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Lecture 27: Classification




Classification

Problem:
AssIgn new observations into one of a fixed set of categories (classes)

Key Idea(s):

Build a model of data in a given category based on observations of
instances In that category



Classification

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}
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assification
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What the computer sees
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82% cat
15% dog
2% hat

1% mug

—
image classification



Classification

A classifier is a procedure that accepts as input a set of features and outputs
a class label

Classifiers can be binary (face vs. not-face) or multi-class (cat, dog, horse, ...).

We build a classifier using a training set of labelled examples { (x;, ¥;) }, where
each X; IS a feature vector and each y; 1S a class label.

Given a previously unseen observation, we use the classifier to predict its class
label.



Classification

— Collect a database of images with labels
— Use ML to train an image classifier
— Evaluate the classitier on test images

Example training set
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Example 1: A Classification Problem

Categorize images of fish
— “Atlantic salmon” vs “Pacific salmon’

Use features such as length, width, lightness,
fin shape & number, mouth position, etc.

Given a previously unobserved image of a
salmon, use the learned classifier to guess
whether it Is an Atlantic or Pacific salmon

Figure credit: Duda & Hart



Example 2: Real Classification Problem

SUN Dataset
- 131K Images

- 908 scene categories

outdoor
natural

outdoor
man-made

workplace
(office building, factory, lab, etc.)

home or hotel

transportation
(vehicle interiors, stations, etc.)

sports and leisure

cultural (art, education, religion,
millitary, law, politics, etc.)

auto showroom

1 © "\ bakery kitchen
e w0 44 bakery shop

| bank indoor

bank vault

banquet hall




Example 3: Real Classification Problem

Natural object 0 82 769 AR

An object occurring naturally; not made by man pictures  Popularity ~ Wordnet
Percentile IDs
' Numbers in brackets: (the number of Treemap Visualization Images of the Synset Downloads
synsets in the subtree ).
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Bayes Rule (Review and Definitions)

Let ¢ be the class label and let x be the measurement (i.e., evidence)

prior probability

unconditional probabillity
(a.k.a. marginal likelihood)
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Bayes Rule (Review and Definitions)
L et ¢ be the class label and let x be the measurement (i.e., evidence)

Simple case:
— binary classification; i.e., ¢ € {1, 2}
— features are 1D; i.e., x € R

P(c|lx) =

General case:
— multi-class: i.e., c € {1, ...,1000}
— features are high-dimensional; i.e., z € R0+
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Bayes' Risk

Some errors may be inevitable: the minimum risk (shaded area) is called the
Bayes’ risk

Decision Boundary Decision Boundary

p(1]x) p(2|x) p(1]x)

X l)(
Forsyth & Ponce (2nd ed.) Figure 15.1
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