CPSC 425: Computer Vision

Lecture 33: Neural Networks
Menu for Today (November 26, 2018)

Topics:

- Neuron
- Neural Networks
- Layers and activation functions
- Backpropagation

Readings:

- Today’s Lecture: N/A
- Next Lecture: N/A

Reminders:

- Assignment 5: Scene Recognition with Bag of Words due last day of classes
- Rules for competition are posted
Recall: Pareidolia

Photo credit: reddit user Liammm
Today’s “fun” Example: Deep Dream — Algorithmic Pareidolia
Detection scores in the **deformable part model** are based on both appearance and location.

The **deformable part model** is trained iteratively by alternating the steps:
1. Assume components and part locations given; compute appearance and offset models.
2. Assume appearance and offset models given; compute components and part locations.

An **object proposal** algorithm generates a short list of regions with generic object-like properties that can be evaluated by an object detector in place of an exhaustive sliding window search.
Warning:

Our intro to **Neural Networks** will be very light weight …

… if you want to know more, take my **CPSC 532S**
A Neuron

- The basic unit of computation in a neural network is a neuron.
- A neuron accepts some number of input signals, computes their weighted sum, and applies an activation function (or non-linearity) to the sum.
- Common activation functions include sigmoid and rectified linear unit (ReLU)
A Neuron

The basic unit of computation in a neural network is a neuron.

A neuron accepts some number of input signals, computes their weighted sum, and applies an activation function (or non-linearity) to the sum.

Common activation functions include sigmoid and rectified linear unit (ReLU).

\[y = f \left(\sum_{i=1}^{N} w_i x_i + b \right) \]
Recall: Linear Classifier

Defines a score function:

\[f(x_i, W, b) = Wx_i + b \]
Recall: Linear Classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)
Aside: Inspiration from Biology

Neural nets/perceptrons are loosely inspired by biology. But they certainly are not a model of how the brain works, or even how neurons work.
Activation Function: **Sigmoid**

Common in many early neural networks
Biological analogy to saturated firing rate of neurons
Maps the input to the range \([0,1]\)

\[f(x) = \frac{1}{1 + e^{-x}} \]

Figure credit: Fei-Fei and Karpathy
Activation Function: **ReLU** (Rectified Linear Unit)

\[f(x) = \max(0, x) \]

Figure credit: Fei-Fei and Karpathy

Found to accelerate convergence during learning
Used in the most recent neural networks
A Neuron

Activation function (e.g., Sigmoid or ReLU function of weighted sum)
A Neuron ... another way to draw it ...

inputs: $x_1, x_2, x_3, \ldots, x_N, x_{N+1}$

weights: $w_1, w_2, w_3, \ldots, w_N$

Activation function: (e.g., Sigmoid or ReLU function of weighted sum)

output: y
A Neuron … another way to draw it …

(1) Combine the sum and activation function

\[a = \sum_{i} w_i x_i \]

\[y = f(a) \]

Activation function

(e.g., Sigmoid or ReLU function of weighted sum)
A Neuron … another way to draw it …

(1) Combine the sum and activation function

\[a = \sum_i w_i x_i \]

\[y = f(a) \]

(2) suppress the bias term (less clutter)

\[x_{N+1} = 1 \]

\[w_{N+1} = b \]
A Neuron … another way to draw it …

(1) Combine the sum and activation function

\[a = \sum_i w_i x_i \]

\[y = f(a) \]

(2) suppress the bias term (less clutter)

\[x_{N+1} = 1 \]

\[w_{N+1} = b \]
Neural Network

Connect a bunch of neurons together — a collection of connected neurons
Neural Network

Connect a bunch of neurons together — a collection of connected neurons

‘two neurons’
Neural Network

Connect a bunch of neurons together — a collection of connected neurons

‘three neurons’
Connect a bunch of neurons together — a collection of connected neurons

`four neurons`
Connect a bunch of neurons together — a collection of connected neurons

'five neurons'
Neural Network

Connect a bunch of neurons together — a collection of connected neurons

‘six neurons’
This network is also called a **Multi-layer Perceptron (MLP)**.
Neural Network: **Terminology**

‘input’ layer

![Diagram of a neural network with an input layer highlighted in green.](image)
Neural Network: **Terminology**

- ‘**input**’ layer
- ‘**hidden**’ layer
Neural Network: **Terminology**

- **‘input’** layer
- **‘hidden’** layer
- **‘output’** layer
Neural Network: **Terminology**

this layer is a **'fully connected layer'**
Neural Network: **Terminology**

so is this
Neural Network

A neural network comprises neurons connected in an acyclic graph. The outputs of neurons can become inputs to other neurons. Neural networks typically contain multiple layers of neurons.

Example of a neural network with three inputs, a single hidden layer of four neurons, and an output layer of two neurons.

Figure credit: Fei-Fei and Karpathy
Neural Network Intuition

Question: What is a Neural Network?

Answer: Complex mapping from an input (vector) to an output (vector)

* slide from Marc’Aurelio Renzato
Neural Network Intuition

Question: What is a Neural Network?

Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping?

Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more about what specific functions next …

* slide from Marc’Aurelio Renzato
Neural Network Intuition

Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping?
Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more about what specific functions next …

Question: What does a hidden unit do?
Answer: It can be thought of as classifier or a feature.
Neural Network Intuition

Question: What is a Neural Network?

Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping?

Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more about what specific functions next …

Question: What does a hidden unit do?

Answer: It can be thought of as classifier or a feature.

Question: Why have many layers?

Answer: 1) More layers = more complex functional mapping
 2) More efficient due to distributed representation

* slide from Marc’Aurelio Renzato
Why can’t we have **linear** activation functions? Why have non-linear activations?
Neural Network

How many neurons?
Neural Network

How many neurons? \(4+2 = 6 \)
Neural Network

How many neurons? 4 + 2 = 6

How many weights?
Neural Network

How many neurons? \[4 + 2 = 6 \]

How many weights? \[(3 \times 4) + (4 \times 2) = 20 \]
Neural Network

How many neurons? \(4+2 = 6\)

How many weights? \((3 \times 4) + (4 \times 2) = 20\)

How many learnable parameters?
How many neurons? $4+2 = 6$

How many weights? $(3 \times 4) + (4 \times 2) = 20$

How many learnable parameters? $20 + 4 + 2 = 26$
Modern **convolutional neural networks** contain 10-20 layers and on the order of 100 million parameters.

Training a neural network requires estimating a large number of parameters.
Backpropagation

When training a neural network, the final output will be some loss (error) function
— e.g. cross-entropy loss: \(L_i = - \log \left(\frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}} \right) \)

which defines loss for i-th training example with true class index \(y_i \); and \(f_j \) is the j-th element of the vector of class scores coming from neural net.
Backpropagation

When training a neural network, the final output will be some loss (error) function

- e.g. cross-entropy loss: \[L_i = -\log \left(\frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}} \right) \]

which defines loss for i-th training example with true class index \(y_i \); and \(f_j \) is the j-th element of the vector of class scores coming from neural net.

Consider neural net which takes input vector \(x_i \) and predicts scores for 3 classes, with true class being class 3:
Backpropagation

When training a neural network, the final output will be some loss (error) function

- e.g. cross-entropy loss:

\[L_i = - \log \left(\frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}} \right) \]

which defines loss for i-th training example with true class index \(y_i \); and \(f_j \) is the j-th element of the vector of class scores coming from neural net.

Consider neural net which takes input vector \(x_i \) and predicts scores for 3 classes, with true class being class 3:

\[f \]

\[c_1 = -2.85 \]

\[c_2 = 0.86 \]

\[c_3 = 0.28 \]
When training a neural network, the final output will be some loss (error) function
— e.g. cross-entropy loss:
\[L_i = -\log \left(\frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}} \right) \]
which defines loss for i-th training example with true class index \(y_i \); and \(f_j \) is the j-th element of the vector of class scores coming from neural net.

Consider neural net which takes input vector \(\mathbf{x}_i \) and predicts scores for 3 classes, with true class being class 3:

\[
\begin{align*}
f & \\
c_1 &= -2.85 & \exp & \quad 0.058 \\
c_2 &= 0.86 & \quad 2.36 \\
c_3 &= 0.28 & \quad 1.32
\end{align*}
\]
Backpropagation

When training a neural network, the final output will be some loss (error) function
— e.g. cross-entropy loss: \[L_i = - \log \left(\frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}} \right) \]
which defines loss for i-th training example with true class index \(y_i \); and \(f_j \) is the j-th element of the vector of class scores coming from neural net.

Consider neural net which takes input vector \(x_i \) and predicts scores for 3 classes, with true class being class 3:

\[
\begin{align*}
f & \\
c_1 &= -2.85 & \exp & 0.058 & \text{Normalize to sum to 1} & 0.016 \\
c_2 &= 0.86 & & 2.36 & & 0.631 \\
c_3 &= 0.28 & & 1.32 & & 0.353
\end{align*}
\]
Backpropagation

When training a neural network, the final output will be some loss (error) function
— e.g. cross-entropy loss: \[L_i = - \log \left(\frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}} \right) \]

which defines loss for i-th training example with true class index \(y_i \); and \(f_j \)
is the j-th element of the vector of class scores coming from neural net.

Consider neural net which takes input vector \(x_i \) and predicts scores for 3 classes, with true class being class 3:

\[
\begin{align*}
 f \\
 c_1 &= -2.85 \\
 c_2 &= 0.86 \\
 c_3 &= 0.28
\end{align*}
\]

\[
\begin{align*}
 \exp & \quad \text{exp} \quad \text{Normalize to sum to 1} \\
 0.058 & \quad 2.36 \quad 0.016 \\
 2.36 & \quad 1.32 \quad 0.631 \\
 1.32 & \quad \quad 0.353
\end{align*}
\]

probability of a class
Backpropagation

When training a neural network, the final output will be some loss (error) function
— e.g. cross-entropy loss: \(L_i = -\log\left(\frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}} \right) \)

which defines loss for i-th training example with true class index \(y_i \); and \(f_j \) is the j-th element of the vector of class scores coming from neural net.

Consider neural net which takes input vector \(x_i \) and predicts scores for 3 classes, with true class being class 3:

\[
\begin{align*}
f &\quad \text{probability of a class} \\
c_1 &= -2.85 & \exp & 0.058 & \text{Normalize to sum to 1} & 0.016 \\
c_2 &= 0.86 & \exp & 2.36 & & 0.631 \\
c_3 &= 0.28 & \exp & 1.32 & & 0.353
\end{align*}
\]
Backpropagation

When training a neural network, the final output will be some loss (error) function
— e.g. cross-entropy loss: \[L_i = - \log \left(\frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}} \right) \]
which defines loss for i-th training example with true class index \(y_i \); and \(f_j \) is the j-th element of the vector of class scores coming from neural net.

Consider neural net which takes input vector \(x_i \) and predicts scores for 3 classes, with true class being class 3:

\[
\begin{align*}
 f & \\
 c_1 &= -2.85 & \exp & 0.058 & \text{Normalize to sum to 1} & 0.016 & L_i = - \log(0.353) = 1.04 \\
 c_2 &= 0.86 & \exp & 2.36 & & 0.631 & \\
 c_3 &= 0.28 & \exp & 1.32 & & 0.353 &
\end{align*}
\]
Backpropagation

When training a neural network, the final output will be some loss (error) function
— e.g. cross-entropy loss: \(L_i = -\log \left(\frac{e^{f_{y_i}}}{\sum_j e^{f_{y_j}}} \right) \)
which defines loss for i-th training example with true class index \(y_i \); and \(f_j \)
is the j-th element of the vector of class scores coming from neural net.

We want to compute the gradient of the loss with respect to the network parameters so that we can incrementally adjust the network parameters
Gradient Descent

1. Start from random value of W_0, b_0

For $k = 0$ to max number of iterations

2. Compute gradient of the loss with respect to previous (initial) parameters:

$$\nabla \mathcal{L}(W, b)\big|_{W=W_k, b=b_k}$$

3. Re-estimate the parameters

$$W_{k+1} = W_k - \lambda \frac{\partial \mathcal{L}(W, b)}{\partial W} \bigg|_{W=W_k, b=b_k}$$

$$b_{k+1} = b_k - \lambda \frac{\partial \mathcal{L}(W, b)}{\partial b} \bigg|_{W=W_k, b=b_k}$$

λ - is the learning rate

slide adopted from V. Ordonex
Backpropagation

The parameters of a neural network are learned using backpropagation, which computes gradients via recursive application of the chain rule from calculus.
Backpropagation

The parameters of a neural network are learned using backpropagation, which computes gradients via recursive application of the chain rule from calculus.

Suppose $f(x, y) = xy$. What is the partial derivative of f with respect to x? What is the partial derivative of f with respect to y?
Backpropagation

The parameters of a neural network are learned using backpropagation, which computes gradients via recursive application of the chain rule from calculus.

Suppose \(f(x, y) = xy \). What is the partial derivative of \(f \) with respect to \(x \)? What is the partial derivative of \(f \) with respect to \(y \)?

\[
\frac{\partial f}{\partial x} = y \quad \quad \frac{\partial f}{\partial y} = x
\]
Backpropagation

Suppose $f(x, y) = x + y$. What is the partial derivative of f with respect to x? What is the partial derivative of f with respect to y?
Suppose $f(x, y) = x + y$. What is the partial derivative of f with respect to x?

What is the partial derivative of f with respect to y?

$$\frac{\partial f}{\partial x} = 1$$

$$\frac{\partial f}{\partial y} = 1$$
Backpropagation

A trickier example: \(f(x, y) = \max(x, y) \)
Backpropagation

A trickier example: \(f(x, y) = \max(x, y) \)

\[
\frac{\partial f}{\partial x} = \mathbf{1}(x \geq y) \quad \frac{\partial f}{\partial y} = \mathbf{1}(y \geq x)
\]

That is, the (sub)gradient is 1 on the input that is larger, and 0 on the other input

— For example, say \(x = 4, y = 2 \). Increasing \(y \) by a tiny amount does not change the value of \(f \) (\(f \) will still be 4), hence the gradient on \(y \) is zero.
Backpropagation

We can compose more complicated functions and compute their gradients by applying the chain rule from calculus.
We can compose more complicated functions and compute their gradients by applying the **chain rule** from calculus.

Suppose $f(x, y, z) = (x + y)z$. What are the partial derivatives of f with respect to x? y? z?
Backpropagation

We can compose more complicated functions and compute their gradients by applying the **chain rule** from calculus.

Suppose $f(x, y, z) = (x + y)z$. What are the partial derivatives of f with respect to x, y, and z?

For illustration we break this expression into $q = x + y$ and $f = qz$. This is a sum and a product, and we have just seen how to compute partial derivatives for these.
Backpropagation

We can compose more complicated functions and compute their gradients by applying the **chain rule** from calculus.

Suppose $f(x, y, z) = (x + y)z$. What are the partial derivatives of f with respect to x, y, and z?

For illustration we break this expression into $q = x + y$ and $f = qz$. This is a sum and a product, and we have just seen how to compute partial derivatives for these.

By the chain rule

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x} = z \cdot 1 = z$$
We can compose more complicated functions and compute their gradients by applying the **chain rule** from calculus.

Suppose $f(x, y, z) = (x + y)z$. What are the partial derivatives of f with respect to x, y, and z?

For illustration we break this expression into $q = x + y$ and $f = qz$. This is a sum and a product, and we have just seen how to compute partial derivatives for these.

By the chain rule

$$
\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x} = z \cdot 1 = z \quad \frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y} = z \cdot 1 = z \quad \frac{\partial f}{\partial z} = q
$$
Backpropagation

\[f(x, y, z) = (x + y)z \]
Backpropagation

\[f(x, y, z) = (x + y)z \]

Computational graph (a DAG) with variable ordering from topological sort, where each **node** is an input, intermediate, or output variable.
Backpropagation

\[
f(x, y, z) = (x + y)z
\]

Suppose the network input is: \((x, y, z) = (-2, 5, -4)\)

Then: \(q = x + y = 3\) \quad f = qz = -12 \quad \text{(forward pass)}
Backpropagation

\[f(x, y, z) = (x + y)z \]

Suppose the network input is: \((x, y, z) = (-2, 5, -4)\)

Then: \(q = x + y = 3 \) \hspace{1cm} \(f = qz = -12 \) \hspace{1cm} (forward pass)

\[\frac{\partial f}{\partial q} = z = -4 \] \hspace{1cm} (backward pass)
Backpropagation

\[f(x, y, z) = (x + y)z \]

\[\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \cdot \frac{\partial q}{\partial x} = \frac{\partial f}{\partial q} \cdot 1 \]

Suppose the network input is: \((x, y, z) = (-2, 5, -4) \)

Then: \(q = x + y = 3 \quad f = qz = -12 \quad \text{(forward pass)} \)

\(\frac{\partial f}{\partial q} = z = -4 \quad \text{(backward pass)} \)
Backpropagation

\[f(x, y, z) = (x + y)z \]

\[
\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x} = \frac{\partial f}{\partial q} \cdot 1
\]

Suppose the network input is: \((x, y, z) = (-2, 5, -4)\)

Then: \(q = x + y = 3\) \quad \(f = qz = -12\) \quad (forward pass)

\[
\frac{\partial f}{\partial q} = z = -4 \quad \frac{\partial f}{\partial x} = -4
\]

(backward pass)
Backpropagation

\[f(x, y, z) = (x + y)z \]

\[
\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x} = \frac{\partial f}{\partial q} \cdot 1 \\
\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y} = \frac{\partial f}{\partial q} \cdot 1 \\
\frac{\partial f}{\partial z} = q
\]

Suppose the network input is: \((x, y, z) = (-2, 5, -4)\)

Then: \(q = x + y = 3\) \quad \(f = qz = -12\) \quad (forward\ pass)

\[
\frac{\partial f}{\partial q} = z = -4 \\
\frac{\partial f}{\partial x} = -4 \\
\frac{\partial f}{\partial y} = -4 \\
\frac{\partial f}{\partial z} = 3 \quad (backward\ pass)\]