
Lecture 33: Neural Networks

CPSC 425: Computer Vision 
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Menu for Today (November 26, 2018)
Topics: 

— Neuron  
— Neural Networks  

Redings: 
— Today’s Lecture:  N/A                         

— Next Lecture:       N/A

Reminders: 

— Assignment 5: Scene Recognition with Bag of Words due last day of classes 

— Rules for competition are posted 

— Layers and activation functions  
— Backpropagation  



Photo credit: reddit user Liammm 
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Recall: Pareidolia  
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Today’s “fun” Example: Deep Dream — Algorithmic Pareidolia



Detection scores in the deformable part model are based on both 
appearance and location  

The deformable part model is trained iteratively by alternating the steps  
1. Assume components and part locations given; compute appearance and 

offset models  
2.  Assume appearance and offset models given; compute components and 

part locations  

An object proposal algorithm generates a short list of regions with generic 
object-like properties that can be evaluated by an object detector in place of an 
exhaustive sliding window search 
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Lecture 32: Re-cap



Warning:

Our intro to Neural Networks will be very light weight …  

… if you want to know more, take my CPSC 532S 
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A Neuron

— The basic unit of computation in a neural network is a neuron. 

— A neuron accepts some number of input signals, computes their weighted 
sum, and applies an activation function (or non-linearity) to the sum. 

— Common activation functions include sigmoid and rectified linear unit (ReLU) 
7
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image features

weights

Recall: Linear Classifier
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f(xi,W,b) = Wxi + b

Defines a score function: 

bias vector
(parameters)

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Recall: Linear Classifier

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aside: Inspiration from Biology
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Neural nets/perceptrons are loosely inspired by biology. 
But they certainly are not a model of how  the brain works, or even how neurons 

work.

Figure credit: Fei-Fei and Karpathy



Activation Function: Sigmoid 

Common in many early neural networks 
Biological analogy to saturated firing rate of neurons  
Maps the input to the range [0,1] 
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Figure credit: Fei-Fei and Karpathy



Found to accelerate convergence during learning  
Used in the most recent neural networks 
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Activation Function: ReLU (Rectified Linear Unit) 

Figure credit: Fei-Fei and Karpathy
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A Neuron

14

Activation function 
(e.g., Sigmoid or ReLU function of weighted sum)



A Neuron … another way to draw it … 
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A Neuron … another way to draw it … 
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(1) Combine the sum and activation function 
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A Neuron … another way to draw it … 
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(1) Combine the sum and activation function 

(2) suppress the bias term (less clutter)

inputs

weights

output

Activation function 
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xN+1 = 1
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A Neuron … another way to draw it … 
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(1) Combine the sum and activation function 

(2) suppress the bias term (less clutter)
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Neural Network
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Connect a bunch of neurons together — a collection of connected neurons

‘one neuron’



Neural Network
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Connect a bunch of neurons together — a collection of connected neurons

‘two neurons’



Neural Network
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Connect a bunch of neurons together — a collection of connected neurons

‘three neurons’



Neural Network
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Connect a bunch of neurons together — a collection of connected neurons

‘four neurons’



Neural Network
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Connect a bunch of neurons together — a collection of connected neurons

‘five neurons’



Neural Network
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Connect a bunch of neurons together — a collection of connected neurons

‘six neurons’



Neural Network
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This network is also called a Multi-layer Perceptron (MLP)



Neural Network: Terminology
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‘input’ layer



Neural Network: Terminology
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‘hidden’ layer
‘input’ layer



Neural Network: Terminology
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‘output’ layer
‘hidden’ layer

‘input’ layer



Neural Network: Terminology
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this layer is a 
‘fully connected layer’



Neural Network: Terminology
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so is this



Neural Network
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Example of a neural network with three inputs, a single hidden layer of four 
neurons, and an output layer of two neurons

A neural network comprises neurons connected in an acyclic graph 
The outputs of neurons can become inputs to other neurons  
Neural networks typically contain multiple layers of neurons 

Figure credit: Fei-Fei and Karpathy



Neural Network Intuition
Question: What is a Neural Network? 
Answer: Complex mapping from an input (vector) to an output (vector) 

Question: What class of functions should be considered for this mapping? 
Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more 
about what specific functions next … 

Question: What does a hidden unit do? 
Answer: It can be thought of as classifier or a feature.  

Question: Why have many layers? 
Answer: 1) More layers = more complex functional mapping  

                  2) More efficient due to distributed representation
* slide from Marc’Aurelio Renzato 
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Activation Function
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Why can’t we have linear activation functions? Why have non-linear activations?



Neural Network
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How many neurons?
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How many neurons? 4+2 = 6

Neural Network
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How many neurons? 4+2 = 6 How many weights?

Neural Network
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How many neurons? 4+2 = 6 How many weights?
(3 x 4) + (4 x 2) = 20

Neural Network
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How many neurons? 4+2 = 6 How many weights?
(3 x 4) + (4 x 2) = 20

How many learnable parameters?

Neural Network
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How many neurons? 4+2 = 6 How many weights?
(3 x 4) + (4 x 2) = 20

How many learnable parameters?
20 + 4 + 2 = 26

bias terms

Neural Network



Modern convolutional neural networks contain 10-20 layers and on the 
order of 100 million parameters  

Training a neural network requires estimating a large number of parameters  
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Neural Networks
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Backpropagation
When training a neural network, the final output will be some loss (error) 
function  
— e.g. cross-entropy loss: 
 
which defines loss for i-th training example with true class index    ; and  
is the j-th element of the vector of class scores coming from neural net.  

44
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yi fj

Consider neural net which takes input vector      and predicts scores for 3 
classes, with true class being class 3:     

xi
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yi fj

Consider neural net which takes input vector      and predicts scores for 3 
classes, with true class being class 3:     

xi

c1 = �2.85

c2 = 0.86

c3 = 0.28

f
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yi fj

Consider neural net which takes input vector      and predicts scores for 3 
classes, with true class being class 3:     

xi
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c3 = 0.28

f

0.058
2.36
1.32

exp
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Backpropagation
When training a neural network, the final output will be some loss (error) 
function  
— e.g. cross-entropy loss: 
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yi fj

Consider neural net which takes input vector      and predicts scores for 3 
classes, with true class being class 3:     

xi

c1 = �2.85

c2 = 0.86

c3 = 0.28

f

0.058
2.36
1.32

exp

Normalize to 
sum to 1 0.016

0.631
0.353

probability of a class

softmax function 
multi-class classifier
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Backpropagation
When training a neural network, the final output will be some loss (error) 
function  
— e.g. cross-entropy loss: 
 
which defines loss for i-th training example with true class index    ; and  
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yi fj

Consider neural net which takes input vector      and predicts scores for 3 
classes, with true class being class 3:     

xi

c1 = �2.85

c2 = 0.86

c3 = 0.28

f

0.058
2.36
1.32

exp

Normalize to 
sum to 1 0.016

0.631
0.353

Li = � log(0.353) = 1.04

probability of a class
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Backpropagation
When training a neural network, the final output will be some loss (error) 
function  
— e.g. cross-entropy loss: 
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yi fj

We want to compute the gradient of the loss with respect to the network 
parameters so that we can incrementally adjust the network parameters



Gradient Descent

1. Start from random value of W0,b0

2. Compute gradient of the loss with  
respect to previous (initial) parameters:

r L(W,b)|W=Wk,b=bk

3. Re-estimate the parameters

Wk+1 = Wk � �
@L(W,b)

@W

����
W=Wk,b=bk

bk+1 = bk � �
@L(W,b)

@b

����
W=Wk,b=bk

Wk+1 = Wk � �
@L(W,b)

@W

����
W=Wk,b=bk

bk+1 = bk � �
@L(W,b)

@b

����
W=Wk,b=bk

For           to max number of iterationsk = 0

*slide adopted from V. Ordonex 

Wk+1 = Wk � �
@L(W,b)

@W

����
W=Wk,b=bk

bk+1 = bk � �
@L(W,b)

@b

����
W=Wk,b=bk

- is the learning rate



Backpropagation

The parameters of a neural network are learned using backpropagation, 
which computes gradients via recursive application of the chain rule from 
calculus 
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Backpropagation

The parameters of a neural network are learned using backpropagation, 
which computes gradients via recursive application of the chain rule from 
calculus  

Suppose                    . What is the partial derivative of   with respect to   ? What 
is the partial derivative of   with respect to   ? 
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f(x, y) = xy f
x

f y



Backpropagation

The parameters of a neural network are learned using backpropagation, 
which computes gradients via recursive application of the chain rule from 
calculus  

Suppose                    . What is the partial derivative of   with respect to   ? What 
is the partial derivative of   with respect to   ?  
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f(x, y) = xy f
x

f y

@f

@x

= y

@f

@y

= x



The parameters of a neural network are learned using backpropagation, 
which computes gradients via recursive application of the chain rule from 
calculus  

Suppose                    .   . What is the partial derivative of   with respect to   ? 
What is the partial derivative of   with respect to   ? 

f(x, y) = x+ y

Backpropagation

57

f
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f y



@f

@y
= 1

@f

@x

= 1

The parameters of a neural network are learned using backpropagation, 
which computes gradients via recursive application of the chain rule from 
calculus  

Suppose                    .   . What is the partial derivative of   with respect to   ? 
What is the partial derivative of   with respect to   ? 

f(x, y) = x+ y

Backpropagation
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A trickier example:

Backpropagation

59

f(x, y) = max(x, y)



That is, the (sub)gradient is 1 on the input that is larger, and 0 on the other input 

— For example, say x = 4, y = 2. Increasing y by a tiny amount does not 
change the value of f (f will still be 4), hence the gradient on y is zero.

A trickier example:

Backpropagation
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@f

@x

= 1(x � y)
@f

@y

= 1(y � x)

f(x, y) = max(x, y)



We can compose more complicated functions and compute their gradients by 
applying the chain rule from calculus 

Backpropagation



We can compose more complicated functions and compute their gradients by 
applying the chain rule from calculus  

Suppose                                . What are the partial derivatives of   with respect 
to   ?   ?  ?  

f(x, y, z) = (x+ y)z f
x

y z

Backpropagation



We can compose more complicated functions and compute their gradients by 
applying the chain rule from calculus  

Suppose                                . What are the partial derivatives of   with respect 
to   ?   ?  ?  

For illustration we break this expression into                 and           . This is a 
sum and a product, and we have just seen how to compute partial derivatives 
for these.  
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f(x, y, z) = (x+ y)z f
x

y z

q = x+ y f = qz

Backpropagation



We can compose more complicated functions and compute their gradients by 
applying the chain rule from calculus  

Suppose                                . What are the partial derivatives of   with respect 
to   ?   ?  ?  

For illustration we break this expression into                 and           . This is a 
sum and a product, and we have just seen how to compute partial derivatives 
for these.  

By the chain rule  

64

f(x, y, z) = (x+ y)z f
x

y z

q = x+ y f = qz

@f

@x

=
@f

@q

@q

@x

= z · 1 = z

Backpropagation



We can compose more complicated functions and compute their gradients by 
applying the chain rule from calculus  

Suppose                                . What are the partial derivatives of   with respect 
to   ?   ?  ?  

For illustration we break this expression into                 and           . This is a 
sum and a product, and we have just seen how to compute partial derivatives 
for these.  

By the chain rule  
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f(x, y, z) = (x+ y)z f
x

y z

q = x+ y f = qz

@f

@x

=
@f

@q

@q

@x

= z · 1 = z

@f

@y
=

@f

@q

@q

@y
= z · 1 = z

@f

@z
= q

Backpropagation
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Backpropagation
f(x, y, z) = (x+ y)z
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Backpropagation
f(x, y, z) = (x+ y)z

+

x

y

Computational graph (a DAG) with variable ordering from topological sort, 
where each node is an input, intermediate, or output variable

q y

z

⇥
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Backpropagation

Suppose the network input is: (x, y, z) = (�2, 5,�4)

q = x+ y = 3 f = qz = �12Then: (forward pass)

f(x, y, z) = (x+ y)z

Computational graph (a DAG) with variable ordering from topological sort, 
where each node is an input, intermediate, or output variable

+

x

y

q y

z

⇥
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f(x, y, z) = (x+ y)z

Backpropagation

Suppose the network input is: (x, y, z) = (�2, 5,�4)

q = x+ y = 3 f = qz = �12Then: (forward pass)

@f

@q
= z = �4 (backward pass)

+

x

y

q y

z

⇥
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f(x, y, z) = (x+ y)z

Backpropagation

Suppose the network input is: (x, y, z) = (�2, 5,�4)

q = x+ y = 3 f = qz = �12Then: (forward pass)

@f

@x

=
@f

@q

@q

@x

=
@f

@q

· 1

@f

@q
= z = �4 (backward pass)
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y

q y

z

⇥
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f(x, y, z) = (x+ y)z

Backpropagation

Suppose the network input is: (x, y, z) = (�2, 5,�4)

q = x+ y = 3 f = qz = �12Then: (forward pass)

@f

@x

=
@f

@q

@q

@x

=
@f

@q

· 1

@f

@q
= z = �4

@f

@x

= �4 (backward pass)
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f(x, y, z) = (x+ y)z

Backpropagation

Suppose the network input is: (x, y, z) = (�2, 5,�4)

q = x+ y = 3 f = qz = �12Then: (forward pass)

@f

@q
= z = �4

@f

@x

= �4
@f

@y
= �4

@f

@z
= 3

@f

@x

=
@f

@q

@q

@x

=
@f

@q

· 1 @f

@y
=

@f

@q

@q

@y
=

@f

@q
· 1 @f

@z
= q

(backward pass)

+

x

y

q y

z

⇥


