
Lecture 28 : Classification

CPSC 425: Computer Vision 
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Menu for Today (November 14, 2018)
Topics: 

— Naive Bayes Classifier 
— Bayes' Risk

Redings: 
— Today’s Lecture:  Forsyth & Ponce (2nd ed.) 15.1, 15.2                             

— Next Lecture:       Forsyth & Ponce (2nd ed.) 16.1.3, 16.1.4, 16.1.9

Reminders: 

— Assignment 4: Local Invariant Features and RANSAC due today 

— Assignment 5: Scene Recognition with Bag of Words due last day of classes 

— Last week to pickup Midterms 

— Error Measures, Cross Validation 
— Nearest Neighbor Classifiers
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Today’s “fun” Example: Eulerian Video Magnification

Video From: Wu at al., Siggraph 2012
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Figure From: Wu at al., Siggraph 2012

Today’s “fun” Example: Eulerian Video Magnification



5

— Collect a database of images with labels 
— Use ML to train an image classifier 
— Evaluate the classifier on test images

Label

Feature vector 
computed from 
the image

Lecture 27: Re-cap
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P (c|x) = P (x|c)p(c)
P (x)

Let c be the class label and let x be the measurement (i.e., evidence)

prior probabilityclass−conditional probability 
(a.k.a. likelihood)

unconditional probability 
(a.k.a. marginal likelihood)posterior probability

Lecture 27: Re-cap Bayes Rule



Assume we have two classes:  
We have a person who’s gender we don’t know, who’s name is drew 
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Example: Discrete Bayes Classifier
c2 = femalec1 = male

Example from: Eamonn Keogh
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Assume we have two classes:  
We have a person who’s gender we don’t know, who’s name is drew 

Classifying drew as being male or female is equivalent to asking is it more 
probable that drew is male or female, i.e. which is greater 
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c2 = femalec1 = male

p(male|drew) = p(drew|male)p(male)

p(drew)
p(female|drew) = p(drew|female)p(female)

p(drew)
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Example: Discrete Bayes Classifier

p(male|drew) = p(drew|male)p(male)

p(drew)

Name Gender
Drew	 Male

Claudia Female

Drew Female

Drew Female

Alberto Male

Karin Female	

Nina Female	

Sergio Male

Example from: Eamonn Keogh
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Example: Discrete Bayes Classifier
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Name Gender
Drew	 Male

Claudia Female

Drew Female

Drew Female

Alberto Male

Karin Female	

Nina Female	

Sergio Male

p(male|drew) = p(drew|male)p(male)

p(drew)

p(male) =
3

8

p(drew|male) =
1

3

p(drew) =
3

8

= 0.125

p(female|drew) = p(drew|female)p(female)

p(drew)

p(drew|female) =
2

5

p(female) =
5

8

Example: Discrete Bayes Classifier

= 0.25

Example from: Eamonn Keogh



Bayes Rule (Review and Definitions)
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P (c|x) = P (x|c)p(c)
P (x)

Let c be the class label and let x be the measurement (i.e., evidence)

Simple case:  
— binary classification; i.e.,   
— features are 1D; i.e., 

General case:  
— multi-class; i.e., 
— features are high-dimensional; i.e., 

c 2 {1, ..., 1000}

c 2 {1, 2}
x 2 R

x 2 R2,000+



Bayes’ Risk
Some errors may be inevitable: the minimum risk (shaded area) is called the 
Bayes’ risk 
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Forsyth & Ponce (2nd ed.) Figure 15.1



Discriminative vs. Generative
Finding a decision boundary is not the same as modeling a conditional density 
— while a normal density here is a poor fit to P(1|x), the quality of the classifier 
depends only on how well the boundary is positioned 
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Forsyth & Ponce (2nd ed.) Figure 15.5
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Forsyth & Ponce (2nd ed.) Figure 15.5



Example: 2D Bayes Classifier
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17 samples
15 samples

These could be (g,b) pixel value of an image patch with grass

These could be (g,b) pixel value of an image patch with sky

Given a (g,b) pixel value from a 
new patch is it more likely to be 
be grass or sky?

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Example: 2D Bayes Classifier
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17 samples
15 samples

p(blue) =
17

17 + 15

p(green) =
15

17 + 15

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Example: 2D Bayes Classifier
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17 samples
15 samples

p(blue) =
17

17 + 15

p(green) =
15

17 + 15

p(·|green) = N (µgreen,⌃green)

p(·|blue) = N (µblue,⌃blue)



Example: 2D Bayes Classifier
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17 samples
15 samples

p(blue) =
17

17 + 15

p(green) =
15

17 + 15

p(·|green) = N (µgreen,⌃green)

p(·|blue) = N (µblue,⌃blue)

p(blue| ) / N ( ;µblue,⌃blue)p(blue)

p(green| ) / N ( ;µgreen,⌃green)p(green)



Loss Functions and Classifiers

Loss  

		 —  Some errors may be more expensive than others  
   Example: A fatal disease that is easily cured by a cheap medicine with no 

side-effects. Here, false positives in diagnosis are better than false negatives 

—  We discuss two class classification: 
   L(1 → 2) is the loss caused by calling 1 a 2  

Total risk of using classifier s is 

R(s) = Pr{1 → 2 | using s} L(1 → 2) + Pr{2 → 1 | using s} L(2 → 1)  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Two Class Classification

Generally, we should classify as 1 if the expected loss of classifying as 1 is less 
than for 2  

Classify x as  

1  if p(1|x) L(1 → 2) > p(2|x) L(2 → 1)  

2  if p(1|x) L(1 → 2) < p(2|x) L(2 → 1)  

Decision boundary: points where the loss is the same for either class.  
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Training Error, Testing Error, and Overfitting

Training error is the error a classifier makes on the training set  

We want to minimize the testing error – the error the classifier makes on an 
unseen testing set  

Classifiers that have small training error may not necessarily have small testing 
error  

The phenomenon that causes testing error to be worse than training error is 
called overfitting  
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Underfitting: model is too simple to represent all the relevant class 
characteristics  
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Training Error, Testing Error, and Overfitting



Underfitting: model is too simple to represent all the relevant class 
characteristics  

Overfitting: model is too complex and fits irrelevant characteristics (noise) in 
the data 
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Training Error, Testing Error, and Overfitting



Underfitting: model is too simple to represent all the relevant class 
characteristics  

Overfitting: model is too complex and fits irrelevant characteristics (noise) in 
the data 
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Training Error, Testing Error, and Overfitting

Just right



Cross-Validation 

We cannot reliably estimate the error rate of the classifier using the training set  

An alternative is to split some training data to form a validation set, then train 
the classifier on the rest of the data and evaluate on the validation set 
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We cannot reliably estimate the error rate of the classifier using the training set  

An alternative is to split some training data to form a validation set, then train 
the classifier on the rest of the data and evaluate on the validation set 

Cross-Validation 



Cross-validation involves performing multiple splits and averaging the error 
over all splits  
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Cross-Validation 



Confusion Matrix
When evaluating a multi-class classifier, it may be useful to know how often 
certain classes are often misclassified as others. 

A confusion matrix is a table whose (i,j)th entry is the frequency (or 
proportion) an item of true class i was labelled as j by the classifier. 
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Forsyth & Ponce (2nd ed.) Figure 15.3. Original credit: H. Zhang et al., 2006.



Receiver Operating Characteristics (ROC)
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Forsyth & Ponce (2nd ed.) Figure 15.4

ROC curves plot trade-off 
between false positives and 
false negatives

Figure from M. J. Jones and J. Rehg, “Statistical color models with application to skin detection,” Proc. CVPR, 1999, IEEE



Receiver Operating Characteristics (ROC)

38

Forsyth & Ponce (2nd ed.) Figure 15.4

ROC curves plot trade-off 
between false positives and 
false negatives

Figure from M. J. Jones and J. Rehg, “Statistical color models with application to skin detection,” Proc. CVPR, 1999, IEEE

What is a ROC curve for a 
perfect classifier?
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Classification strategies fall under two broad types: parametric and non-
parametric.  

40

Classifier Strategies



Classification strategies fall under two broad types: parametric and non-
parametric.  

Parametric classifiers are model driven. The parameters of the model are 
learned from training examples. New data points are classified by the learned 
model.  
— fast, compact  
— flexibility and accuracy depend on model assumptions  
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Classifier Strategies



Classification strategies fall under two broad types: parametric and non-
parametric.  

Parametric classifiers are model driven. The parameters of the model are 
learned from training examples. New data points are classified by the learned 
model.  
— fast, compact  
— flexibility and accuracy depend on model assumptions  

Non-parametric classifiers are data driven. New data points are classified by 
comparing to the training examples directly. "The data is the model". 
— slow  
— highly flexible decision boundaries 
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Classifier Strategies



Nearest Neighbor Classifier 
Given a new data point, assign the label of nearest training example in feature 
space. 

43 Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Nearest Neighbor Classifier 
Given a new data point, assign the label of nearest training example in feature 
space. 

44 Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



k-Nearest Neighbor (kNN) Classifier 

We can gain some robustness to noise by voting over multiple neighbours.  

Given a new data point, find the k nearest training examples. Assign the label 
by majority vote.  

Simple method that works well if the distance measure correctly weights the 
various dimensions  

For large data sets, as k increases kNN approaches optimality in terms of 
minimizing probability of error  
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kNN decision boundaries respond to local clusters where one class dominates
Figure credit: Hastie, Tibshirani & Friedman (2nd ed.)

k-Nearest Neighbor (kNN) Classifier 



Support Vector Machines (SVM)

Idea: Try to obtain the decision boundary directly  

The decision boundary is parameterized as a separating hyperplane in 
feature space. 
— e.g. a separating line in 2D  

We choose the hyperplane that is as far as possible from each class - that 
maximizes the distance to the closest point from either class.  
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image features

weights

Linear Classifier
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f(xi,W,b) = Wxi + b

Defines a score function: 

bias vector
(parameters)

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Linear Classifier

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Learn the decision boundary

Support Vector Machines (SVM)

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Support Vector Machines (SVM)

What’s the best w ?

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Support Vector Machines (SVM)

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)
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What’s the best w ?

Support Vector Machines (SVM)

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Intuitively, the line that is the farthest 
from all interior points

What’s the best w ?

Support Vector Machines (SVM)

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Want a hyperplane that is far away from ‘inner points’

support vectors

What’s the best w ?

Support Vector Machines (SVM)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Find hyperplane w such that … 

the gap between parallel hyperplanes

margin

is maximized

Support Vector Machines (SVM)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Forsyth & Ponce (2nd ed.) Figure 15.6

Support Vector Machines (SVM)



Example: Pedestrian Detection with SVM 

60
Figure credit: Papageorgiou, Oren, and Poggio, 1998



Summary
A classifier accepts as input a set of features and outputs (predicts) a class label  

Classifiers need to take into account “loss" associated with each kind of 
classification error  

A Receiver Operating Characteristic (ROC) curve plots the trade-off between false 
negatives and false positives  

Parametric classifiers are model driven. The parameters of the model are learned 
from training examples 
— e.g. support vector machine, decision tree  

Non-parametric classifiers are data driven. New data points are classified by 
comparing to the training examples directly 
— e.g. k-nearest neighbour 
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