
Lecture 33: Neural Networks

CPSC 425: Computer Vision

1

Menu for Today (November 26, 2018)
Topics:

— Neuron
— Neural Networks

Redings:
— Today’s Lecture: N/A

— Next Lecture: N/A

Reminders:

— Assignment 5: Scene Recognition with Bag of Words due last day of classes

— Rules for competition are posted

— Layers and activation functions
— Backpropagation

Photo credit: reddit user Liammm

Pe
reid
olia

3

Recall: Pareidolia

4

Today’s “fun” Example: Deep Dream — Algorithmic Pareidolia

Detection scores in the deformable part model are based on both
appearance and location

The deformable part model is trained iteratively by alternating the steps
1. Assume components and part locations given; compute appearance and

offset models
2. Assume appearance and offset models given; compute components and

part locations

An object proposal algorithm generates a short list of regions with generic
object-like properties that can be evaluated by an object detector in place of an
exhaustive sliding window search

5

Lecture 32: Re-cap

Warning:

Our intro to Neural Networks will be very light weight …

… if you want to know more, take my CPSC 532S

6

A Neuron

— The basic unit of computation in a neural network is a neuron.

— A neuron accepts some number of input signals, computes their weighted
sum, and applies an activation function (or non-linearity) to the sum.

— Common activation functions include sigmoid and rectified linear unit (ReLU)
7

inputs

weights

output

sum activation function

+b

A Neuron

— The basic unit of computation in a neural network is a neuron.

— A neuron accepts some number of input signals, computes their weighted
sum, and applies an activation function (or non-linearity) to the sum.

— Common activation functions include sigmoid and rectified linear unit (ReLU)
8

inputs

weights

output

sum activation function

+b

y = f

NX

i=1

wixi + b

!

image features

weights

Recall: Linear Classifier

9

f(xi,W,b) = Wxi + b

Defines a score function:

bias vector
(parameters)

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

10

Recall: Linear Classifier

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Aside: Inspiration from Biology

11

Neural nets/perceptrons are loosely inspired by biology.
But they certainly are not a model of how the brain works, or even how neurons

work.

Figure credit: Fei-Fei and Karpathy

Activation Function: Sigmoid

Common in many early neural networks
Biological analogy to saturated firing rate of neurons
Maps the input to the range [0,1]

12

Figure credit: Fei-Fei and Karpathy

Found to accelerate convergence during learning
Used in the most recent neural networks

13

Activation Function: ReLU (Rectified Linear Unit)

Figure credit: Fei-Fei and Karpathy

inputs

weights

output

sum

+b

A Neuron

14

Activation function
(e.g., Sigmoid or ReLU function of weighted sum)

A Neuron … another way to draw it …

15

inputs

weights

output

Activation function
(e.g., Sigmoid or ReLU function of weighted sum)

xN+1

A Neuron … another way to draw it …

16

(1) Combine the sum and activation function

inputs

weights

output

Activation function
(e.g., Sigmoid or ReLU function of weighted sum)

xN+1

A Neuron … another way to draw it …

17

(1) Combine the sum and activation function

(2) suppress the bias term (less clutter)

inputs

weights

output

Activation function
(e.g., Sigmoid or ReLU function of weighted sum)

xN+1 = 1

wN+1 = b

xN+1

A Neuron … another way to draw it …

18

(1) Combine the sum and activation function

(2) suppress the bias term (less clutter)

inputs

weights

output

Activation function
(e.g., Sigmoid or ReLU function of weighted sum)

xN+1 = 1

wN+1 = b

Neural Network

19

Connect a bunch of neurons together — a collection of connected neurons

‘one neuron’

Neural Network

20

Connect a bunch of neurons together — a collection of connected neurons

‘two neurons’

Neural Network

21

Connect a bunch of neurons together — a collection of connected neurons

‘three neurons’

Neural Network

22

Connect a bunch of neurons together — a collection of connected neurons

‘four neurons’

Neural Network

23

Connect a bunch of neurons together — a collection of connected neurons

‘five neurons’

Neural Network

24

Connect a bunch of neurons together — a collection of connected neurons

‘six neurons’

Neural Network

25

This network is also called a Multi-layer Perceptron (MLP)

Neural Network: Terminology

26

‘input’ layer

Neural Network: Terminology

27

‘hidden’ layer
‘input’ layer

Neural Network: Terminology

28

‘output’ layer
‘hidden’ layer

‘input’ layer

Neural Network: Terminology

29

this layer is a
‘fully connected layer’

Neural Network: Terminology

30

so is this

Neural Network

31

Example of a neural network with three inputs, a single hidden layer of four
neurons, and an output layer of two neurons

A neural network comprises neurons connected in an acyclic graph
The outputs of neurons can become inputs to other neurons
Neural networks typically contain multiple layers of neurons

Figure credit: Fei-Fei and Karpathy

Neural Network Intuition
Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping?
Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more
about what specific functions next …

Question: What does a hidden unit do?
Answer: It can be thought of as classifier or a feature.

Question: Why have many layers?
Answer: 1) More layers = more complex functional mapping

 2) More efficient due to distributed representation
* slide from Marc’Aurelio Renzato

Neural Network Intuition
Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping?
Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more
about what specific functions next …

Question: What does a hidden unit do?
Answer: It can be thought of as classifier or a feature.

Question: Why have many layers?
Answer: 1) More layers = more complex functional mapping

 2) More efficient due to distributed representation
* slide from Marc’Aurelio Renzato

Neural Network Intuition
Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping?
Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more
about what specific functions next …

Question: What does a hidden unit do?
Answer: It can be thought of as classifier or a feature.

Question: Why have many layers?
Answer: 1) More layers = more complex functional mapping

 2) More efficient due to distributed representation
* slide from Marc’Aurelio Renzato

Neural Network Intuition
Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping?
Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more
about what specific functions next …

Question: What does a hidden unit do?
Answer: It can be thought of as classifier or a feature.

Question: Why have many layers?
Answer: 1) More layers = more complex functional mapping

 2) More efficient due to distributed representation
* slide from Marc’Aurelio Renzato

Activation Function

36

Why can’t we have linear activation functions? Why have non-linear activations?

Neural Network

37

How many neurons?

38

How many neurons? 4+2 = 6

Neural Network

39

How many neurons? 4+2 = 6 How many weights?

Neural Network

40

How many neurons? 4+2 = 6 How many weights?
(3 x 4) + (4 x 2) = 20

Neural Network

41

How many neurons? 4+2 = 6 How many weights?
(3 x 4) + (4 x 2) = 20

How many learnable parameters?

Neural Network

42

How many neurons? 4+2 = 6 How many weights?
(3 x 4) + (4 x 2) = 20

How many learnable parameters?
20 + 4 + 2 = 26

bias terms

Neural Network

Modern convolutional neural networks contain 10-20 layers and on the
order of 100 million parameters

Training a neural network requires estimating a large number of parameters

43

Neural Networks

Li = � log

efyi

P
j e

fyj

!

Backpropagation
When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

44

yi fj

Li = � log

efyi

P
j e

fyj

!

Backpropagation
When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

45

yi fj

Consider neural net which takes input vector and predicts scores for 3
classes, with true class being class 3:

xi

Li = � log

efyi

P
j e

fyj

!

Backpropagation
When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

46

yi fj

Consider neural net which takes input vector and predicts scores for 3
classes, with true class being class 3:

xi

c1 = �2.85

c2 = 0.86

c3 = 0.28

f

Li = � log

efyi

P
j e

fyj

!

Backpropagation
When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

47

yi fj

Consider neural net which takes input vector and predicts scores for 3
classes, with true class being class 3:

xi

c1 = �2.85

c2 = 0.86

c3 = 0.28

f

0.058
2.36
1.32

exp

When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

Li = � log

efyi

P
j e

fyj

!

Backpropagation

48

yi fj

Consider neural net which takes input vector and predicts scores for 3
classes, with true class being class 3:

xi

c1 = �2.85

c2 = 0.86

c3 = 0.28

f

0.058
2.36
1.32

exp

Normalize to
sum to 1 0.016

0.631
0.353

When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

Li = � log

efyi

P
j e

fyj

!

Backpropagation

49

yi fj

Consider neural net which takes input vector and predicts scores for 3
classes, with true class being class 3:

xi

c1 = �2.85

c2 = 0.86

c3 = 0.28

f

0.058
2.36
1.32

exp

Normalize to
sum to 1 0.016

0.631
0.353

probability of a class

Li = � log

efyi

P
j e

fyj

!

Backpropagation
When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

50

yi fj

Consider neural net which takes input vector and predicts scores for 3
classes, with true class being class 3:

xi

c1 = �2.85

c2 = 0.86

c3 = 0.28

f

0.058
2.36
1.32

exp

Normalize to
sum to 1 0.016

0.631
0.353

probability of a class

softmax function
multi-class classifier

Li = � log

efyi

P
j e

fyj

!

Backpropagation
When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

51

yi fj

Consider neural net which takes input vector and predicts scores for 3
classes, with true class being class 3:

xi

c1 = �2.85

c2 = 0.86

c3 = 0.28

f

0.058
2.36
1.32

exp

Normalize to
sum to 1 0.016

0.631
0.353

Li = � log(0.353) = 1.04

probability of a class

Li = � log

efyi

P
j e

fyj

!

Backpropagation
When training a neural network, the final output will be some loss (error)
function
— e.g. cross-entropy loss:
 
which defines loss for i-th training example with true class index ; and
is the j-th element of the vector of class scores coming from neural net.

52

yi fj

We want to compute the gradient of the loss with respect to the network
parameters so that we can incrementally adjust the network parameters

Gradient Descent

1. Start from random value of W0,b0

2. Compute gradient of the loss with
respect to previous (initial) parameters:

r L(W,b)|W=Wk,b=bk

3. Re-estimate the parameters

Wk+1 = Wk � �
@L(W,b)

@W

����
W=Wk,b=bk

bk+1 = bk � �
@L(W,b)

@b

����
W=Wk,b=bk

Wk+1 = Wk � �
@L(W,b)

@W

����
W=Wk,b=bk

bk+1 = bk � �
@L(W,b)

@b

����
W=Wk,b=bk

For to max number of iterationsk = 0

*slide adopted from V. Ordonex

Wk+1 = Wk � �
@L(W,b)

@W

����
W=Wk,b=bk

bk+1 = bk � �
@L(W,b)

@b

����
W=Wk,b=bk

- is the learning rate

Backpropagation

The parameters of a neural network are learned using backpropagation,
which computes gradients via recursive application of the chain rule from
calculus

54

Backpropagation

The parameters of a neural network are learned using backpropagation,
which computes gradients via recursive application of the chain rule from
calculus

Suppose . What is the partial derivative of with respect to ? What
is the partial derivative of with respect to ?

55

f(x, y) = xy f
x

f y

Backpropagation

The parameters of a neural network are learned using backpropagation,
which computes gradients via recursive application of the chain rule from
calculus

Suppose . What is the partial derivative of with respect to ? What
is the partial derivative of with respect to ?

56

f(x, y) = xy f
x

f y

@f

@x

= y

@f

@y

= x

The parameters of a neural network are learned using backpropagation,
which computes gradients via recursive application of the chain rule from
calculus

Suppose . . What is the partial derivative of with respect to ?
What is the partial derivative of with respect to ?

f(x, y) = x+ y

Backpropagation

57

f
x

f y

@f

@y
= 1

@f

@x

= 1

The parameters of a neural network are learned using backpropagation,
which computes gradients via recursive application of the chain rule from
calculus

Suppose . . What is the partial derivative of with respect to ?
What is the partial derivative of with respect to ?

f(x, y) = x+ y

Backpropagation

58

f
x

f y

A trickier example:

Backpropagation

59

f(x, y) = max(x, y)

That is, the (sub)gradient is 1 on the input that is larger, and 0 on the other input

— For example, say x = 4, y = 2. Increasing y by a tiny amount does not
change the value of f (f will still be 4), hence the gradient on y is zero.

A trickier example:

Backpropagation

60

@f

@x

= 1(x � y)
@f

@y

= 1(y � x)

f(x, y) = max(x, y)

We can compose more complicated functions and compute their gradients by
applying the chain rule from calculus

Backpropagation

We can compose more complicated functions and compute their gradients by
applying the chain rule from calculus

Suppose . What are the partial derivatives of with respect
to ? ? ?

f(x, y, z) = (x+ y)z f
x

y z

Backpropagation

We can compose more complicated functions and compute their gradients by
applying the chain rule from calculus

Suppose . What are the partial derivatives of with respect
to ? ? ?

For illustration we break this expression into and . This is a
sum and a product, and we have just seen how to compute partial derivatives
for these.

63

f(x, y, z) = (x+ y)z f
x

y z

q = x+ y f = qz

Backpropagation

We can compose more complicated functions and compute their gradients by
applying the chain rule from calculus

Suppose . What are the partial derivatives of with respect
to ? ? ?

For illustration we break this expression into and . This is a
sum and a product, and we have just seen how to compute partial derivatives
for these.

By the chain rule

64

f(x, y, z) = (x+ y)z f
x

y z

q = x+ y f = qz

@f

@x

=
@f

@q

@q

@x

= z · 1 = z

Backpropagation

We can compose more complicated functions and compute their gradients by
applying the chain rule from calculus

Suppose . What are the partial derivatives of with respect
to ? ? ?

For illustration we break this expression into and . This is a
sum and a product, and we have just seen how to compute partial derivatives
for these.

By the chain rule

65

f(x, y, z) = (x+ y)z f
x

y z

q = x+ y f = qz

@f

@x

=
@f

@q

@q

@x

= z · 1 = z

@f

@y
=

@f

@q

@q

@y
= z · 1 = z

@f

@z
= q

Backpropagation

66

Backpropagation
f(x, y, z) = (x+ y)z

67

Backpropagation
f(x, y, z) = (x+ y)z

+

x

y

Computational graph (a DAG) with variable ordering from topological sort,
where each node is an input, intermediate, or output variable

q y

z

⇥

68

Backpropagation

Suppose the network input is: (x, y, z) = (�2, 5,�4)

q = x+ y = 3 f = qz = �12Then: (forward pass)

f(x, y, z) = (x+ y)z

Computational graph (a DAG) with variable ordering from topological sort,
where each node is an input, intermediate, or output variable

+

x

y

q y

z

⇥

69

f(x, y, z) = (x+ y)z

Backpropagation

Suppose the network input is: (x, y, z) = (�2, 5,�4)

q = x+ y = 3 f = qz = �12Then: (forward pass)

@f

@q
= z = �4 (backward pass)

+

x

y

q y

z

⇥

70

f(x, y, z) = (x+ y)z

Backpropagation

Suppose the network input is: (x, y, z) = (�2, 5,�4)

q = x+ y = 3 f = qz = �12Then: (forward pass)

@f

@x

=
@f

@q

@q

@x

=
@f

@q

· 1

@f

@q
= z = �4 (backward pass)

+

x

y

q y

z

⇥

71

f(x, y, z) = (x+ y)z

Backpropagation

Suppose the network input is: (x, y, z) = (�2, 5,�4)

q = x+ y = 3 f = qz = �12Then: (forward pass)

@f

@x

=
@f

@q

@q

@x

=
@f

@q

· 1

@f

@q
= z = �4

@f

@x

= �4 (backward pass)

+

x

y

q y

z

⇥

72

f(x, y, z) = (x+ y)z

Backpropagation

Suppose the network input is: (x, y, z) = (�2, 5,�4)

q = x+ y = 3 f = qz = �12Then: (forward pass)

@f

@q
= z = �4

@f

@x

= �4
@f

@y
= �4

@f

@z
= 3

@f

@x

=
@f

@q

@q

@x

=
@f

@q

· 1 @f

@y
=

@f

@q

@q

@y
=

@f

@q
· 1 @f

@z
= q

(backward pass)

+

x

y

q y

z

⇥

