

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 30: Classification (cont.)

Menu for Today (November 19, 2018)

Topics:

- Decision Trees
- Boosting

Redings:

- Today's Lecture: Forsyth & Ponce (2nd ed.) 17.1
- Next Lecture: Forsyth & Ponce (2nd ed.) 17.2

Reminders:

Object Detection Face Detection

- Assignment 5: Scene Recognition with Bag of Words due last day of classes

Plan for Remainder of the Course

This week

- Finish classification
- Object detection
- Next week
- Deep learning
- Final review
- Final (December 11th)
- I will be away between December 2nd and December 9th
- I will have additional office hours next week and on December 10th
- I will have printed Midterm solutions in my office on Friday

2nd and December 9th ext week and on December 10th ns in my office on Friday

Today's "fun" Example: Visual Microphone

The Visual Microphone: Passive Recovery of Sound from Video

Abe Davis Michael Rubinstein Neal Wadhwa Gautham J. Mysore Fredo Durand William T. Freeman

Follow-up work to previous lecture's example of Eulerian video magnification

Factors that make image classification hard — intra-class variation, viewpoint, illumination, clutter, occlusion...

A codebook of **visual words** contains representative local patch descriptors — can be constructed by clustering local descriptors (e.g. SIFT) in training images

The **bag of words** model accumulates a histogram of occurrences of each visual word

The **spatial pyramid** partitions the image and counts visual words within each grid box; this is repeated at multiple levels

Classify: Train and test data using BOWs

Bag-of-Words Representation

Dictionary Learning: Learn Visual Words using clustering

Encode: build Bags-of-Words (BOW) vectors for each image

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Bag-of-Words Representation

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Bag-of-Words Representation

Bag-of-Words Representation

(nearest cluster center)

Quantization: image features gets associated to a visual word

Histogram: count the number of visual word occurrences

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Fig. 16.8 in Forsyth & Ponce (2nd ed.). Original credit: Lazebnik et al., 2006

Spatial Pyramid

11

VLAD (Vector of Locally Aggregated Descriptors)

histogram bin

to their visual words

we increment it by the **residual** vector x - c(x)

- There are more advanced ways to 'count' visual words than incrementing its
- For example, it might be useful to describe how local descriptors are quantized

In the VLAD representation, instead of incrementing the histogram bin by one,

16

VLAD (Vector of Locally Aggregated Descriptors)

The dimensionality of a **VLAD** descriptor is *Kd*

- *K* : number of codewords
- -d: dimensionality of the local descriptor

codewords

VLAD characterizes the distribution of local descriptors with respect to the

Back to Classification

A decision tree is a simple non-linear parametric classifier

A data point starts at the root and recursively proceeds to the child node determined by the feature test, until it reaches a leaf node

- Consists of a tree in which each internal node is associated with a feature test
- The leaf node stores a class label or a probability distribution over class labels

Learning a decision tree from a training set involves selecting an efficient sequence of feature tests

Example: Waiting for a restaurant table

Example	Attributes										Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	Т	French	0–10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	<i>F</i>
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	<i>T</i>
X_4	T	F	T	T	Full	\$	F	F	Thai	10–30	
X_5	T	F		F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	T	Italian	0–10	T
X_7	F	T	F	F	None	\$		F	Burger	0–10	F
X_8	F	F	F	T	Some	\$\$	T	T	Thai	0–10	T
X_9	F	T	T	F	Full	\$		F	Burger	>60	F
X_{10}	T	T		T	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

Which test is more helpful?

Figure credit: Russell and Norvig (3rd ed.)

The **entropy** of a set S of data samples is defined as

H(S) = -

where C is the set of classes represented in S, and p(c) is the empirical distribution of class c in S

Entropy is highest when data samples are spread equally across all classes, and zero when all data samples are from the same class.

$$\sum_{c \in C} p(c) \log(p(c))$$

In general we try to select the feature test that maximizes the information gain:

$$I = H(S) - i \in$$

In the previous example, the information gains of the two candidate tests are:

$$I_{Patrons} = 0.541$$

So we choose the 'Patrons' test.

$$\sum_{\{children\}} \frac{|S^i|}{|S|} H(S^i)$$

$$I_{Type} = 0$$

Following this construction procedure we obtain the final decision tree:

Figure credit: Russell and Norvig (3rd ed.)

A random forest is an ensemble of decision trees.

Randomness is incorporated via training set sampling and/or generation of the candidate binary tests

The prediction of the random forest is obtained by averaging over all decision trees.

Forsyth & Ponce (2nd ed.) Figure 14.19. Original credit: J. Shotton et al., 2011 26

Kinect allows users of Microsoft's Xbox 360 console to interact with games using natural body motions instead of a traditional handheld controller. The pose (joint positions) of the user is predicted using a random forest trained on depth features.

Figure credit: J. Shotton et al., 2011

Kinect allows users of Microsoft's Xbox 360 console to interact with games using natural body motions instead of a traditional handheld controller. The pose (joint positions) of the user is predicted using a random forest trained on depth features.

Jamie Shotton

Figure credit: J. Shotton et al., 2011

) on

$$f_{\theta}(I, \mathbf{x}) = d_I \left(\mathbf{x} + \frac{1}{d} \right)$$

 $\frac{\mathbf{u}}{d_I(\mathbf{x})}\right) - d_I\left(\mathbf{x} + \frac{\mathbf{v}}{d_I(\mathbf{x})}\right)$

Figure credit: J. Shotton et al., 2011

Figure credit: J. Shotton et al., 2011

Combining **Classifiers**

One common strategy to obtain a better classifier is to combine multiple classifiers.

A simple approach is to train an ensemble of independent classifiers, and average their predictions.

Boosting is another approach.

— Train an ensemble of classifiers sequentially.

 Bias subsequent classifiers to correctly predict training examples that previous classifiers got wrong.

- The final boosted classifier is a weighted combination of the individual classifiers.

Final classifier is a combination of weak classifiers

Summary

random forest is an ensemble of decision trees.

Factors that make image classification hard - intra-class variation, viewpoint, illumination, clutter, occlusion...

- can be constructed by clustering local descriptors (e.g. SIFT) in training images

visual word

grid box; this is repeated at multiple levels

- A decision tree passes a data point through a sequence of feature tests. A
- A codebook of visual words contains representative local patch descriptors
- The **bag of words** model accumulates a histogram of occurrences of each

The **spatial pyramid** partitions the image and counts visual words within each