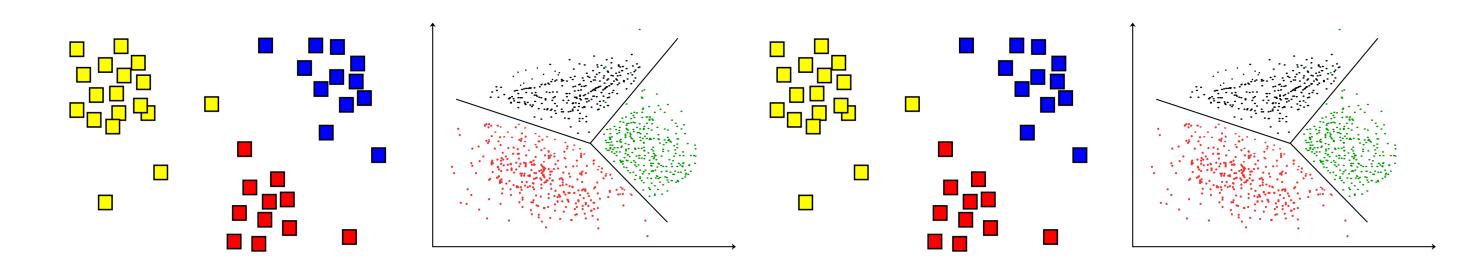


THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision



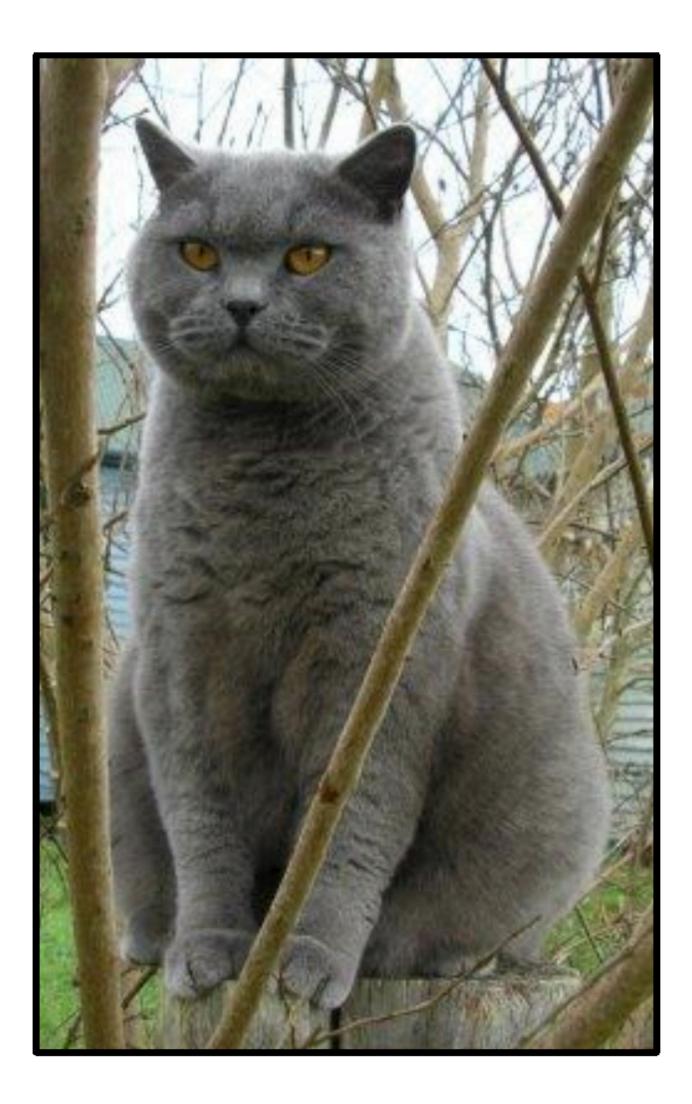
Lecture 27: Classification

Problem:

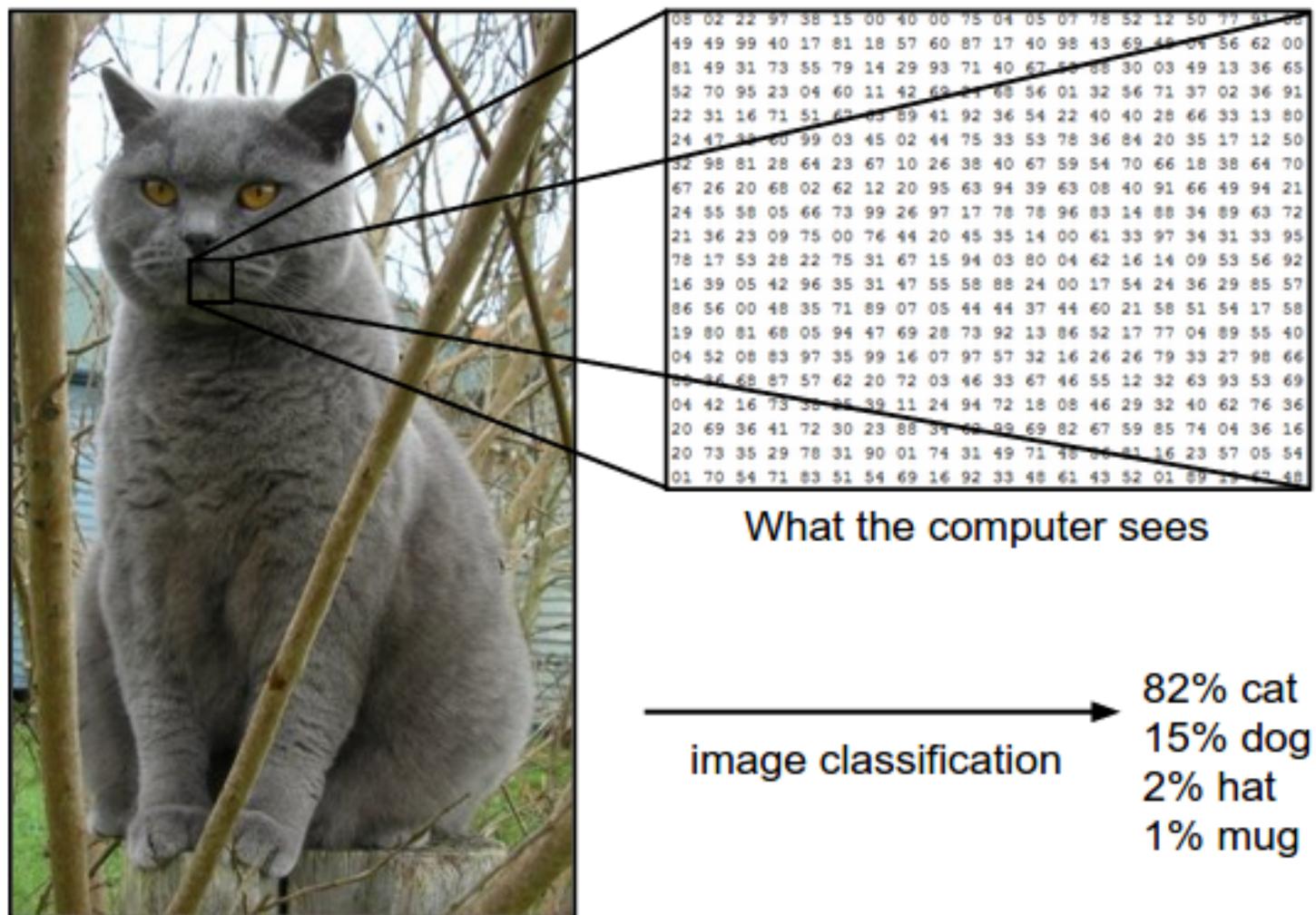
Assign new observations into one of a fixed set of categories (classes)

Key Idea(s):

Build a model of data in a given category based on observations of instances in that category



(assume given set of discrete labels) {dog, cat, truck, plane, ...}



_														
5	00	40	00	75	04	05	07	78	52	12	50	77	91	00
1	18	57	60	87	17	40	98	43	69	-	0.1	\$6	62	00
9	14	29	93	71	40	67	-	88	30	03	49	13	36	65
0	11	42	62	-	68	56	01	32	5-6	71	37	02	36	91
2	05	89	41	92	36	54	22	40	40	28	66	33	13	80
3	45	02	44	75	33	53	78	36	84	20	35	17	12	50
3	67	10	26	38	40	67	59	54	70	66	18	38	64	70
2	12	20	95	63	94	39	63	08	40	91	66	49	94	21
3	99	26	97	17	78	78	96	83	14	88	34	89	63	72
0	76	44	20	45	35	14	00	61	33	97	34	31	33	95
5	31	67	15	94	03	80	04	62	16	14	09	53	56	92
5	31	47	55	58	88	24	00	17	54	24	36	29	85	57
1	89	07	05	44	44	37	44	60	21	58	51	54	17	58
4	47	69	28	73	92	13	86	52	17	77	04	89	55	40
5	99	16	07	97	57	32	16	26	26	79	33	27	98	66
2	20	72	03	46	33	67	46	55	12	32	63	93	53	69
5	39	11	24	94	72	18	08	46	29	32	10	62	76	36
0	23	88	31	60	99	69	82	67	59	85	74	04	36	16
1	90	01	74	31	49	71	48		81	16	23	57	05	54
1	54	69	16	92	33	48	61	43	52	01	69	11	42	48

A **classifier** is a procedure that acce a class **label**

Classifiers can be binary (face vs. not-face) or multi-class (cat, dog, horse, ...).

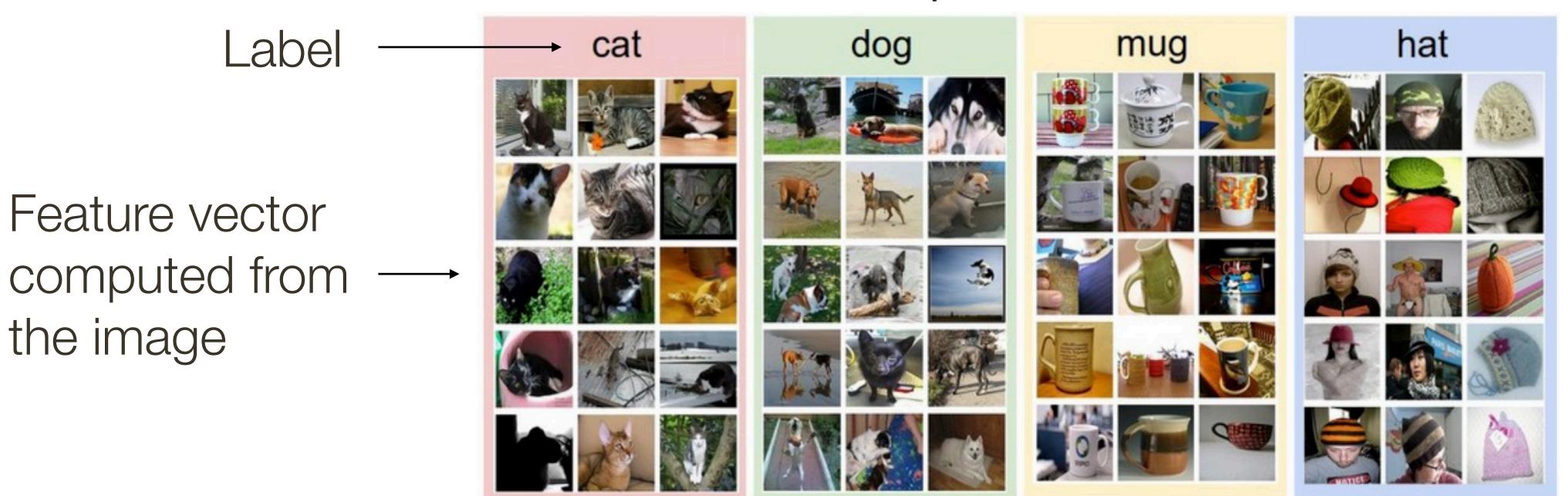
We build a classifier using a **training set** of labelled examples $\{(\mathbf{x}_i, y_i)\}$, where each \mathbf{x}_i is a feature vector and each y_i is a class label.

Given a previously unseen observation, we use the classifier to predict its class label.

A classifier is a procedure that accepts as input a set of features and outputs

Collect a database of images with labels

- Use ML to train an image classifier
- Evaluate the classifier on test images



Example training set

Example 1: A Classification Problem

Categorize images of fish - "Atlantic salmon" vs "Pacific salmon"

Use **features** such as length, width, lightness, fin shape & number, mouth position, etc.

Given a previously unobserved image of a salmon, use the learned classifier to guess whether it is an Atlantic or Pacific salmon

Figure credit: Duda & Hart

Example 2: Real Classification Problem

SUN Dataset

- 131K images
- 908 scene categories

indoor	shopping and dining	auto showroom
outdoor natural	workplace (office building, factory, lab, etc.)	bakery kitchen
outdoor man-made	home or hotel	bakery shop
	transportation (vehicle interiors, stations, etc.)	bank indoor
	sports and leisure	bank vault
	cultural (art, education, religion, millitary, law, politics, etc.)	banquet hall
		bar
		IV- M

Example 3: Real Classification Problem

An object occurring naturally; not made by man

Numbers in brackets: (the number of synsets in the subtree). **Treemap Visualization** Images of the Synset Downloads 🖌 🔪 ImageNet 2011 Fall Release 🔵 Natural object MageNet 2011 Fall Release (32326) plant, flora, plant life (4486) Plant Covering P 2 -1 1 1 1 geological formation, formation (1) aquifer (0) beach (1) cave (3) 45 cliff, drop, drop-off (2) delta (0) diapir (0) 10 Extraterre Body folium (0) Sample foreshore (0) ice mass (10) lakefront (0) 44 massif (0) monocline (0) 30 <u>Asterism</u> Mechanism Celestia mouth (0) natural depression, depression A natural elevation, elevation (41) . oceanfront (0) 16 12 range, mountain range, range of Radiator Body relict (0) ridge, ridgeline (2) ridge (0) Rock 80 K E. shore (7) >> > 77 slope, incline, side (17) Tangle Nest ×. spring, fountain, outflow, outpo 100 talus, scree (0) vein, mineral vein (1) 😫 🌮 🏗 🎎 🌊 volcanic crater, crater (2)

ImageNet Dataset

- 14 Million images
- 21K object categories

Natural object

0

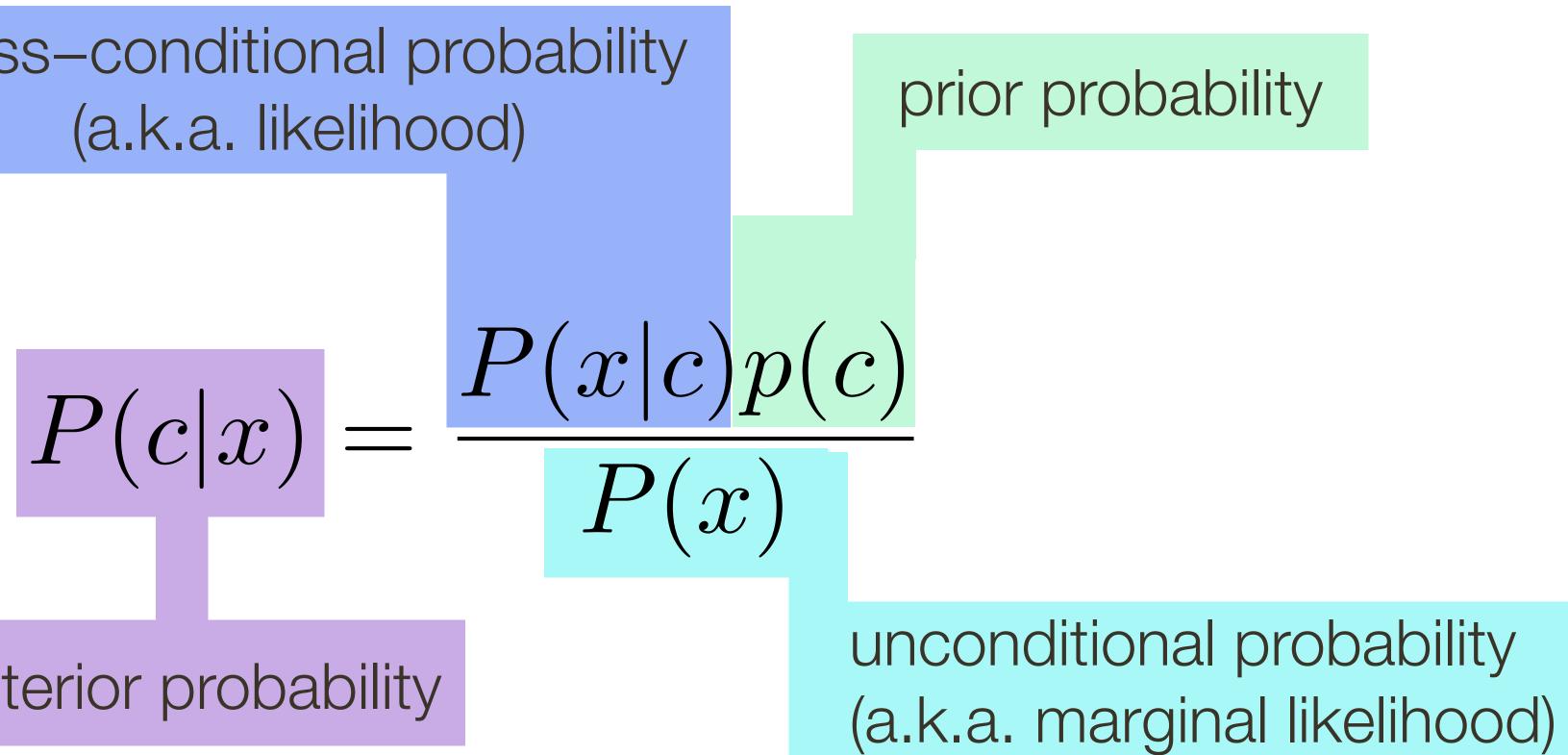
wall (0)

water table, water level, ground

Bayes Rule (Review and Definitions)

Let c be the class label and let x be the measurement (i.e., evidence)

class-conditional probability (a.k.a. likelihood)



posterior probability

Bayes Rule (Review and Definitions)

Let c be the **class label** and let x be the **measurement** (i.e., evidence)

Simple case:

- binary classification; i.e., $c \in \{1, 2\}$
- features are 1D; i.e., $x \in \mathbb{R}$

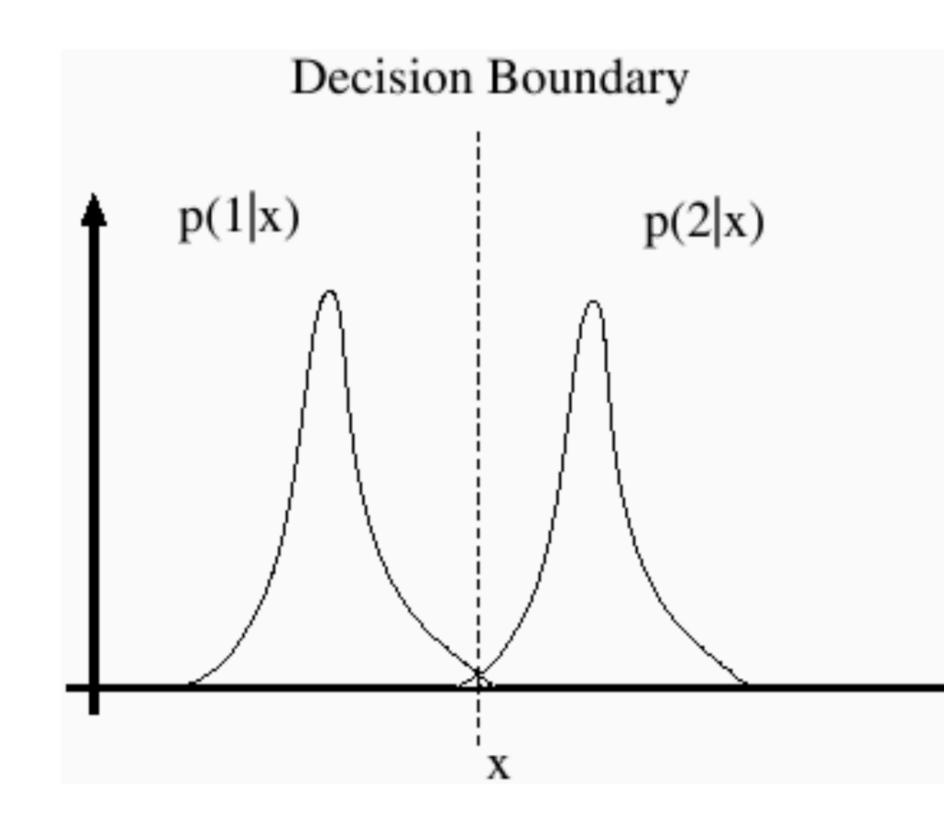
 $P(c|x) = \frac{P(x|c)p(c)}{P(x)}$

General case:

- multi-class; i.e., $c \in \{1, ..., 1000\}$
- features are high-dimensional; i.e., $x \in \mathbb{R}^{2,000+}$

Bayes' Risk

Some errors may be inevitable: the minimum risk (shaded area) is called the **Bayes' risk**



Forsyth & Ponce (2nd ed.) Figure 15.1

