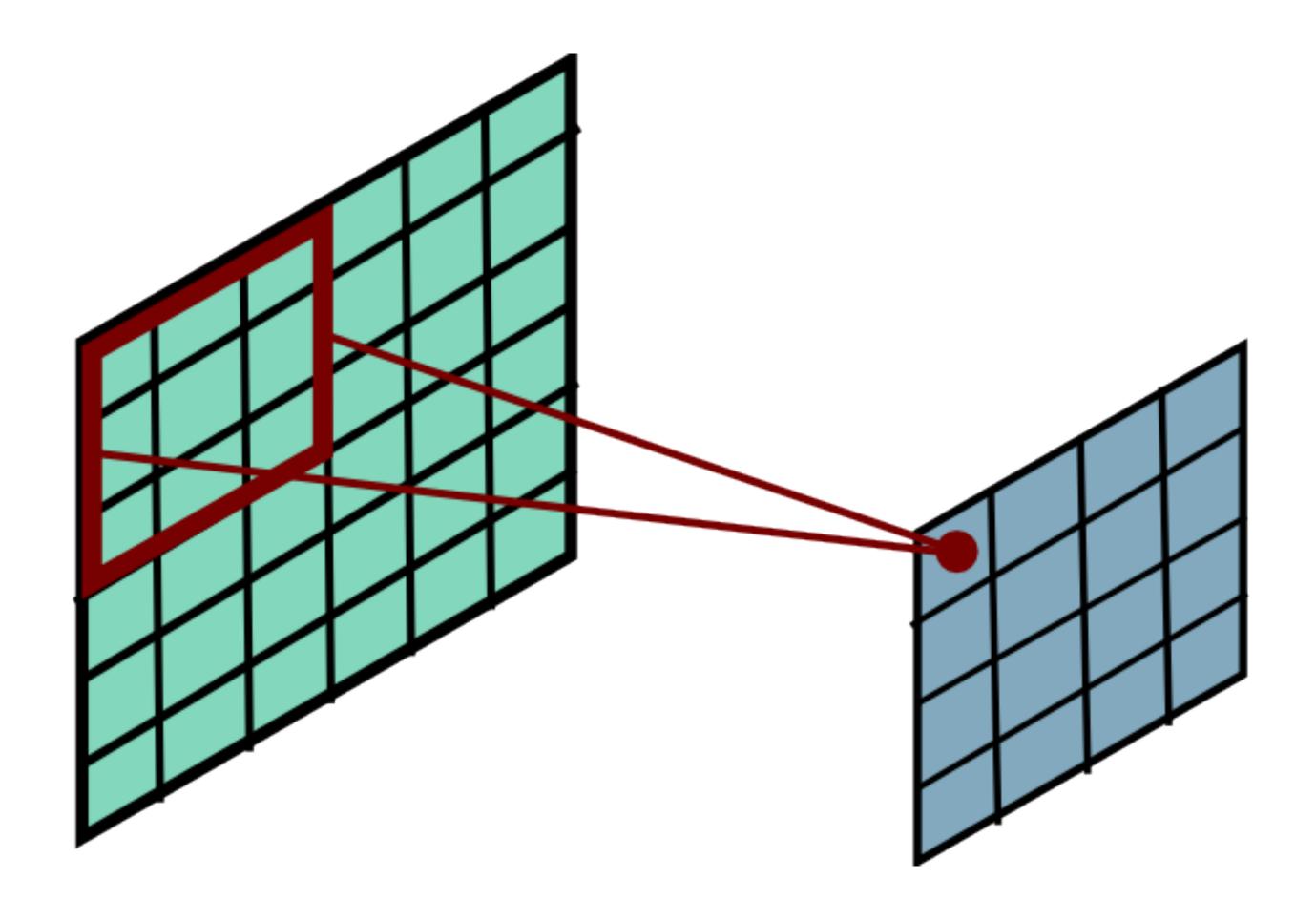
Filter size: 10×10

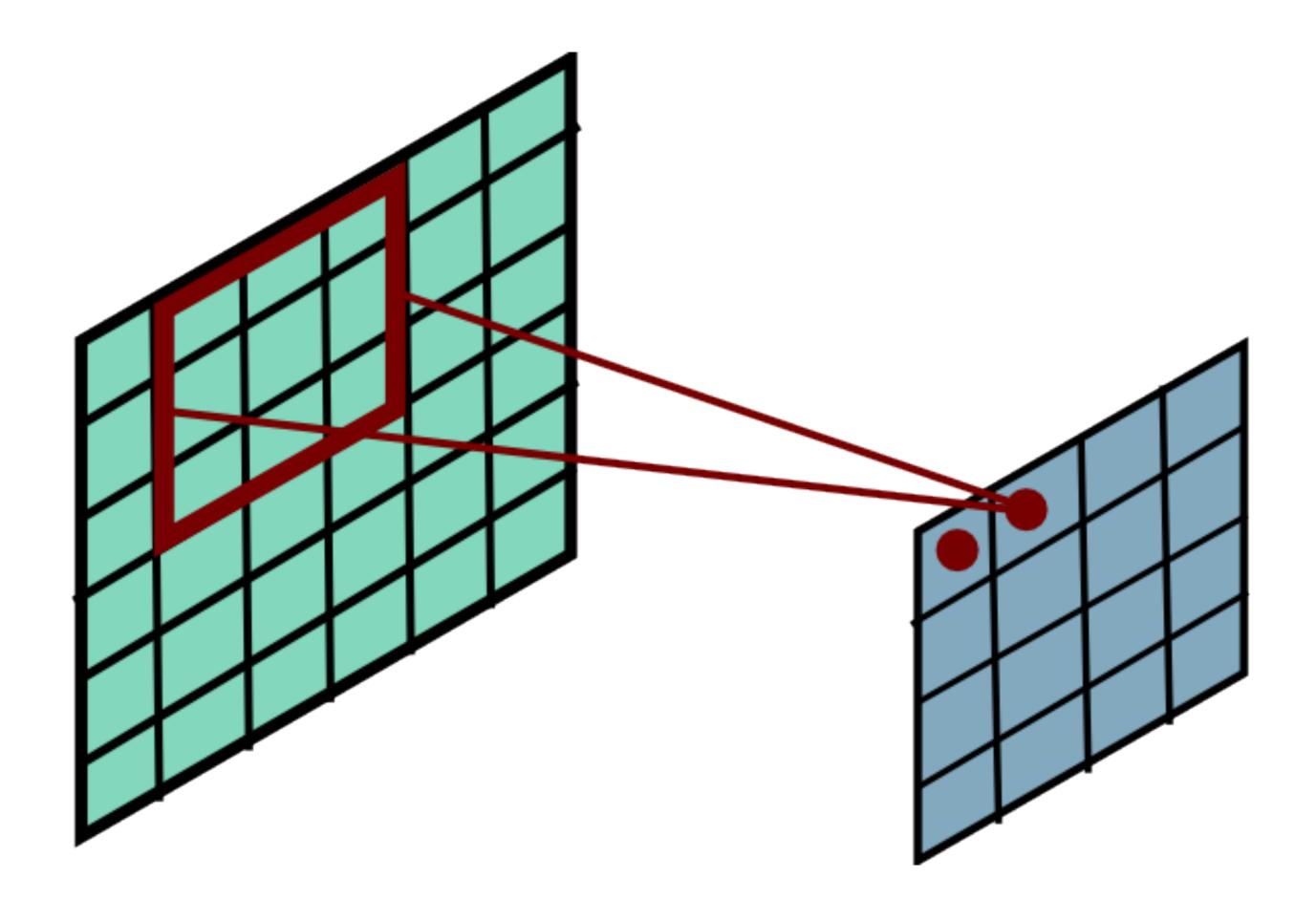
= ~ 4 Million parameters

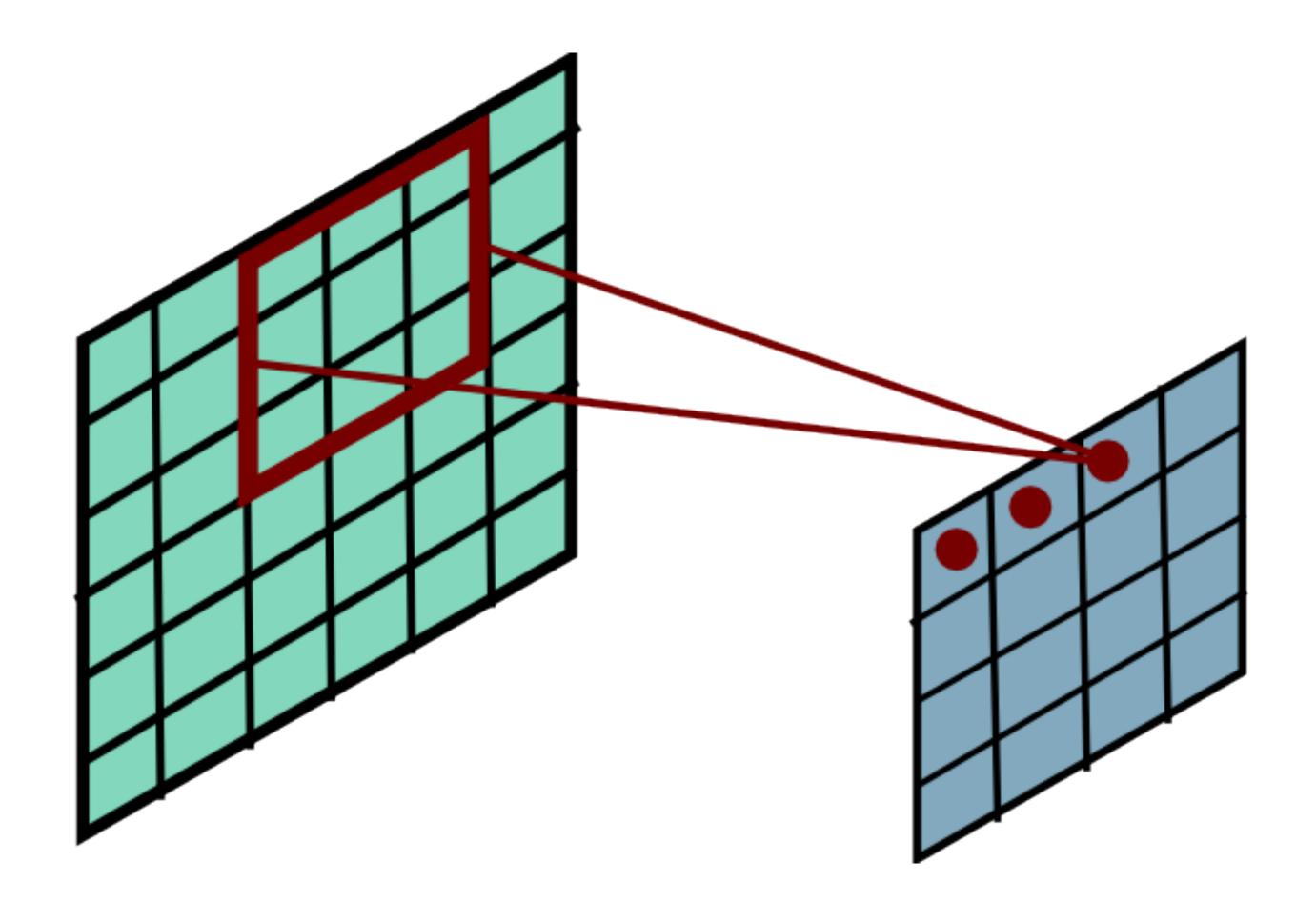
= 100 parameters

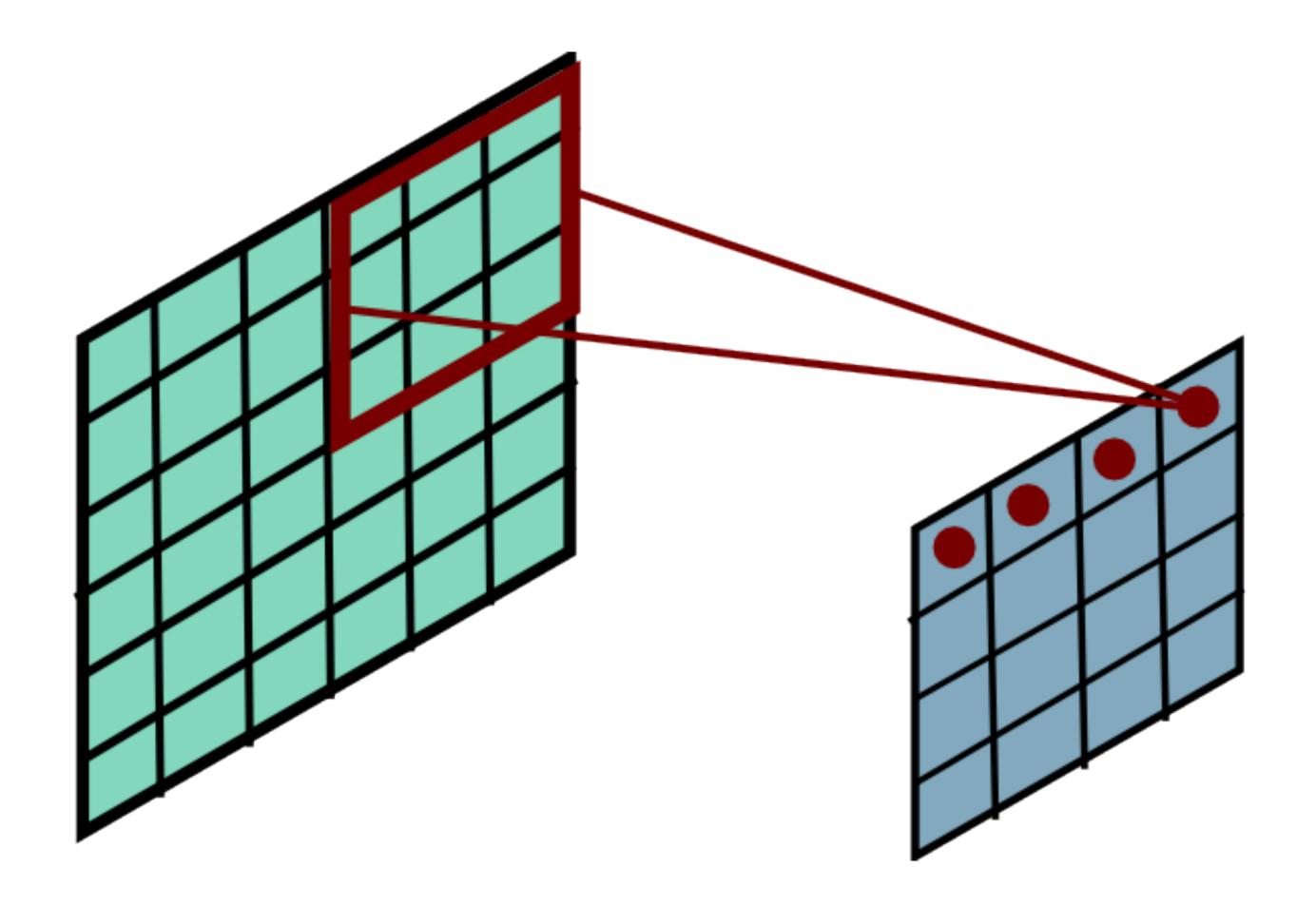
Share the same parameters across the locations (assuming input is stationary)

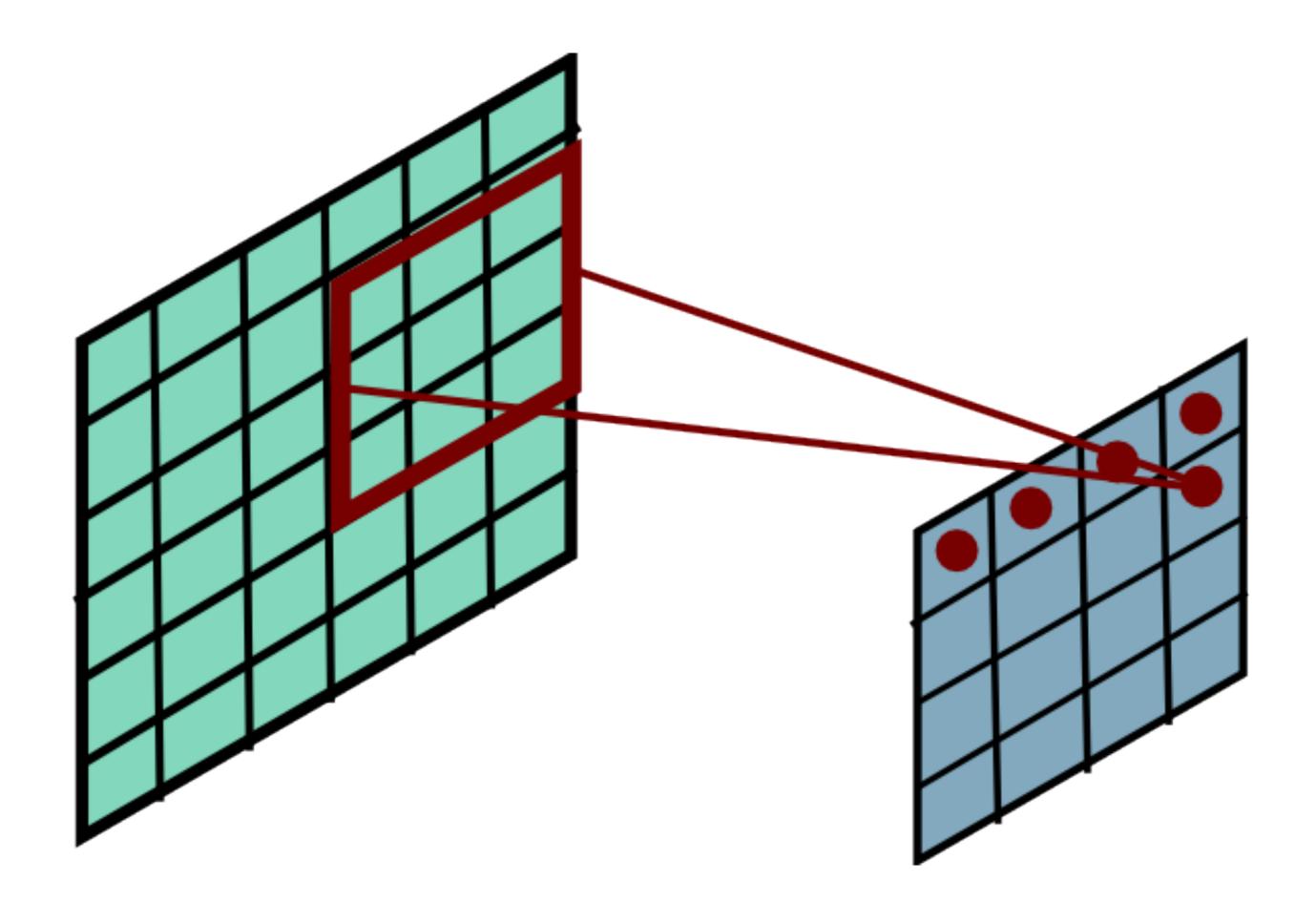
* slide adopted from Marc'Aurelio Renzato

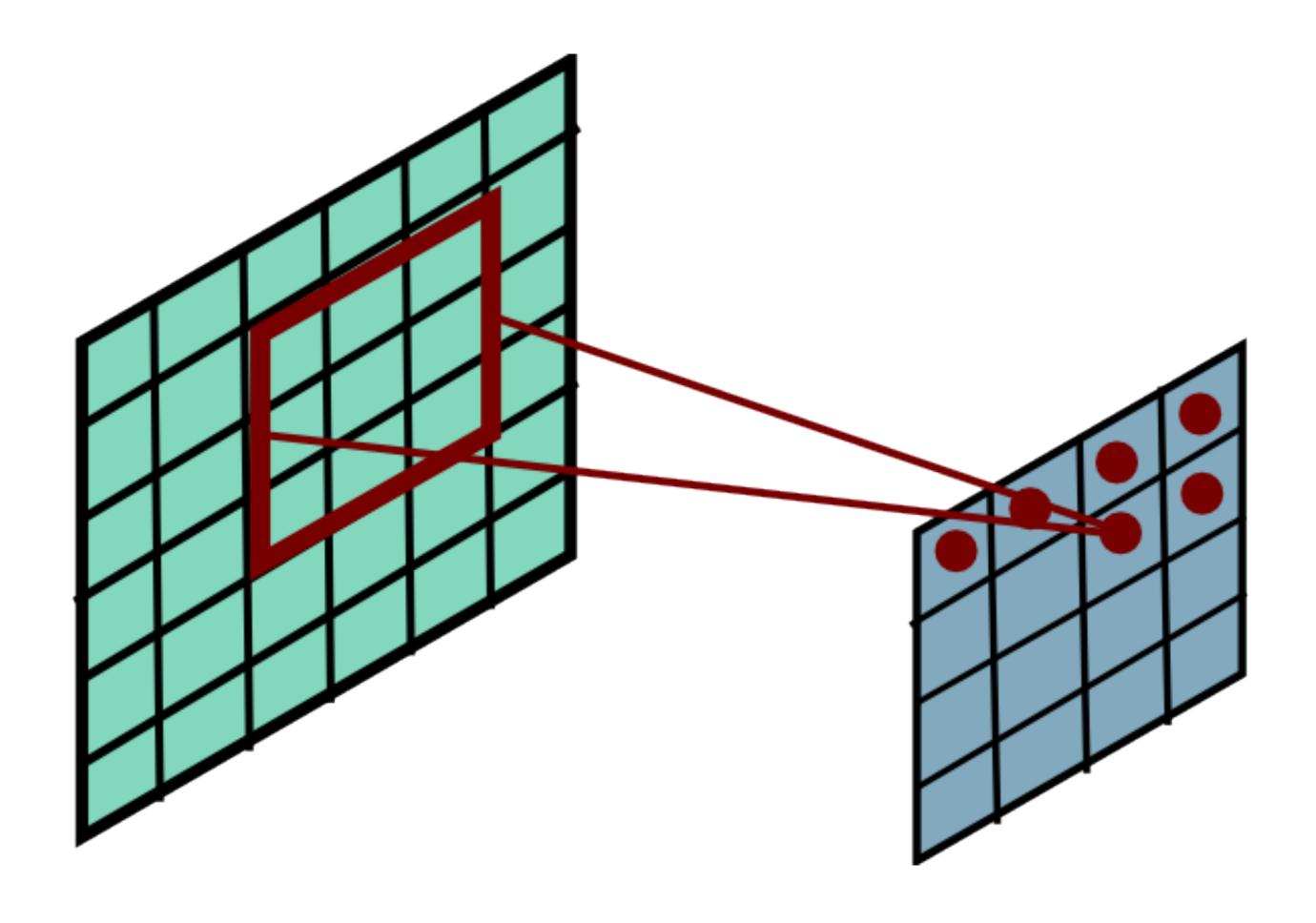


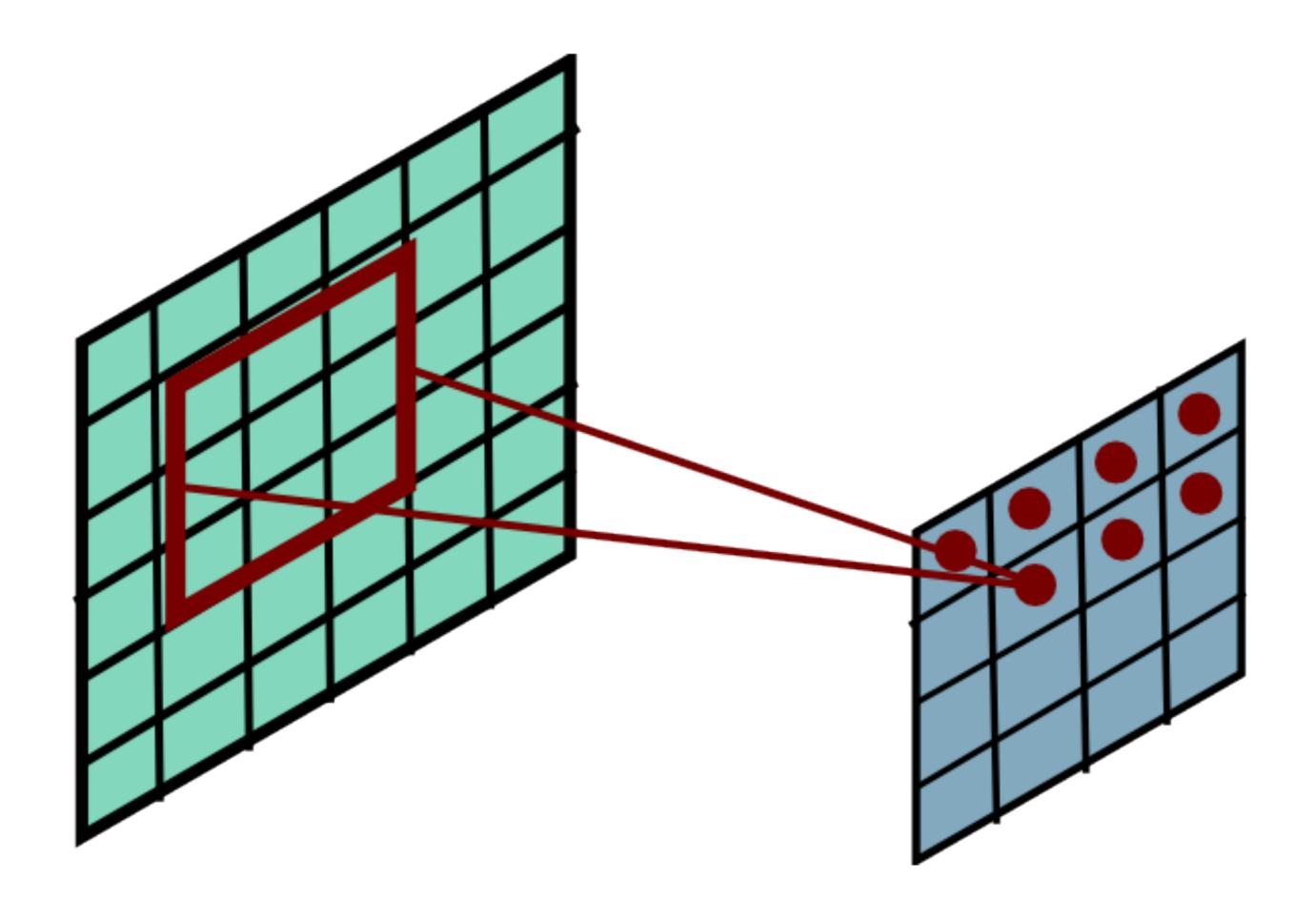


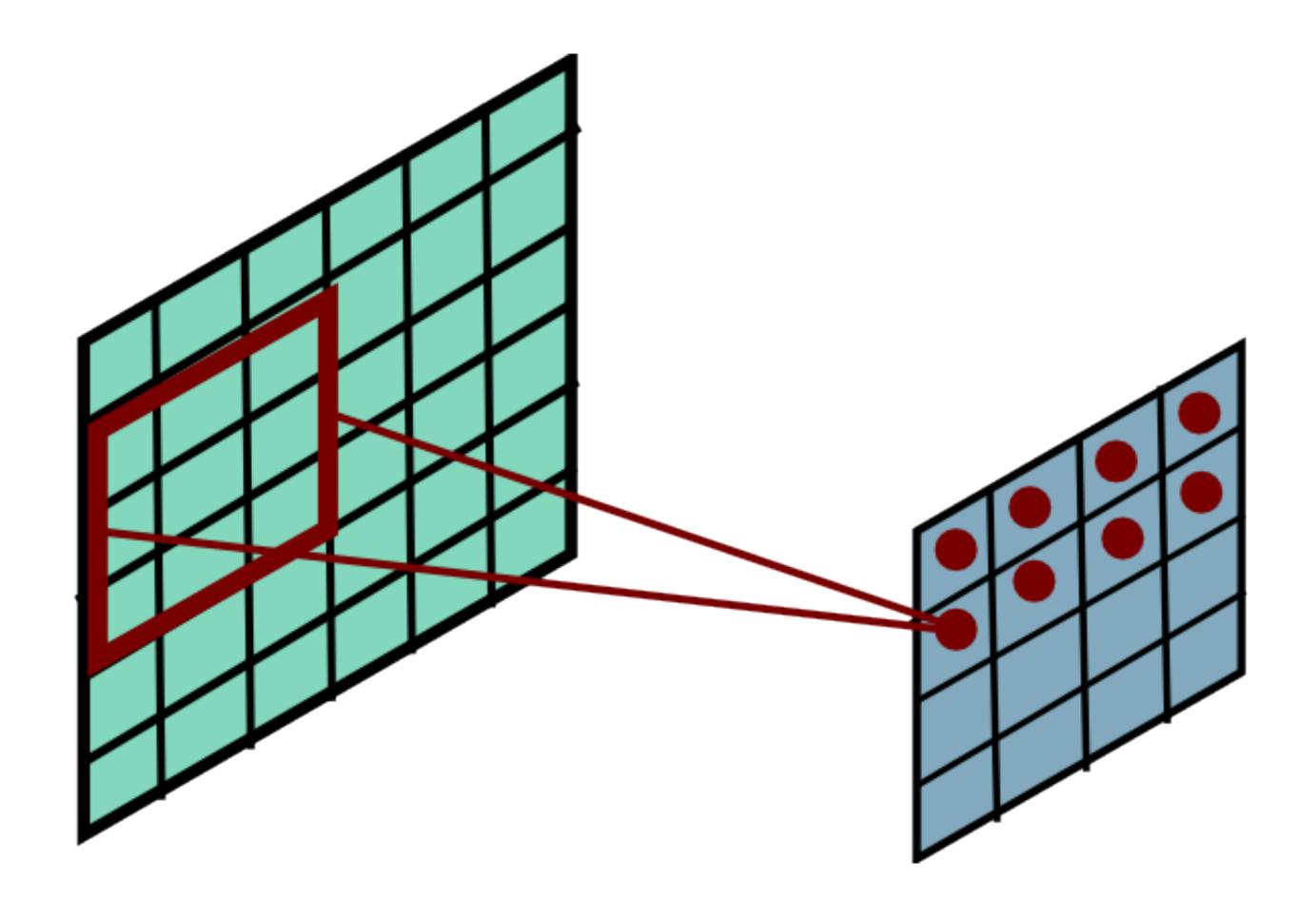


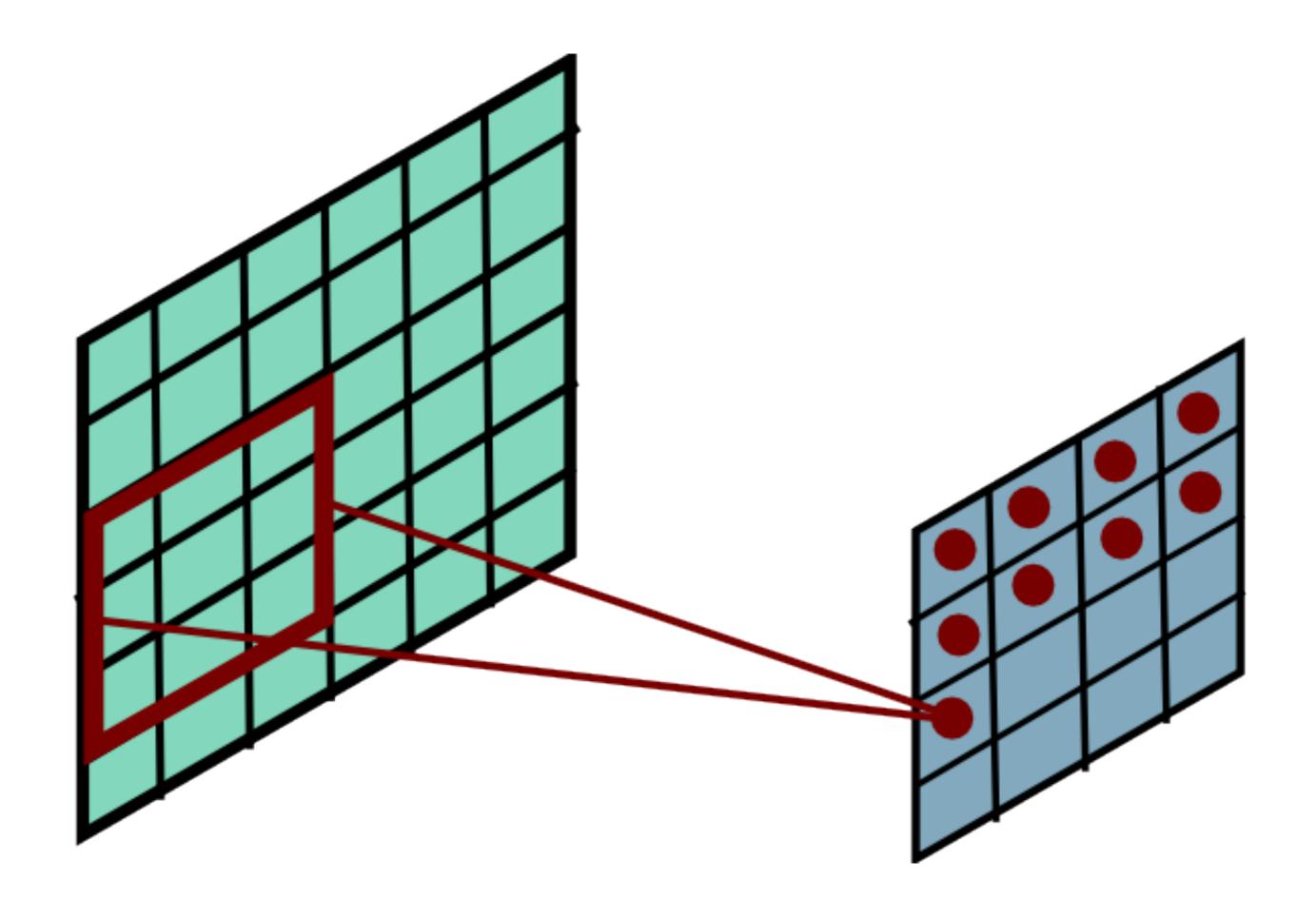


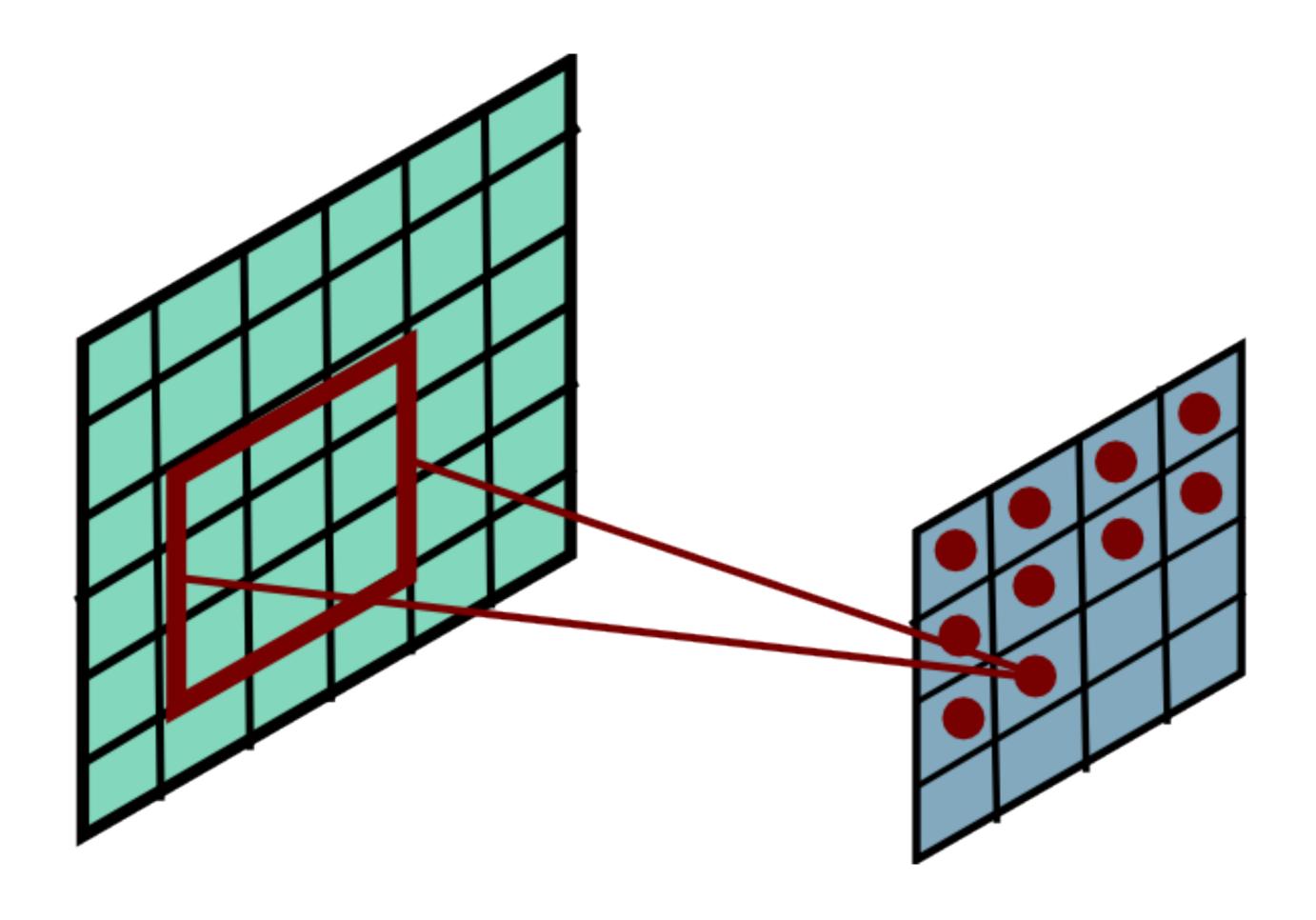


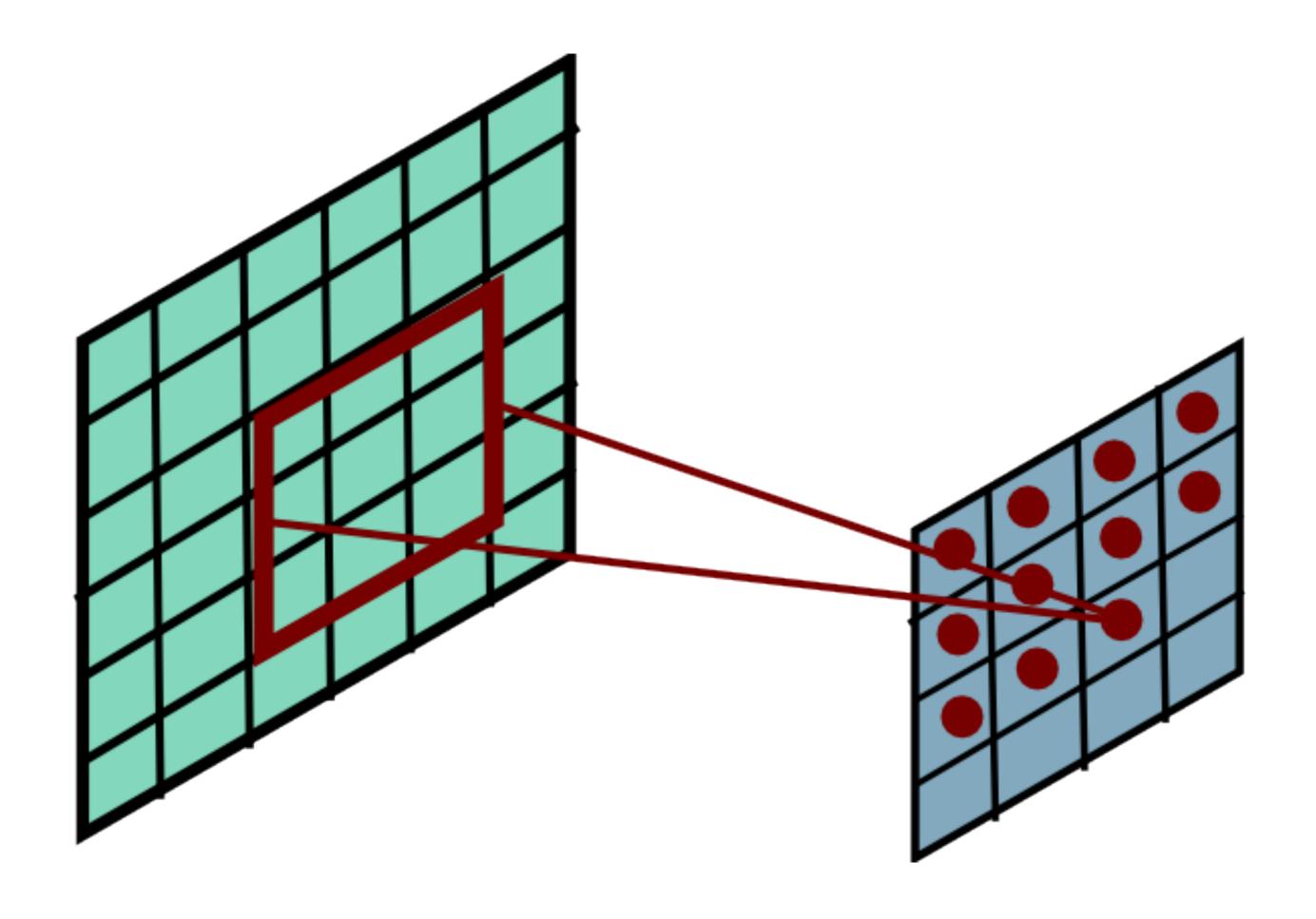


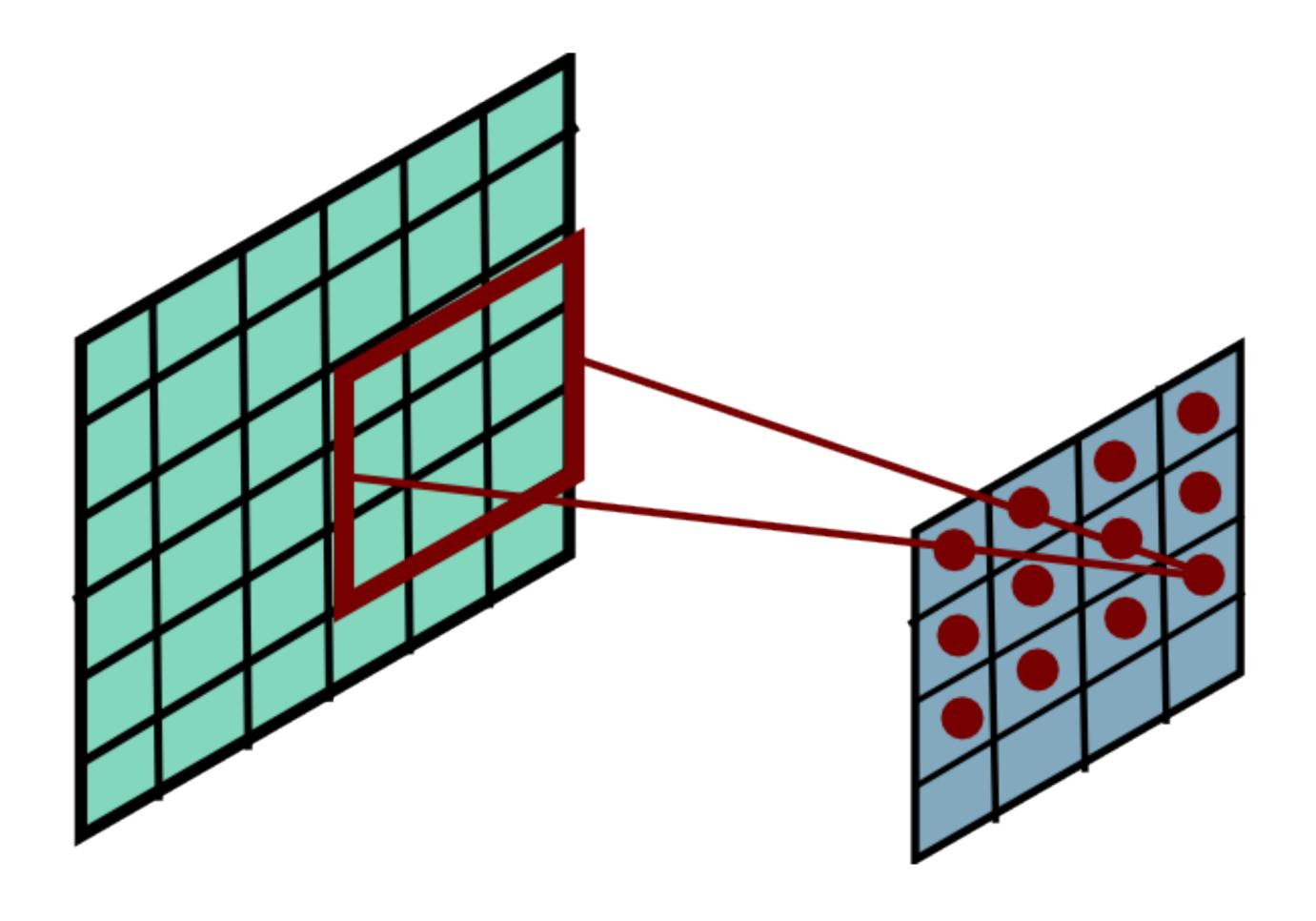


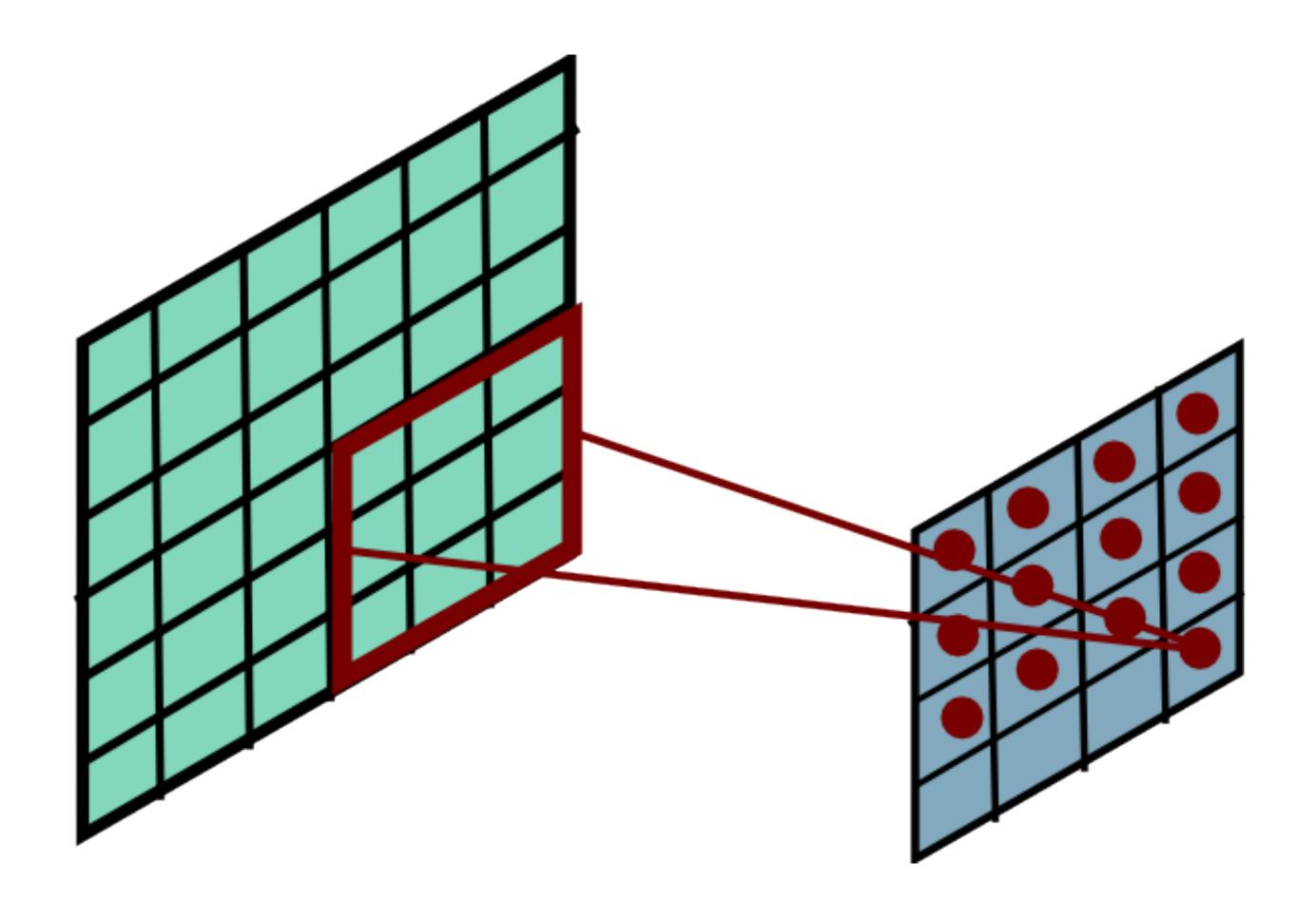


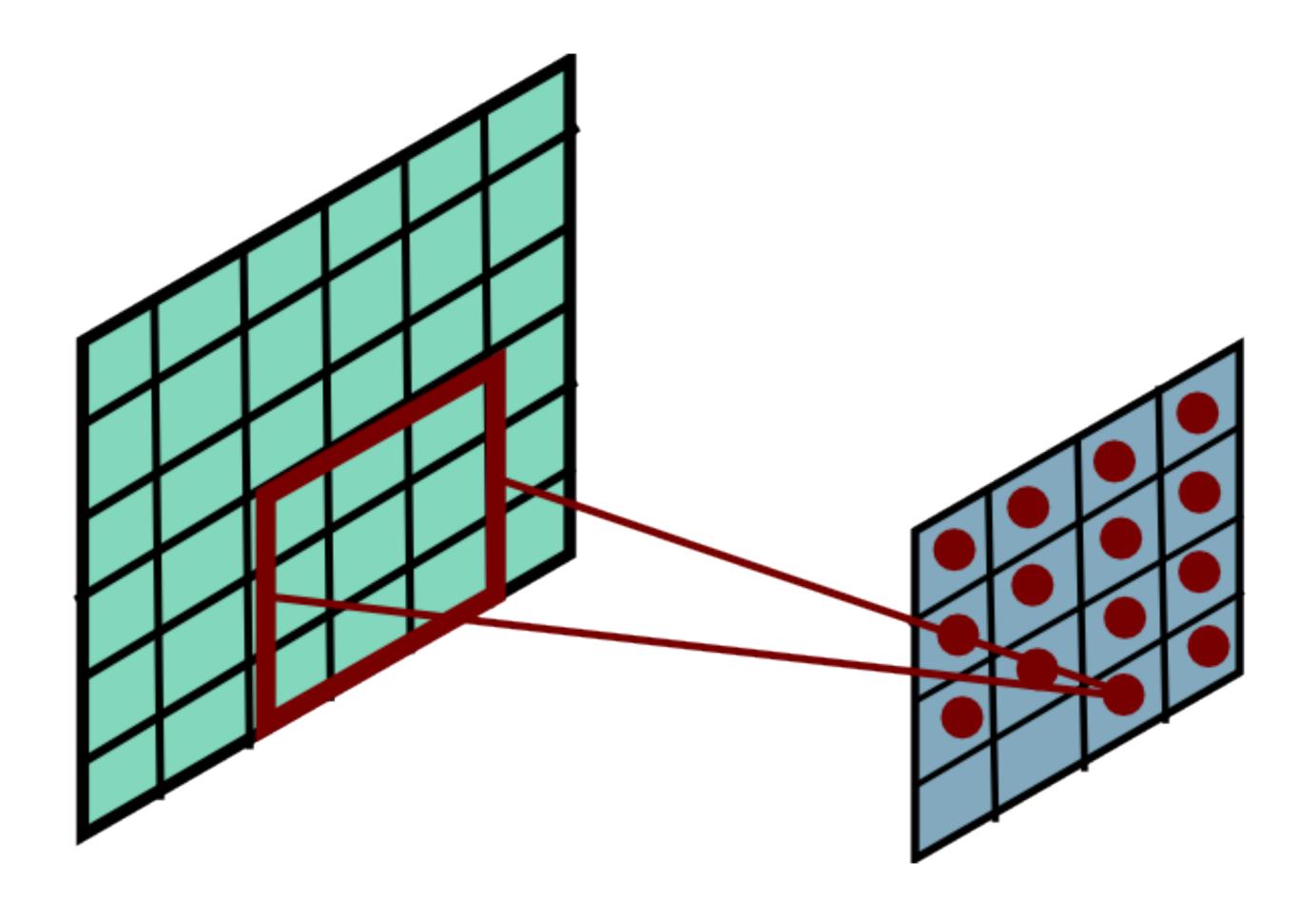


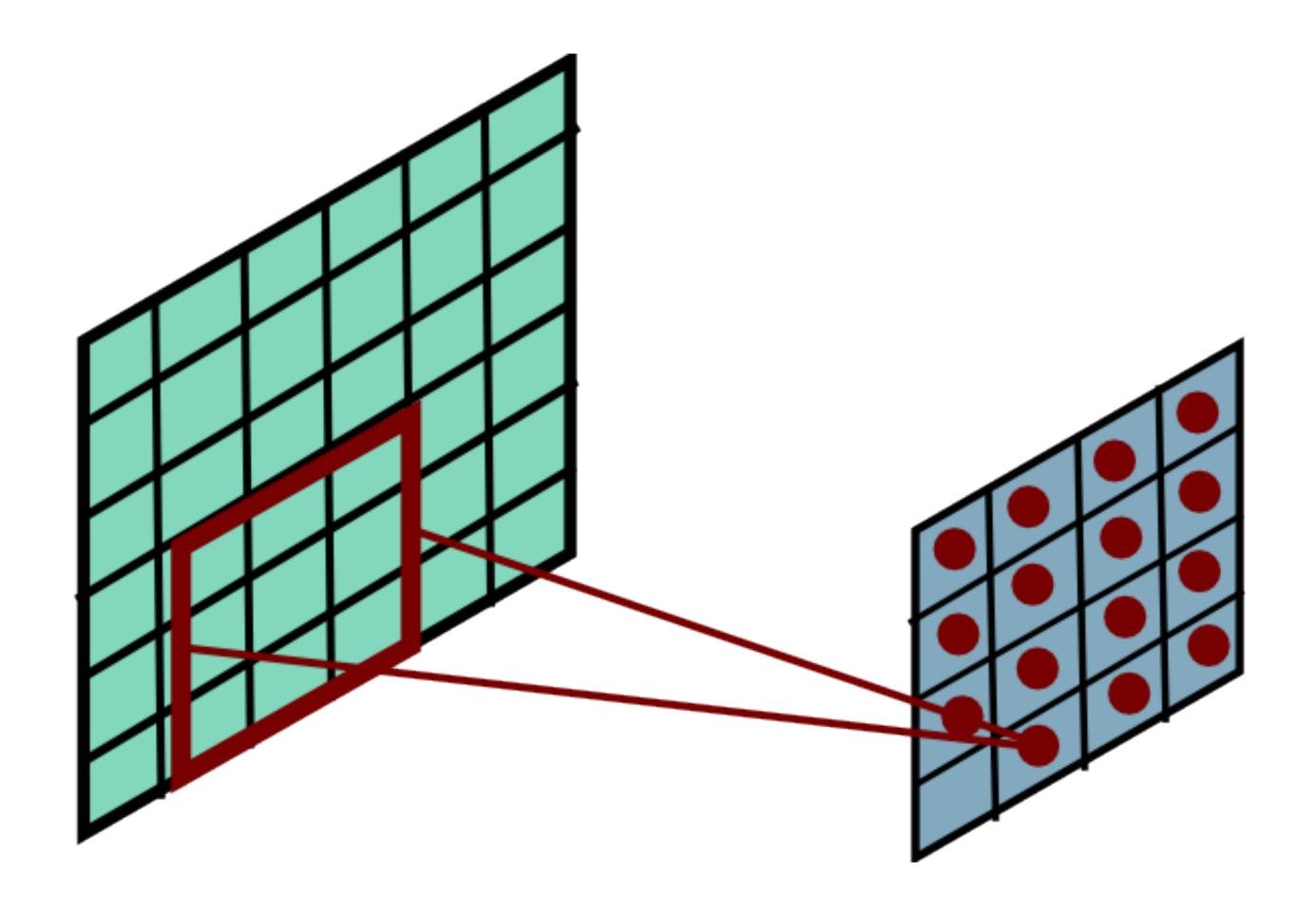


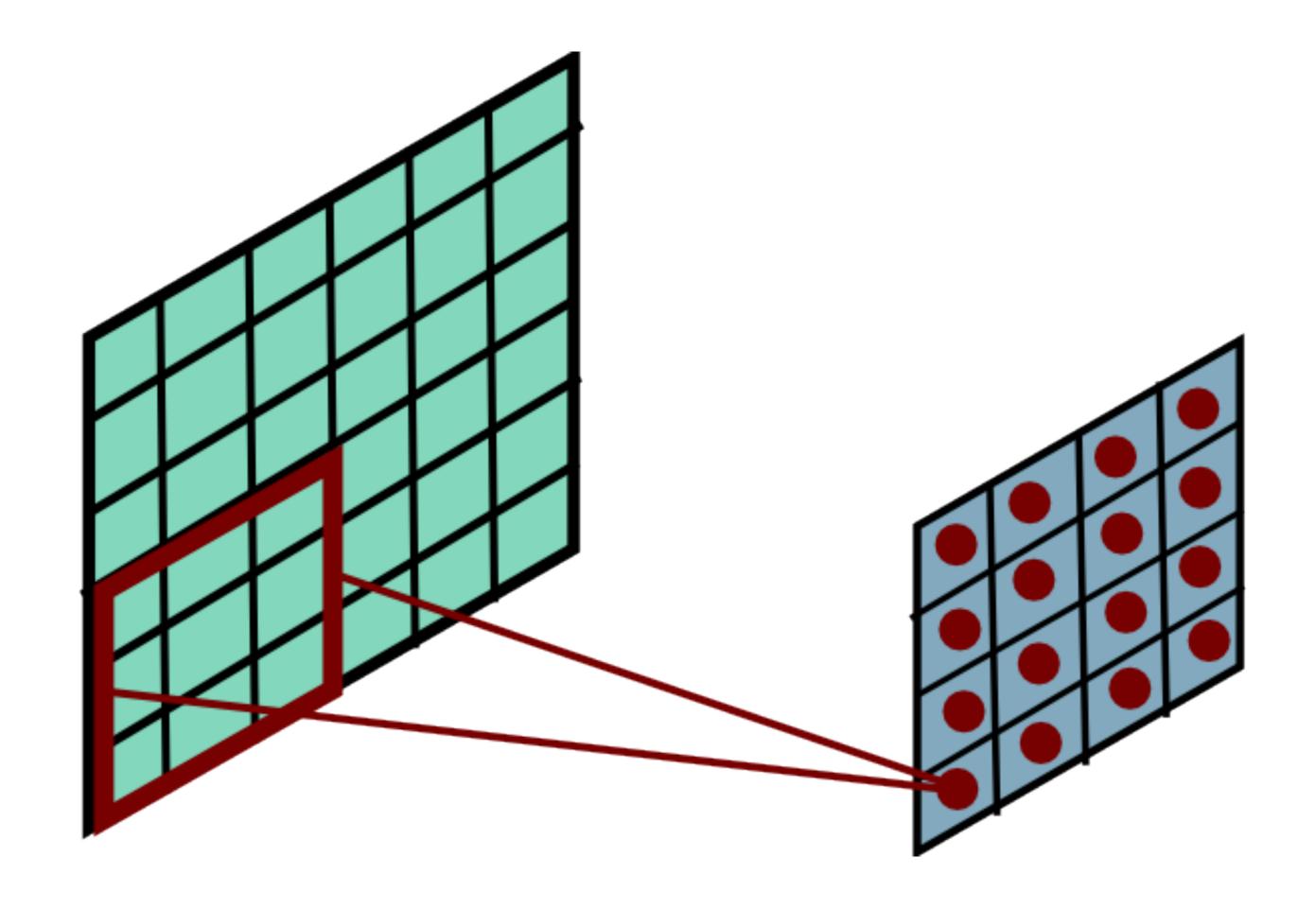


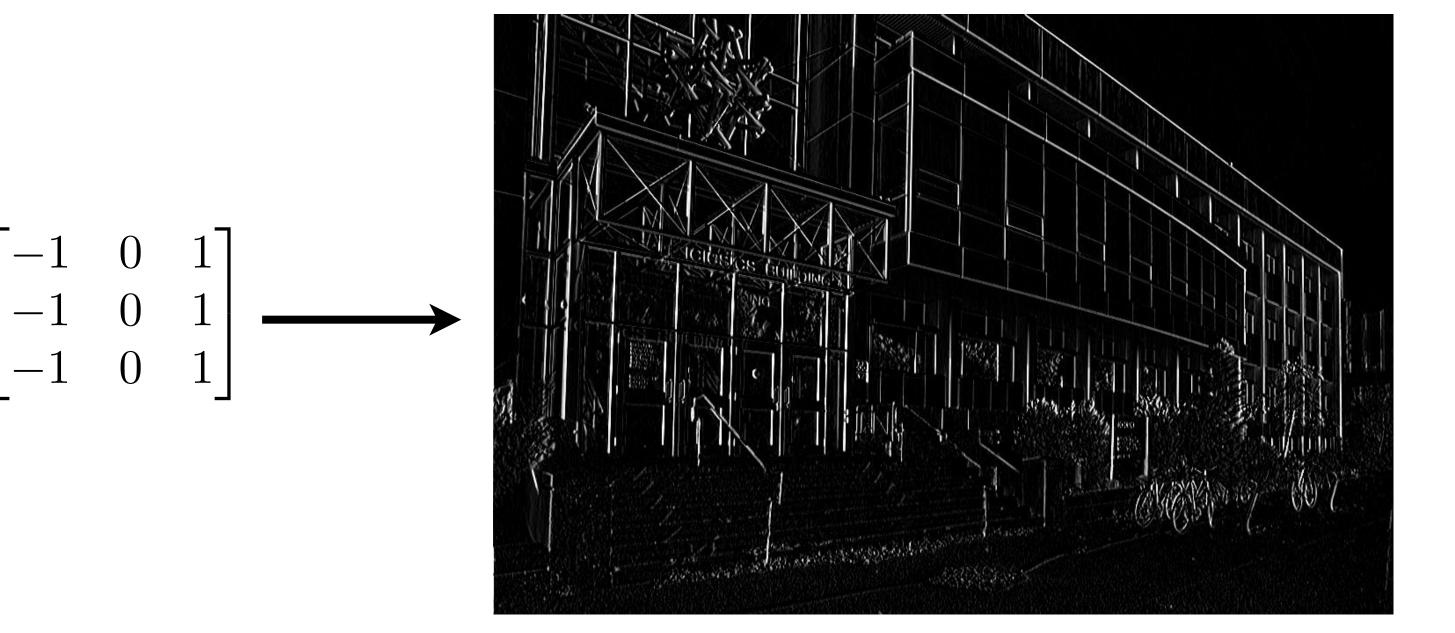




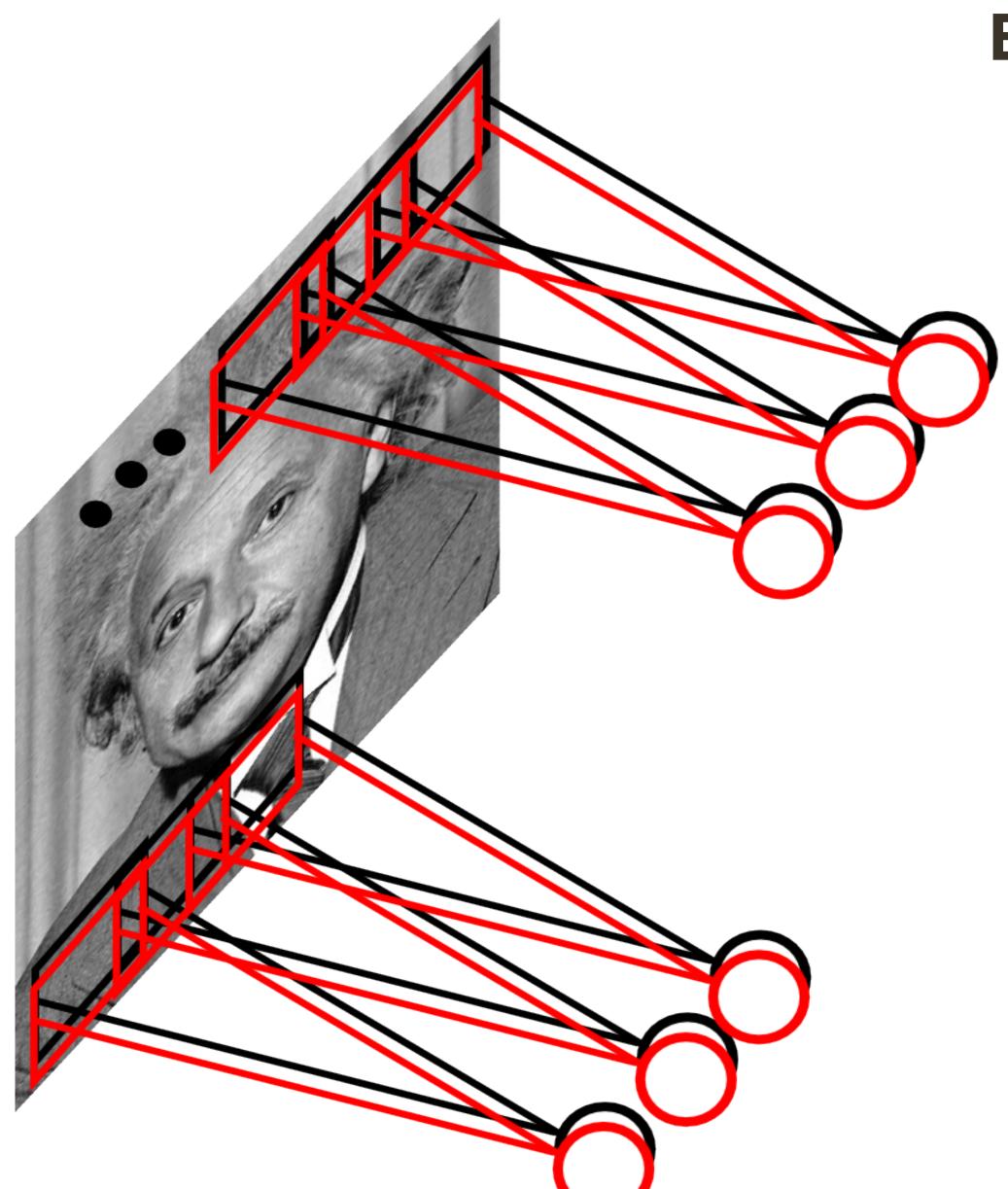








$\begin{bmatrix} 0.11 & 0.11 & 0.11 \end{bmatrix}$ $\begin{bmatrix} 0.11 & 0.11 & 0.11 \\ 0.11 & 0.11 & 0.11 \end{bmatrix}$



Example: 200 x 200 image (small) x 40K hidden units

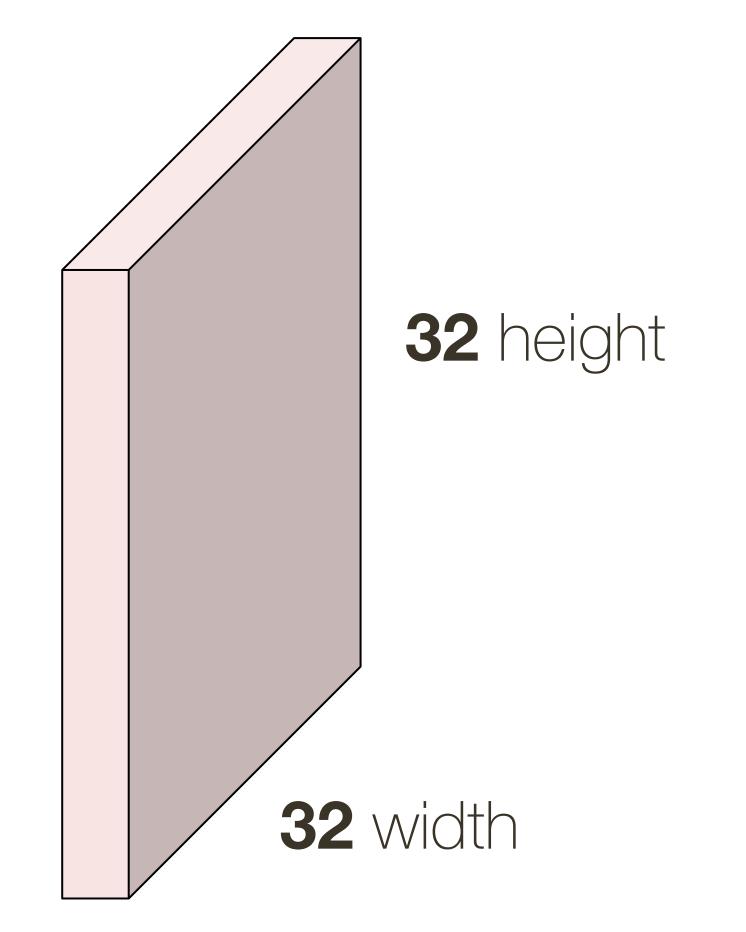
Filter size: 10 x 10

of filters: 20

= 2000 parameters

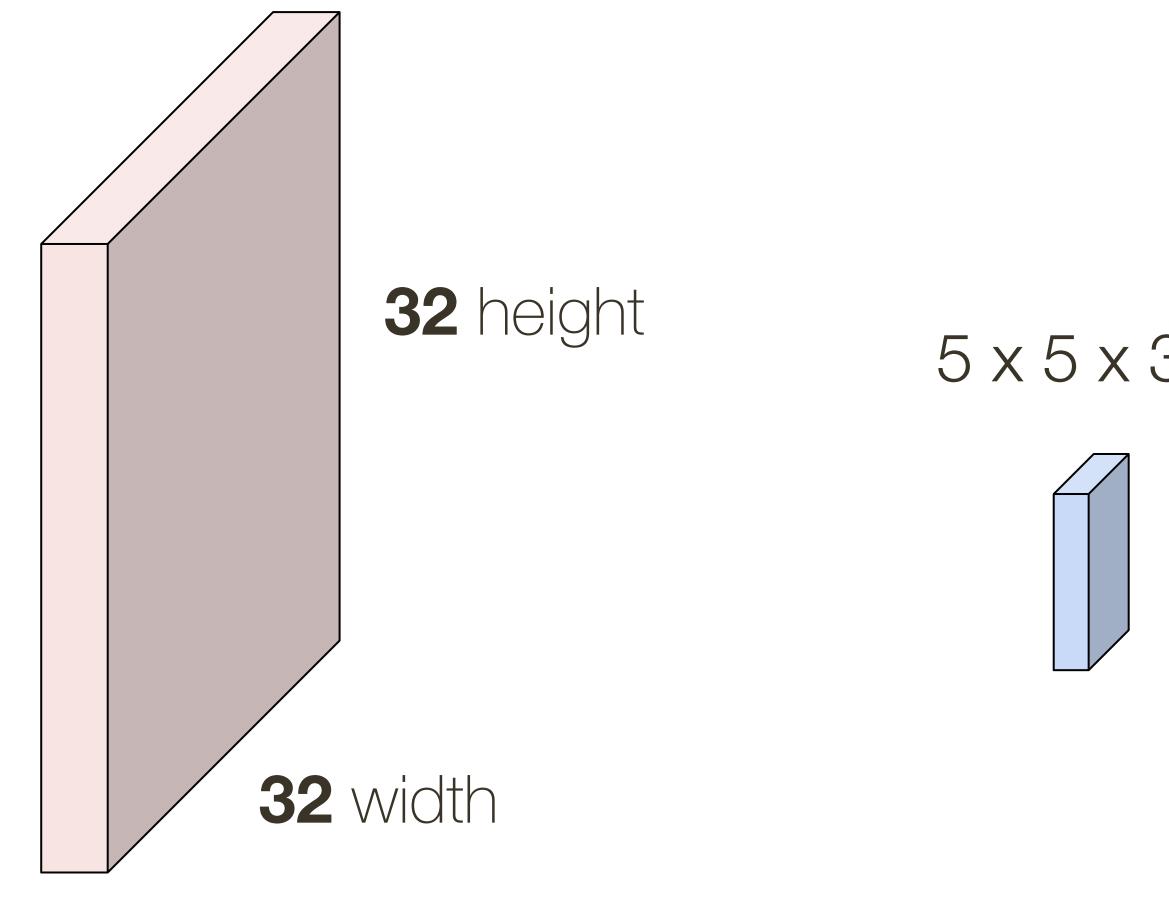
Learn multiple filters

32 x 32 x 3 image (note the image preserves spatial structure)



3 depth

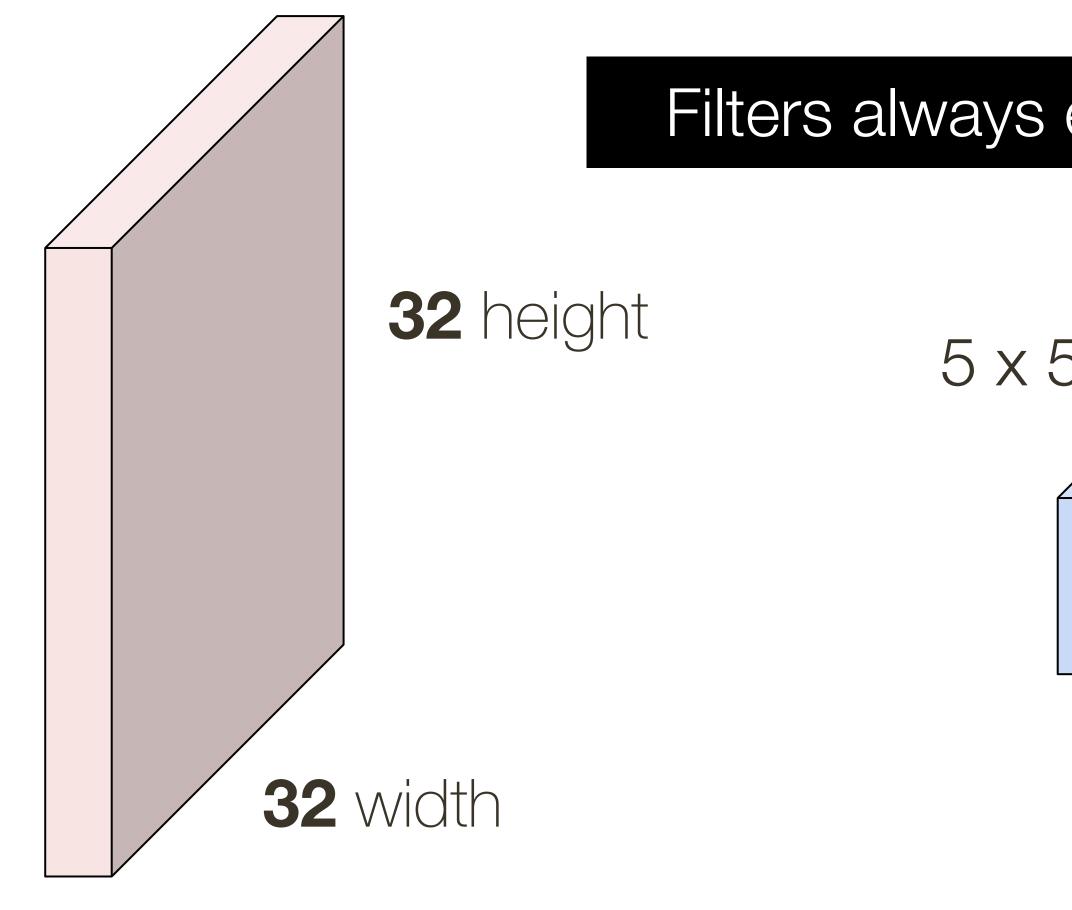
32 x 32 x 3 **image**



$5 \times 5 \times 3$ filter

Convolve the filter with the image (i.e., "slide over the image spatially, computing dot products")

Convolutional Layer 32 x 32 x 3 image

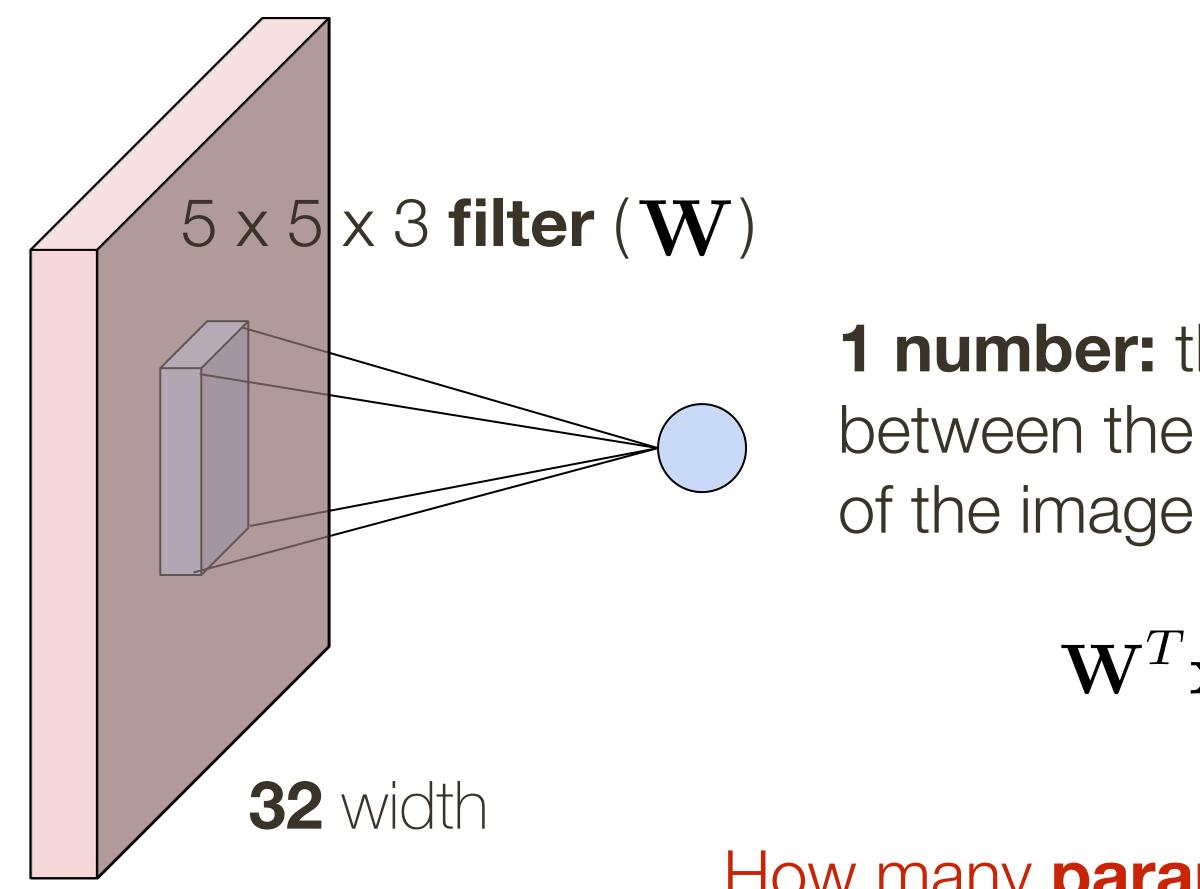


Filters always extend the full depth of the input volume

5 x 5 x 3 filter

Convolve the filter with the image (i.e., "slide over the image spatially, computing dot products"

32 x 32 x 3 **image**

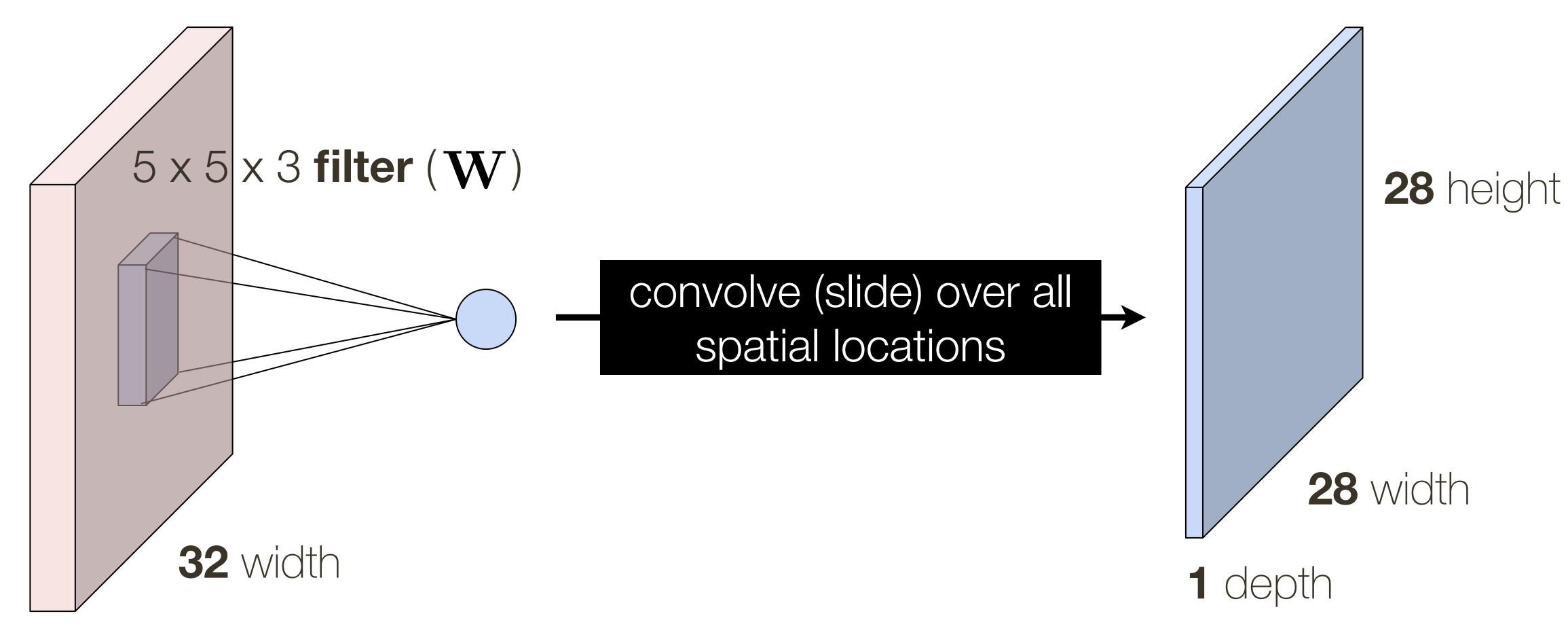


1 number: the result of taking a dot product between the filter and a small 5 x 5 x 3 part of the image

$$\mathbf{W}^T \mathbf{x} + b$$
, where $\mathbf{W}, \mathbf{x} \in \mathbb{R}^{75}$

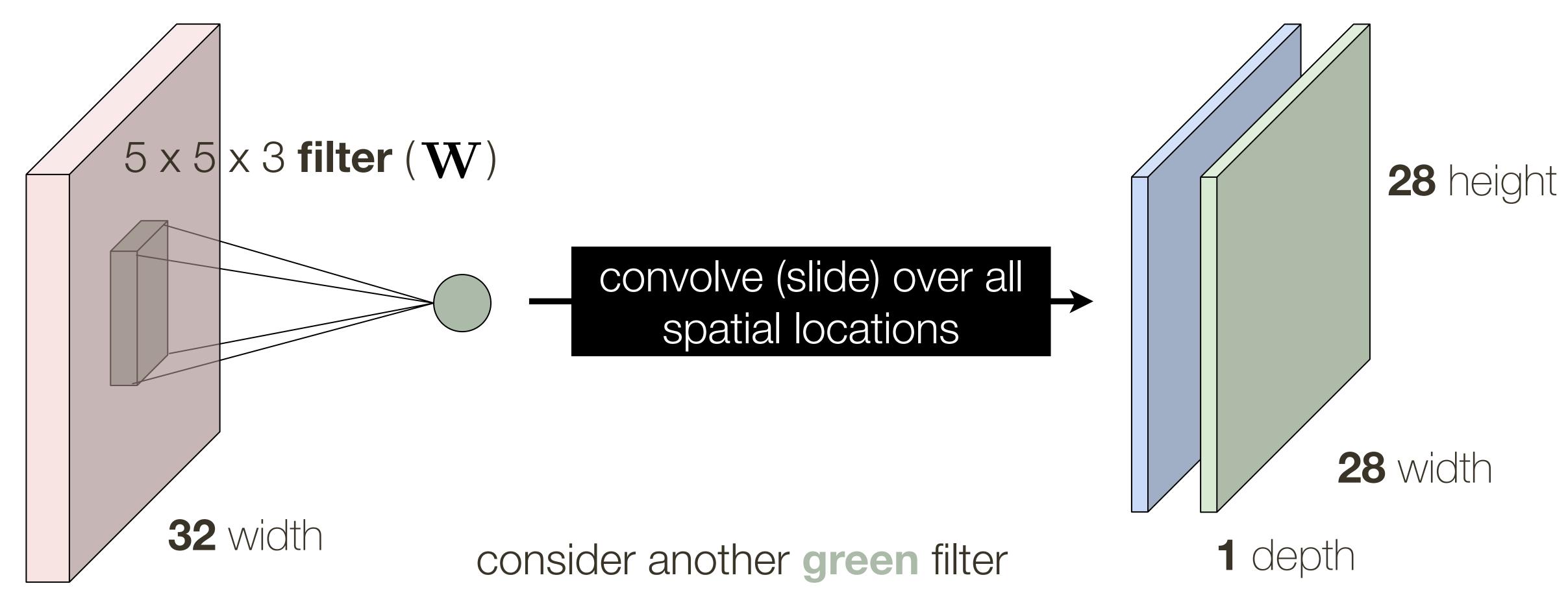
How many **parameters** does the layer have? **76**

32 x 32 x 3 **image**

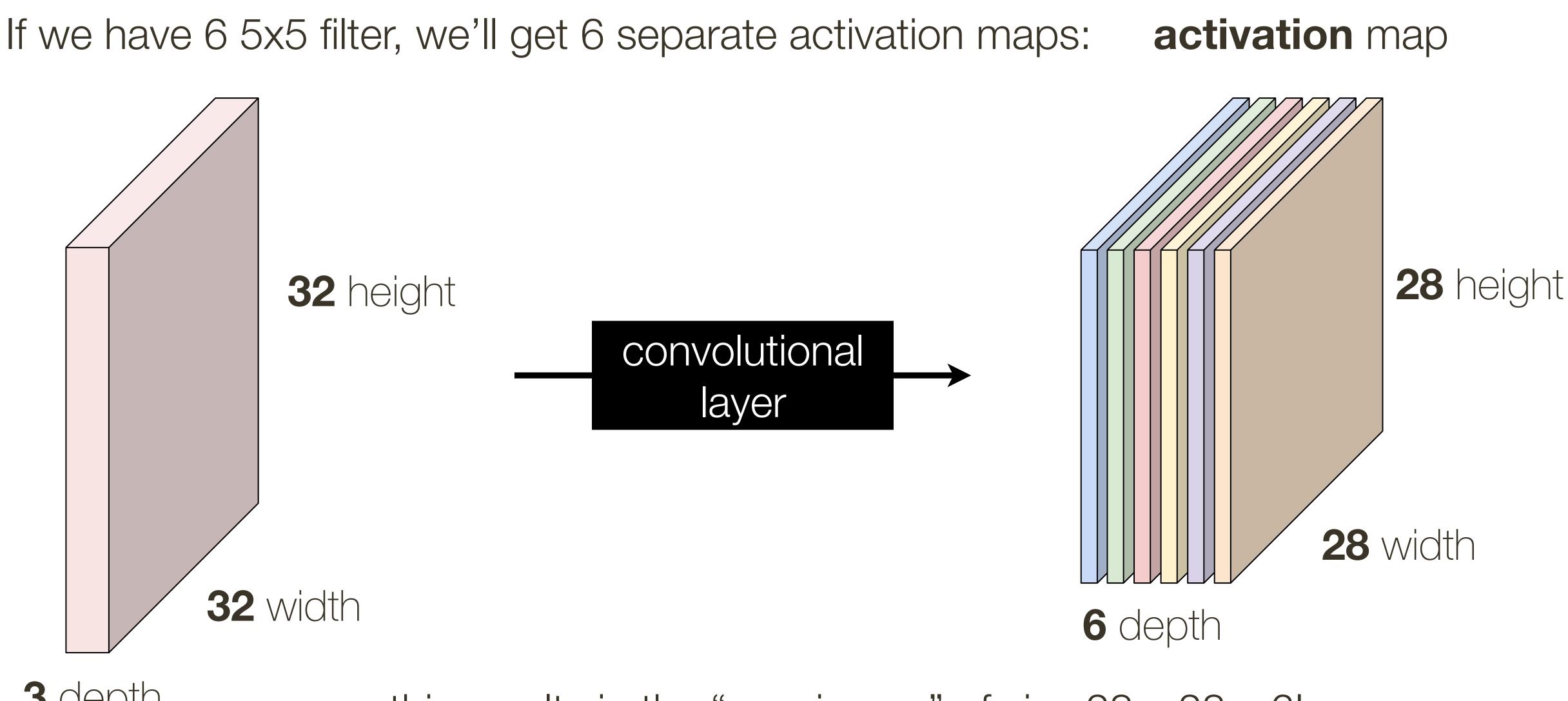


activation map

32 x 32 x 3 **image**



activation map



this results in the "new image" of size 28 x 28 x 6!

Convolutional Layer

- also affected by zero-padding
- input layer
- **Stride:** Controls spatial density. How far apart are depth columns?

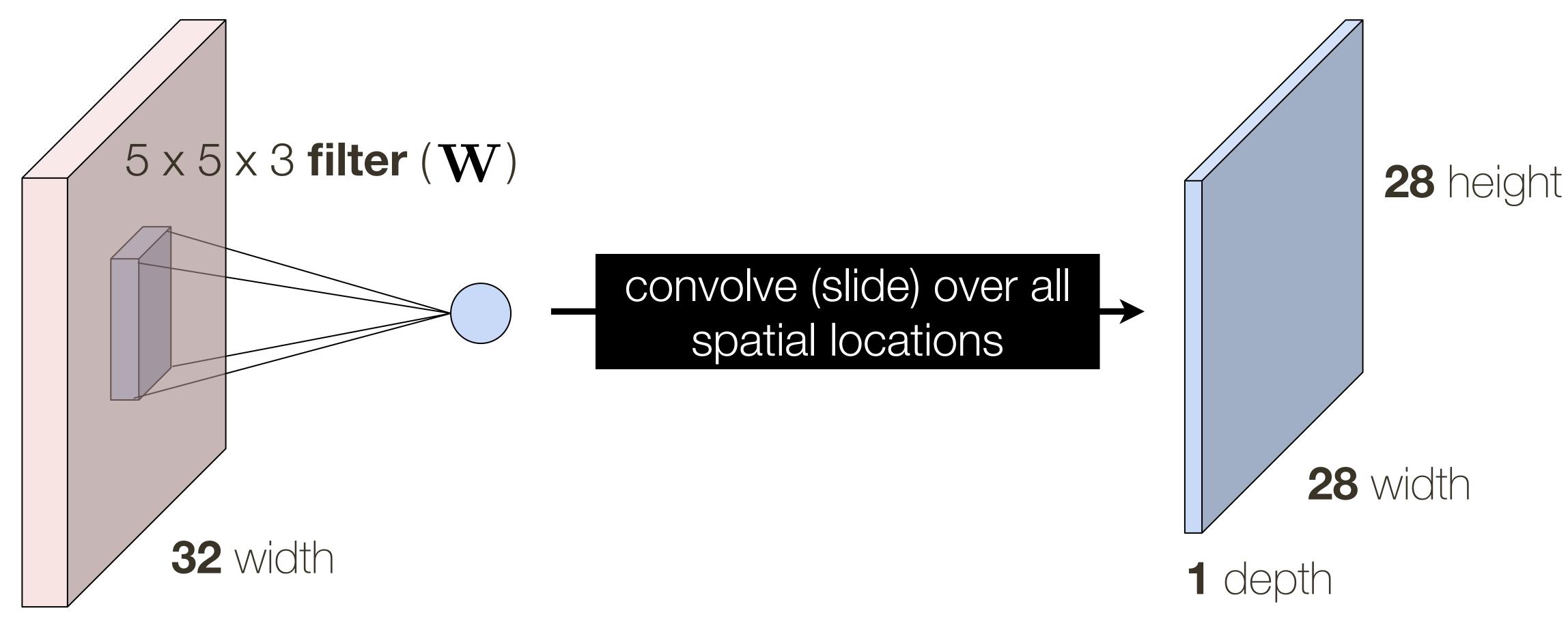
The number of neurons in a layer is determined by depth and stride parameter

Depth: Controls number of neurons that connect to the same region of the

— a set of neurons connected to the same region is called a **depth column**

Convolutional Layer: Closer Look at Spatial Dimensions

32 x 32 x 3 **image**

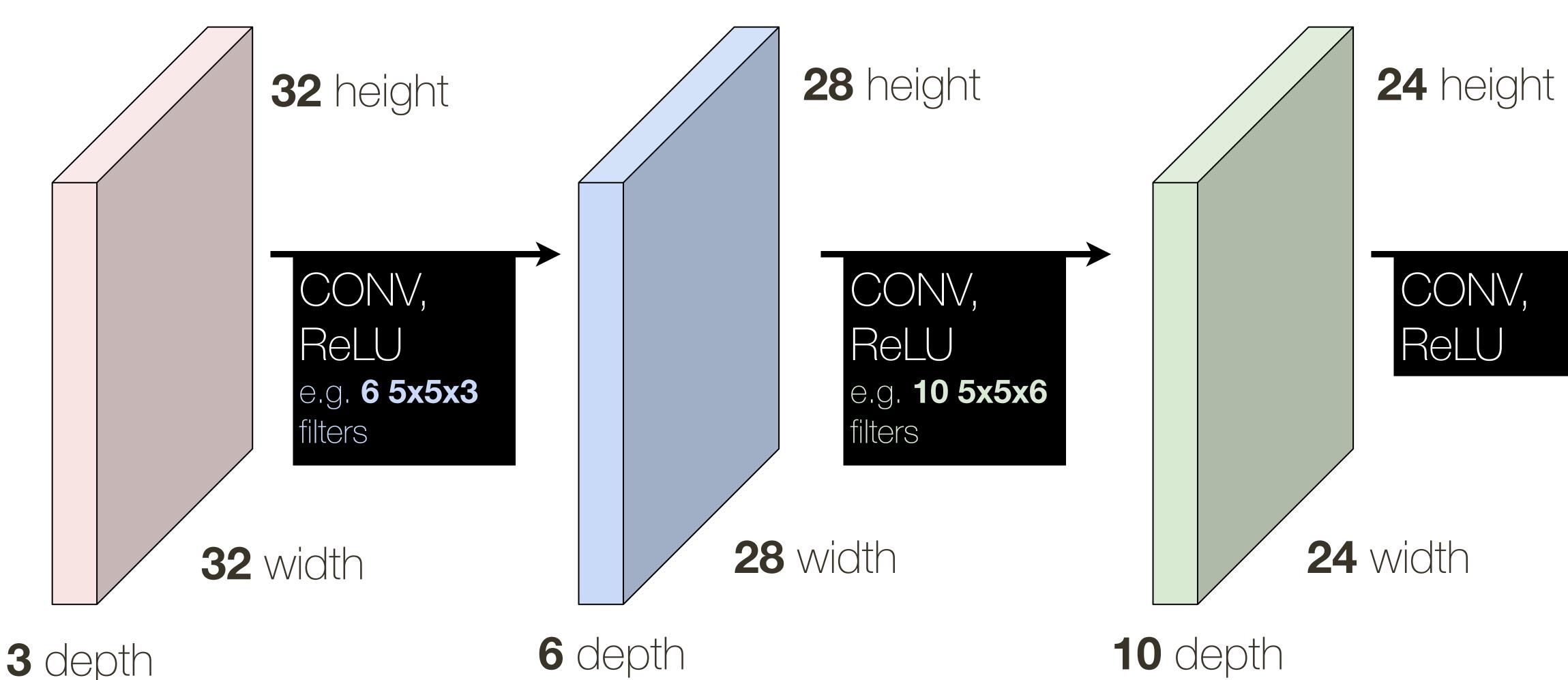


activation map

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Convolutional Neural Network (ConvNet)

With padding we can achieve no shrinking (32 -> 28 -> 24); shrinking quickly (which happens with larger filters) doesn't work well in practice



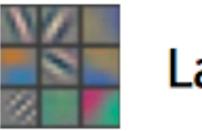
* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Convolutional Neural Network (ConvNet)

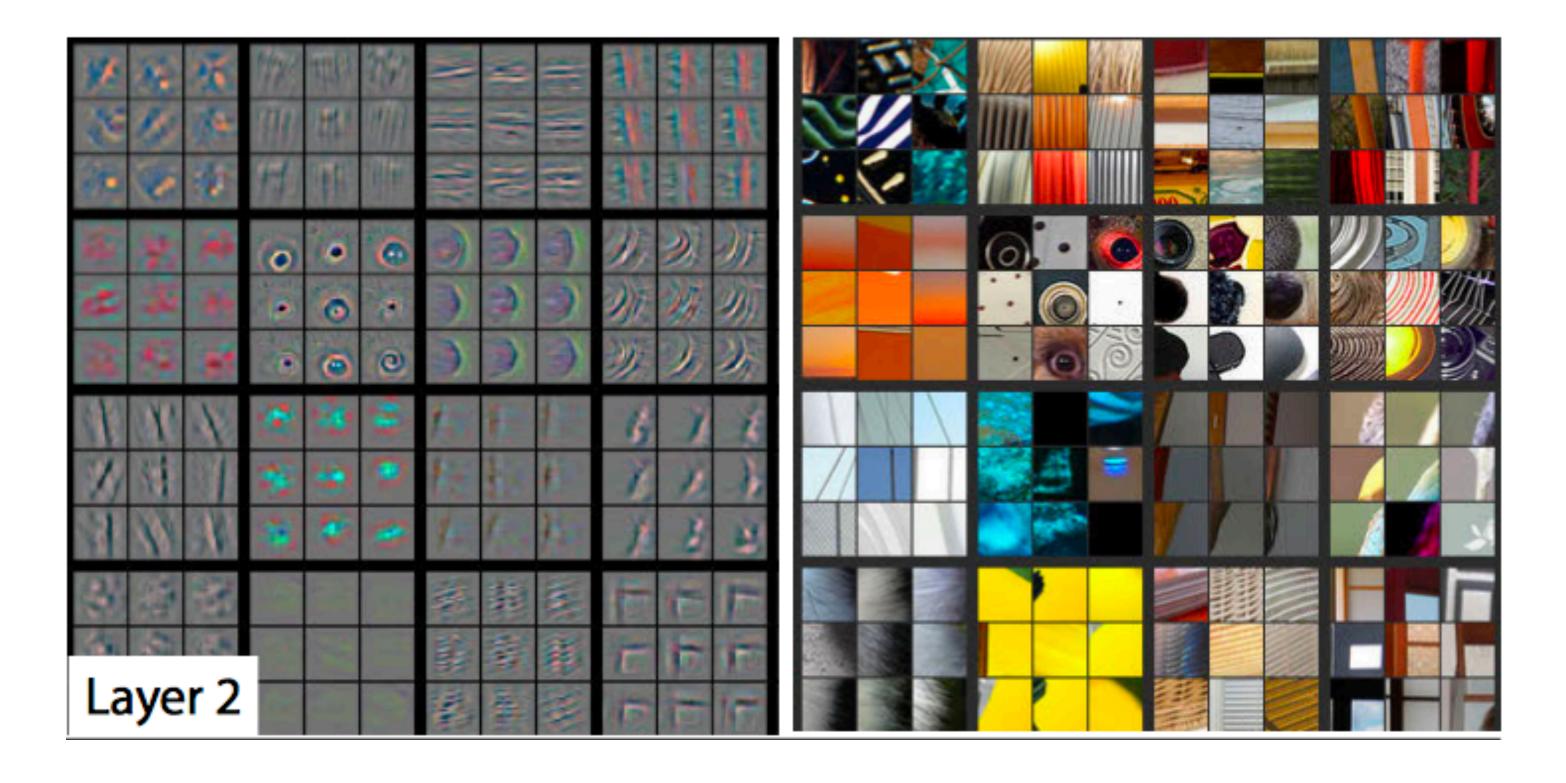
As we go deeper in the network, filters learn and respond to increasingly specialized structures - The first layers may contain simple orientation filters, middle layers may respond to common substructures, and final layers may respond to entire objects

- **Convolutional neural networks** can be seen as learning a hierarchy of filters.

What filters do networks learn?

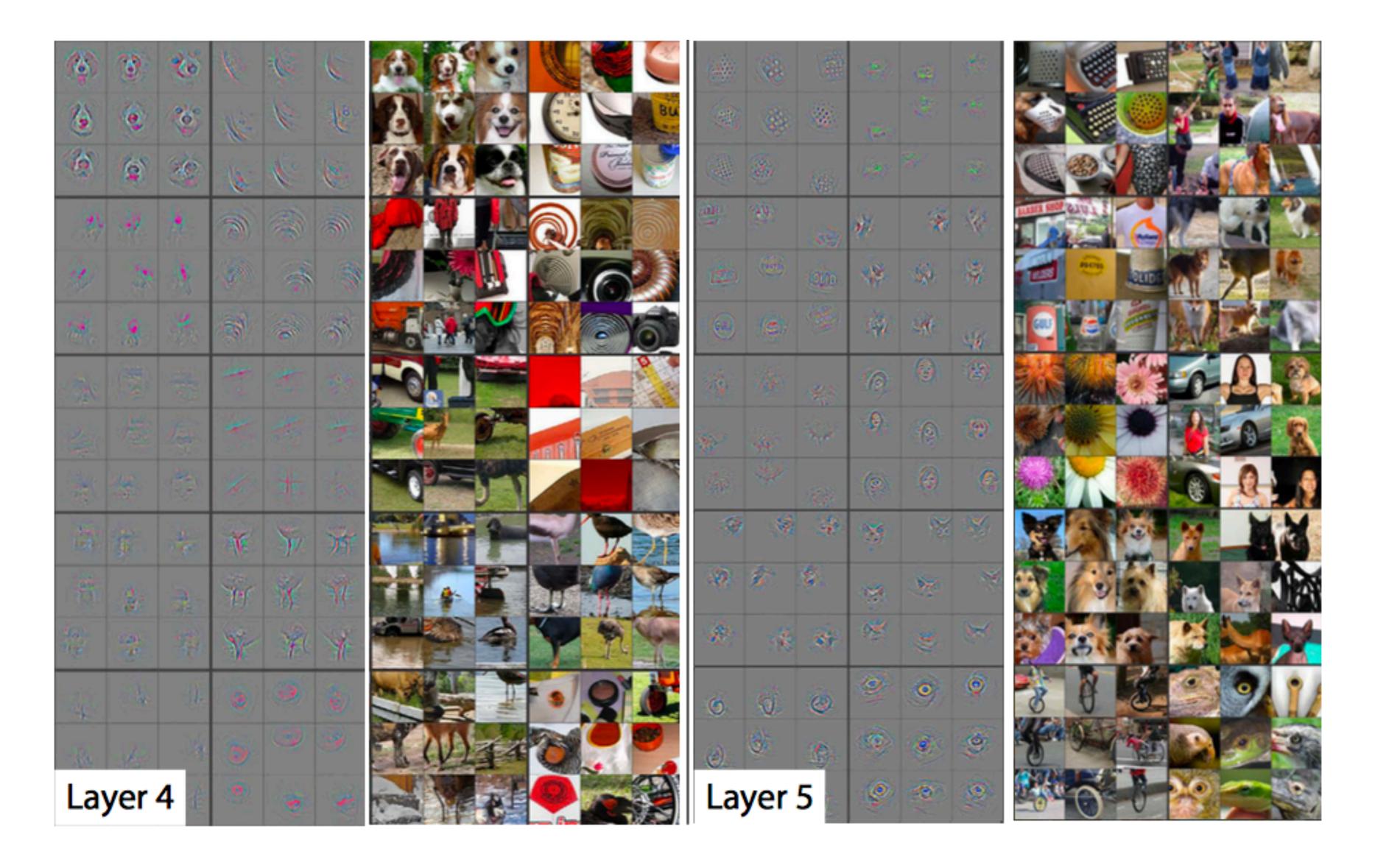


Layer 1



[Zeiler and Fergus, 2013]

What **filters** do networks learn?



[Zeiler and Fergus, 2013]

Pooling Layer

Let us assume the filter is an "eye" detector

How can we make detection spatially invariant (insensitive to position of the eye in the image)

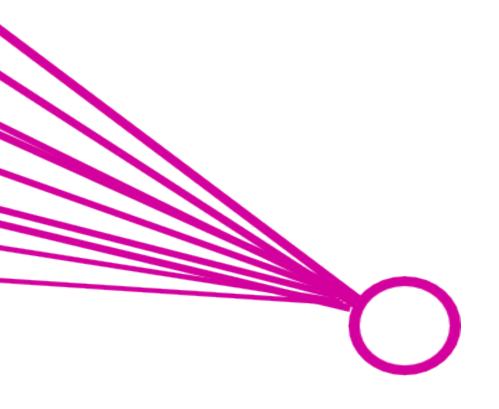
* slide from Marc'Aurelio Renzato

Pooling Layer

Let us assume the filter is an "eye" detector

How can we make detection spatially invariant (insensitive to position of the eye in the image)

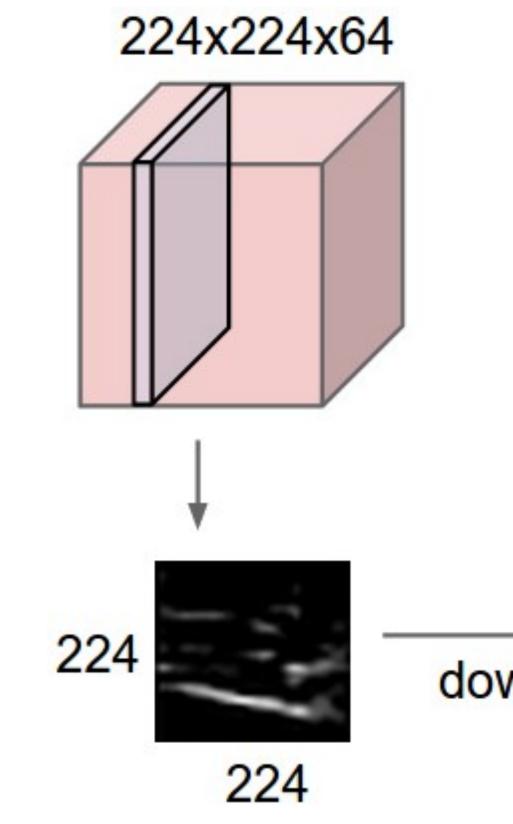
> By "pooling" (e.g., taking a max) response over a spatial locations we gain robustness to position variations



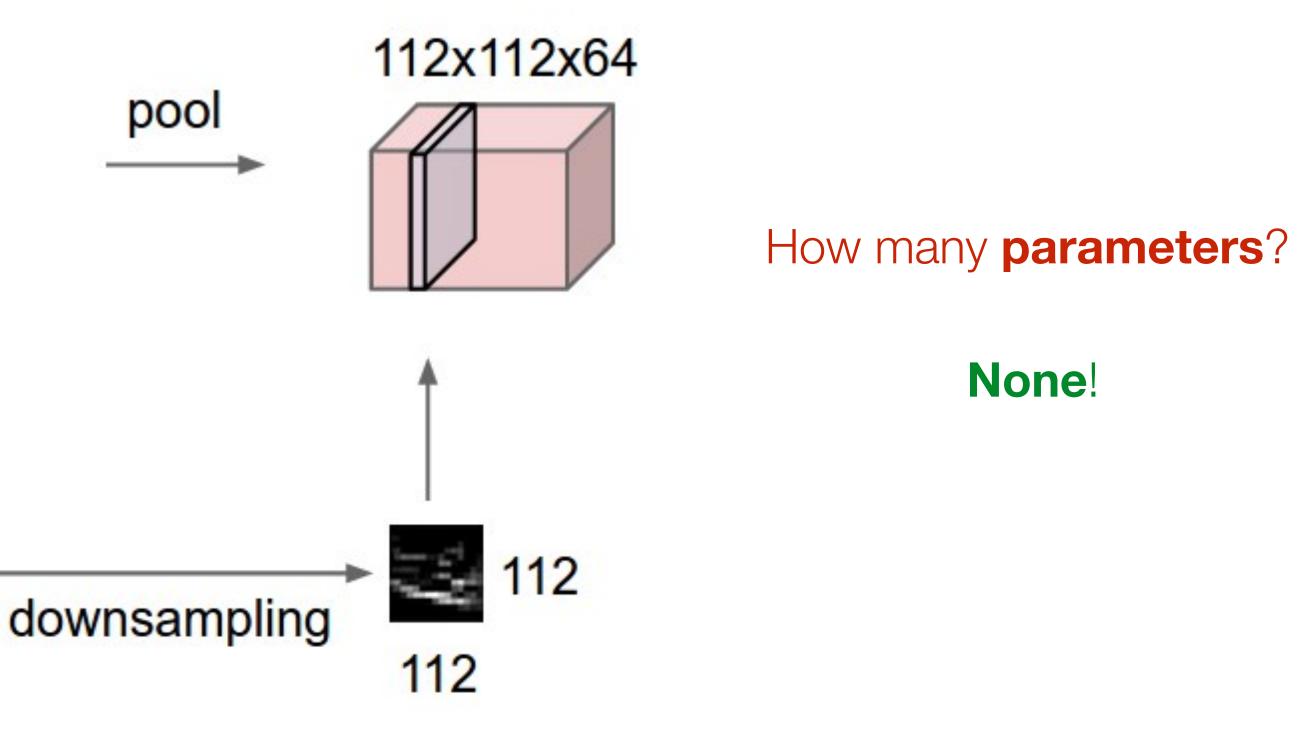
* slide from Marc'Aurelio Renzato

Pooling Layer

- Makes representation smaller, more manageable and spatially invariant
- Operates over each activation map independently



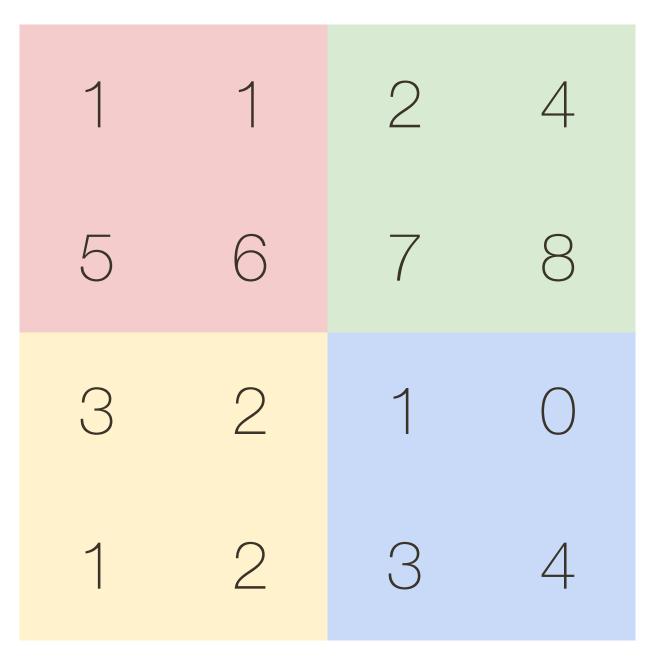
e manageable and spatially invariant independently



* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Max **Pooling**

activation map



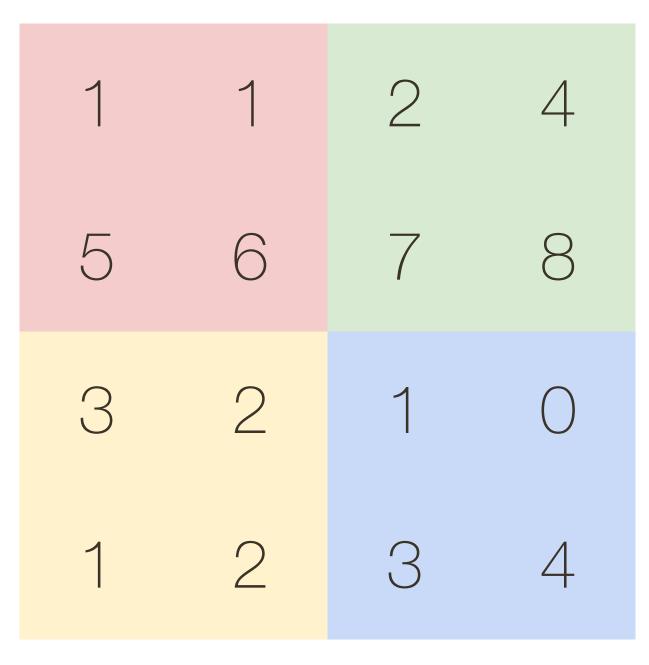
max pool with 2 x 2 filter and stride of 2

6 8 3 4

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Average **Pooling**

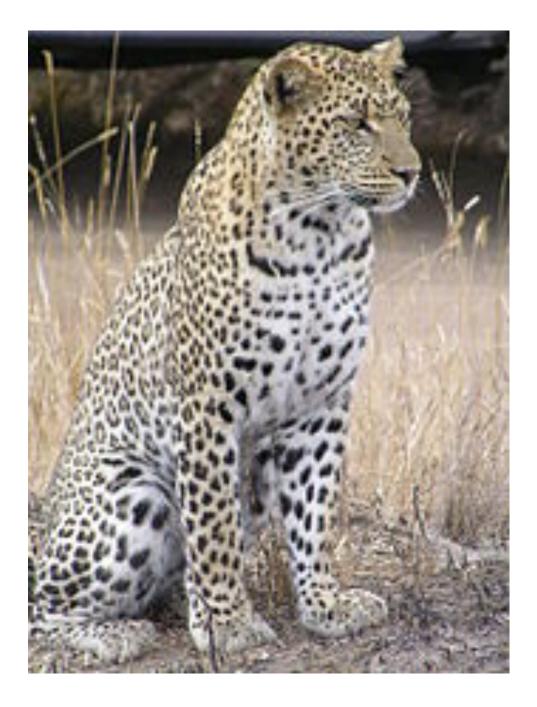
activation map



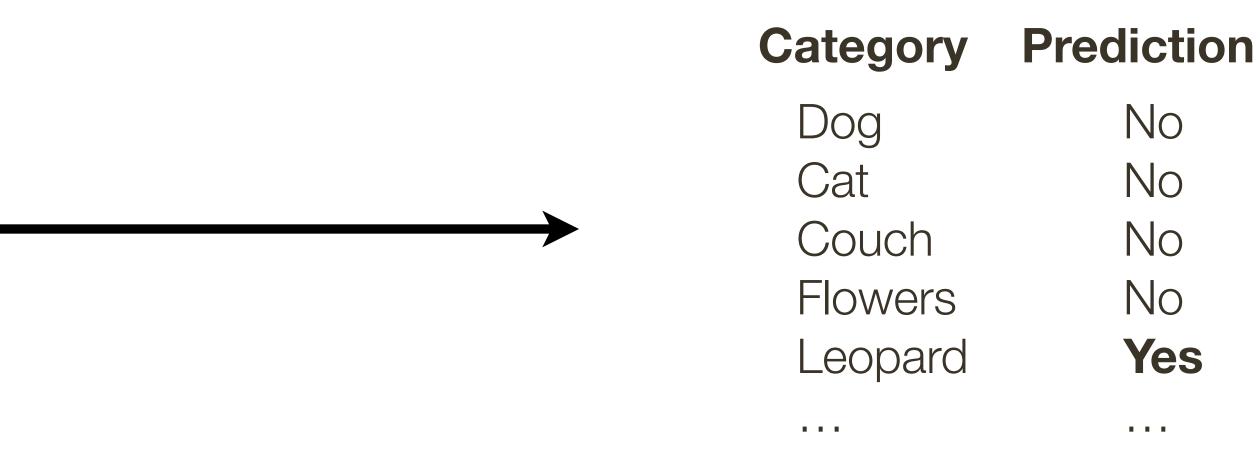
avg pool with 2 x 2 filter and stride of 2

3.25 5.25 2 2

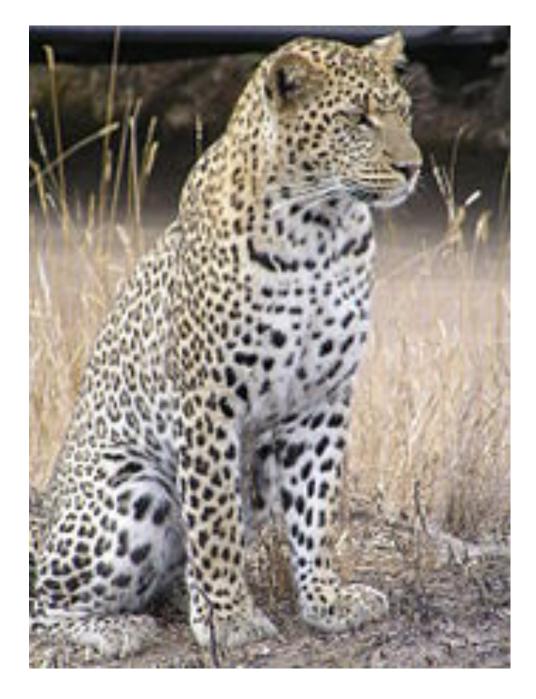
Object Classification

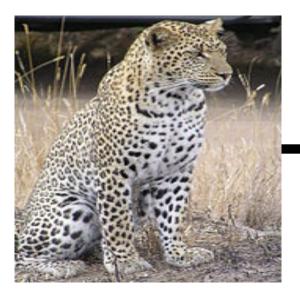


Problem: For each image predict which category it belongs to out of a fixed set



Object Classification

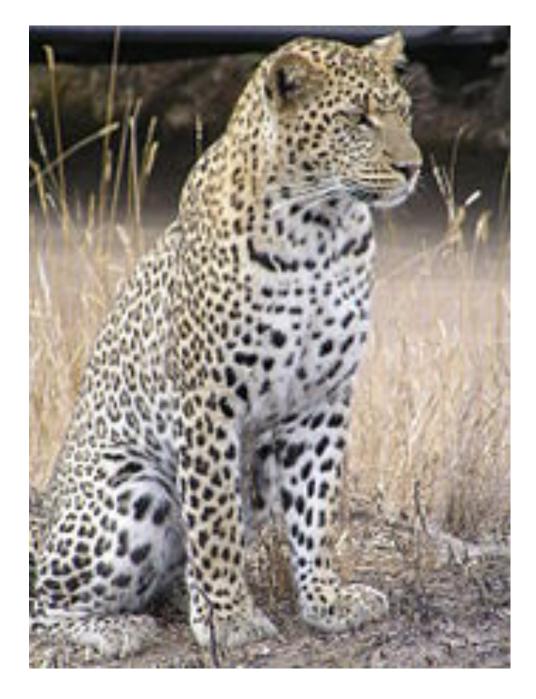


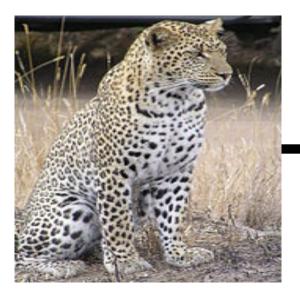


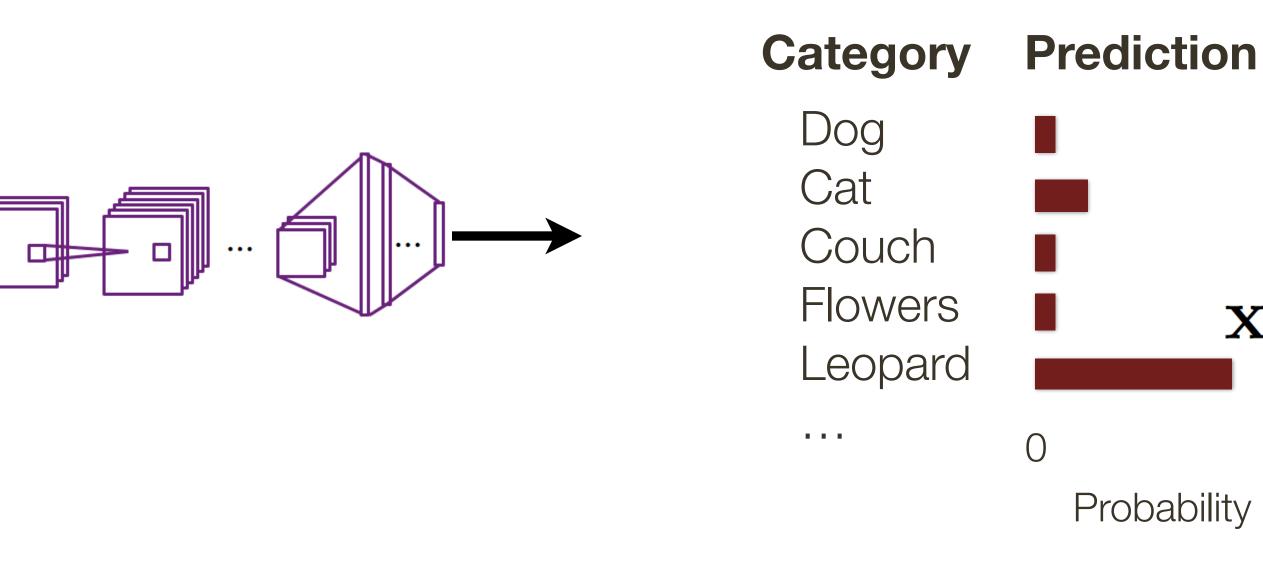
	Category	Predictio
	Dog	No
	Cat	No
	Couch	No
	Flowers	No
	Leopard	Yes

Problem: For each image predict which category it belongs to out of a fixed set

Object Classification







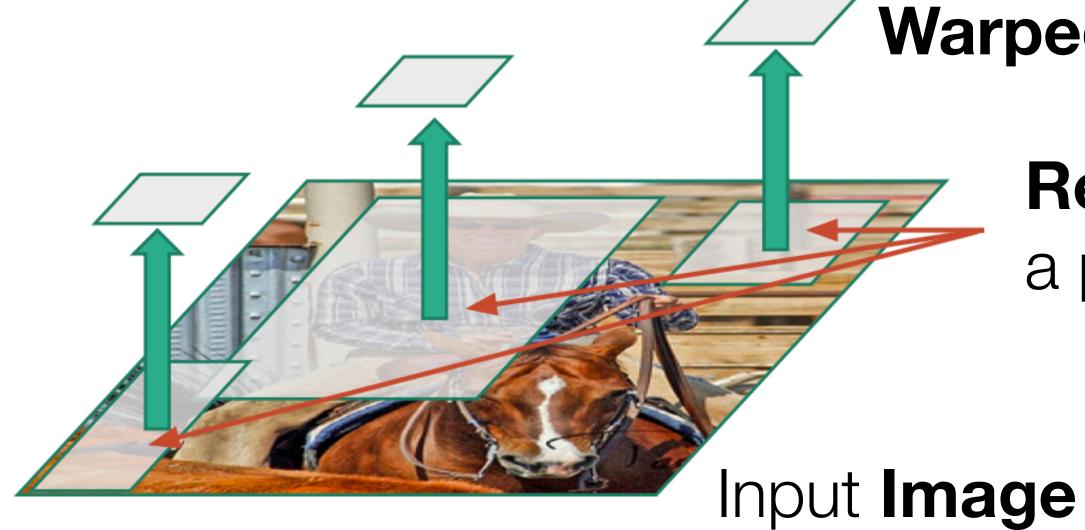
Problem: For each image predict which category it belongs to out of a fixed set

 \mathbf{x}^t

[Girshick et al, CVPR 2014]



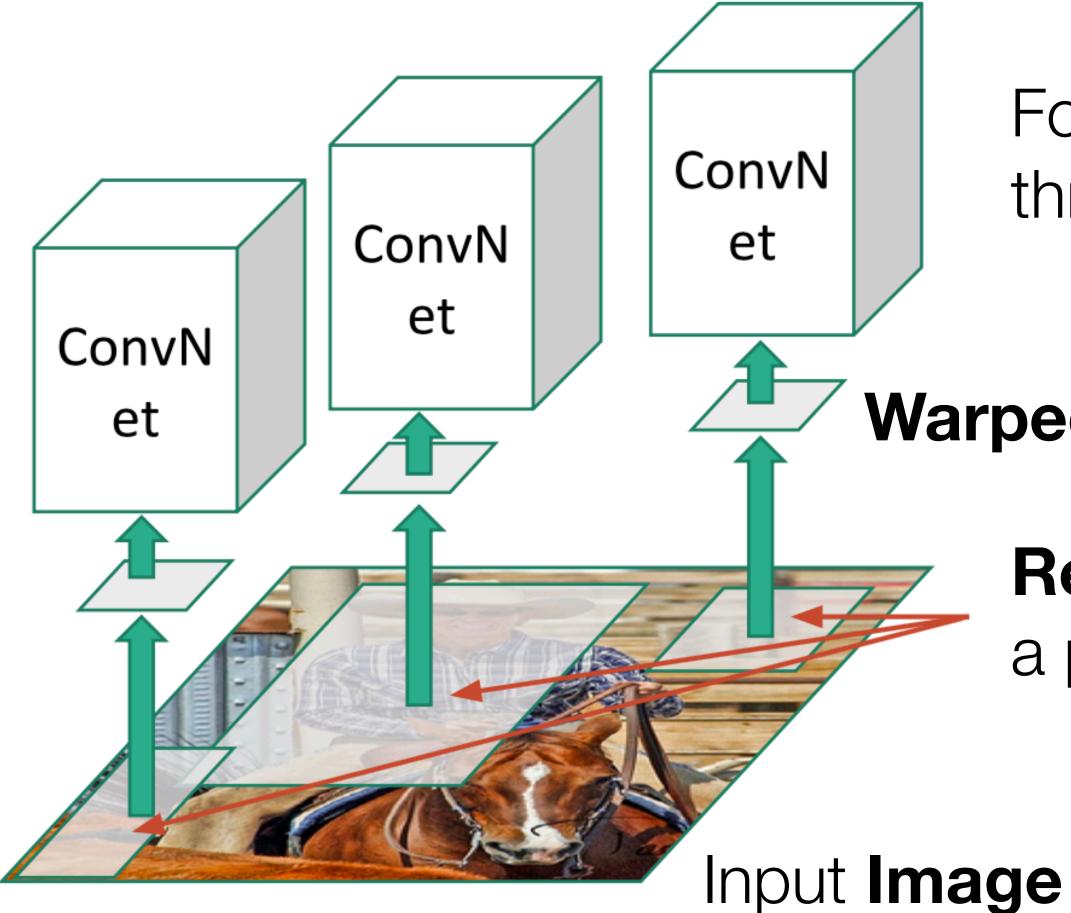
[Girshick et al, CVPR 2014]



[Girshick et al, CVPR 2014]

Warped image regions

Regions of Interest from a proposal method (~2k)

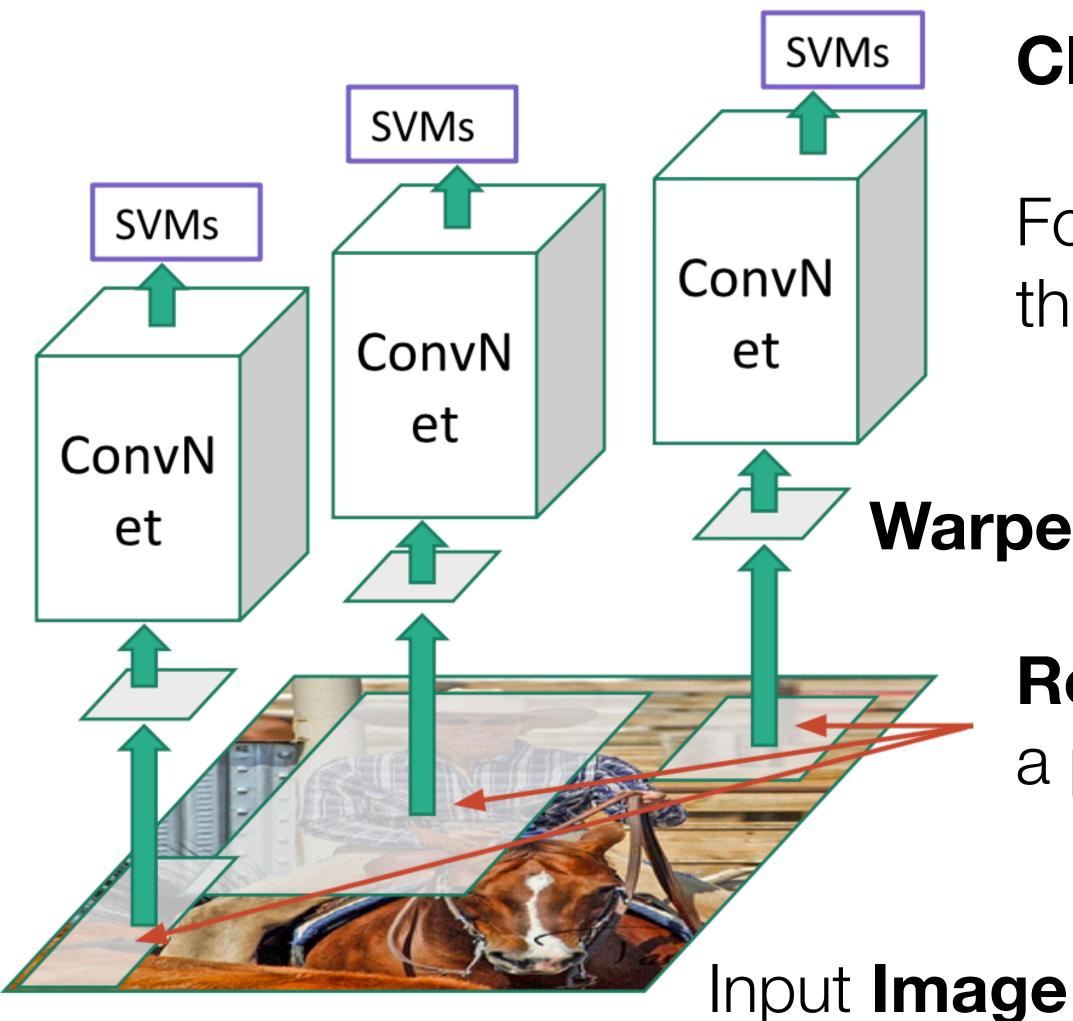


[Girshick et al, CVPR 2014]

Forward each region through a CNN

Warped image regions

Regions of Interest from a proposal method (~2k)



[Girshick et al, CVPR 2014]

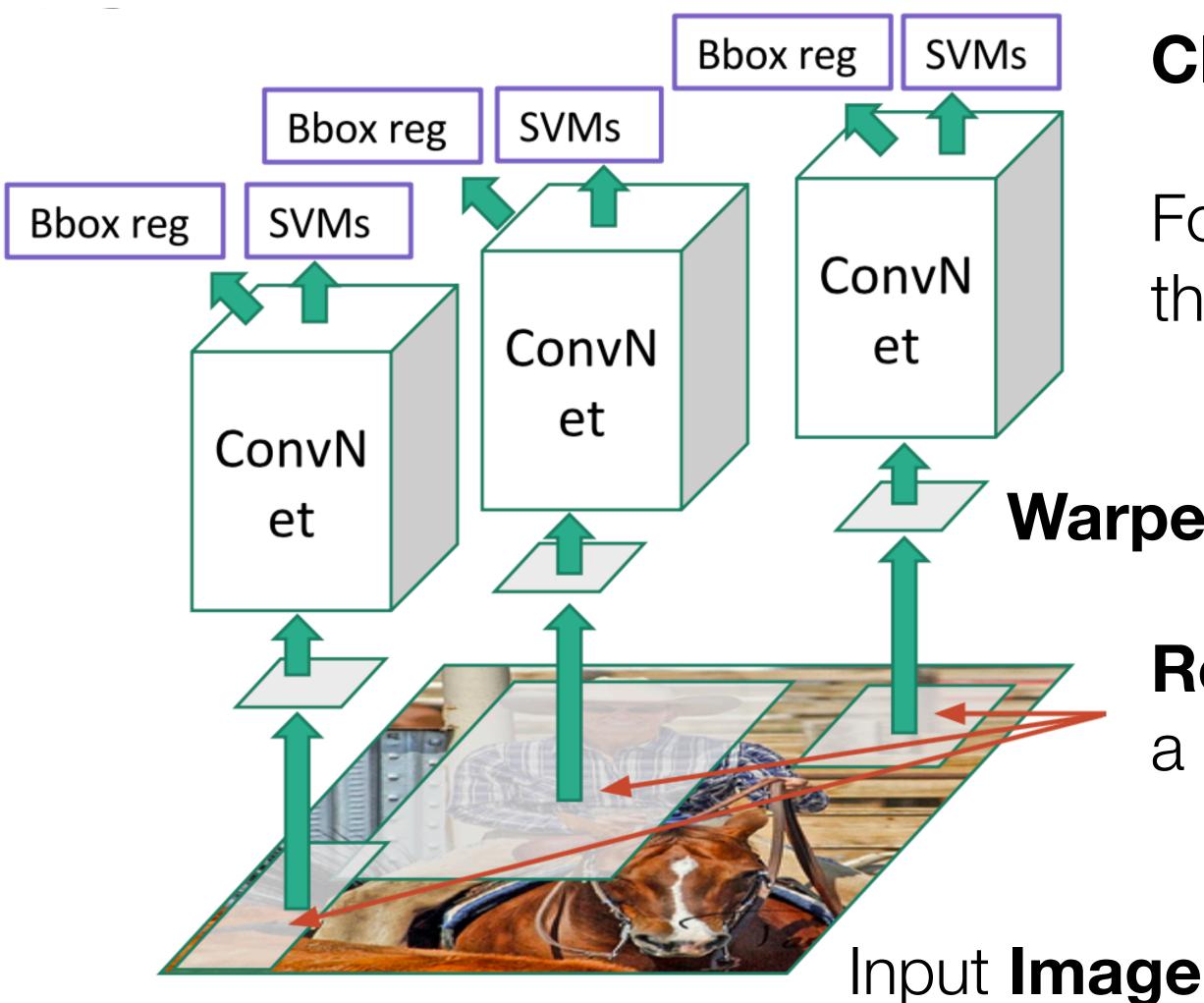
Classify regions with SVM

Forward each region through a **CNN**

Warped image regions

Regions of Interest from a proposal method (~2k)

Linear Regression for bounding box offsets



[Girshick et al, CVPR 2014]

Classify regions with SVM

Forward each region through a **CNN**

Warped image regions

Regions of Interest from a proposal method (~2k)

R-CNN (Regions with CNN features) algorithm:

- Extract promising candidate regions using an object proposals algorithm
- Resize each proposal window to the size of the input layer of a trained convolutional neural network
- Input each resized image patch to the convolutional neural network

Implementation detail: Instead of using the classification scores of the input feature to a trained support vector machine (SVM)

network directly, the output of the final fully-connected layer can be used as an

Summary

The parameters of a neural network are learned using **backpropagation**, which computes gradients via recursive application of the chain rule

the network architecture to reduce the number of parameters

A convolutional layer applies a set of learnable filters

A **pooling layer** performs spatial downsampling

A fully-connected layer is the same as in a regular neural network

- A convolutional neural network assumes inputs are images, and constrains
- Convolutional neural networks can be seen as learning a hierarchy of filters