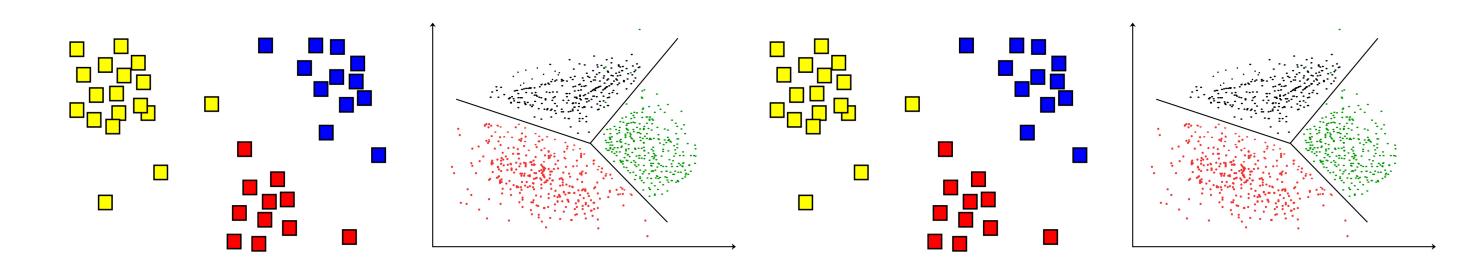


THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision



Lecture 26: Clustering

Menu for Today (November 7, 2018)

Topics:

- Optical Flow (cont)
- Grouping

Redings:

- **Next** Lecture: None

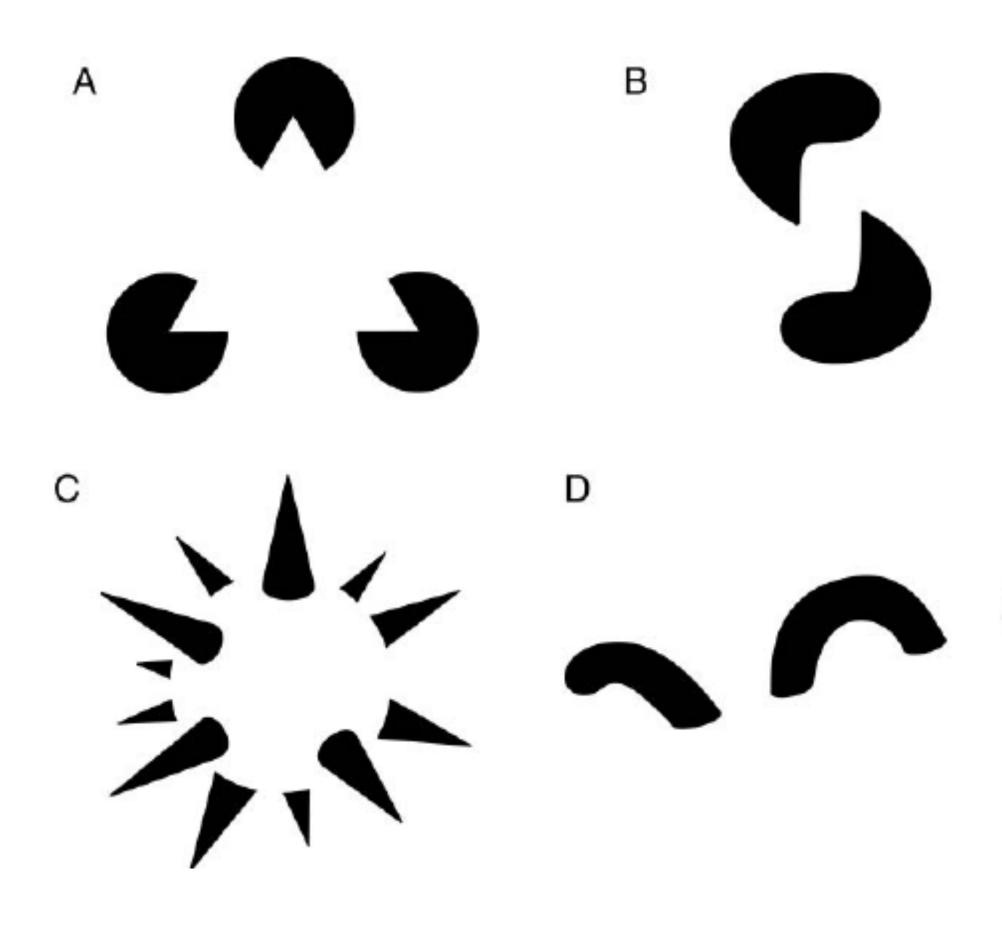
Reminders:

Image Segmentation

- Today's Lecture: Forsyth & Ponce (2nd ed.) 10.6, 6.2.2, 9.3.1, 9.3.3, 9.4.2

Assignment 4: Local Invariant Features and RANSAC due November 14th

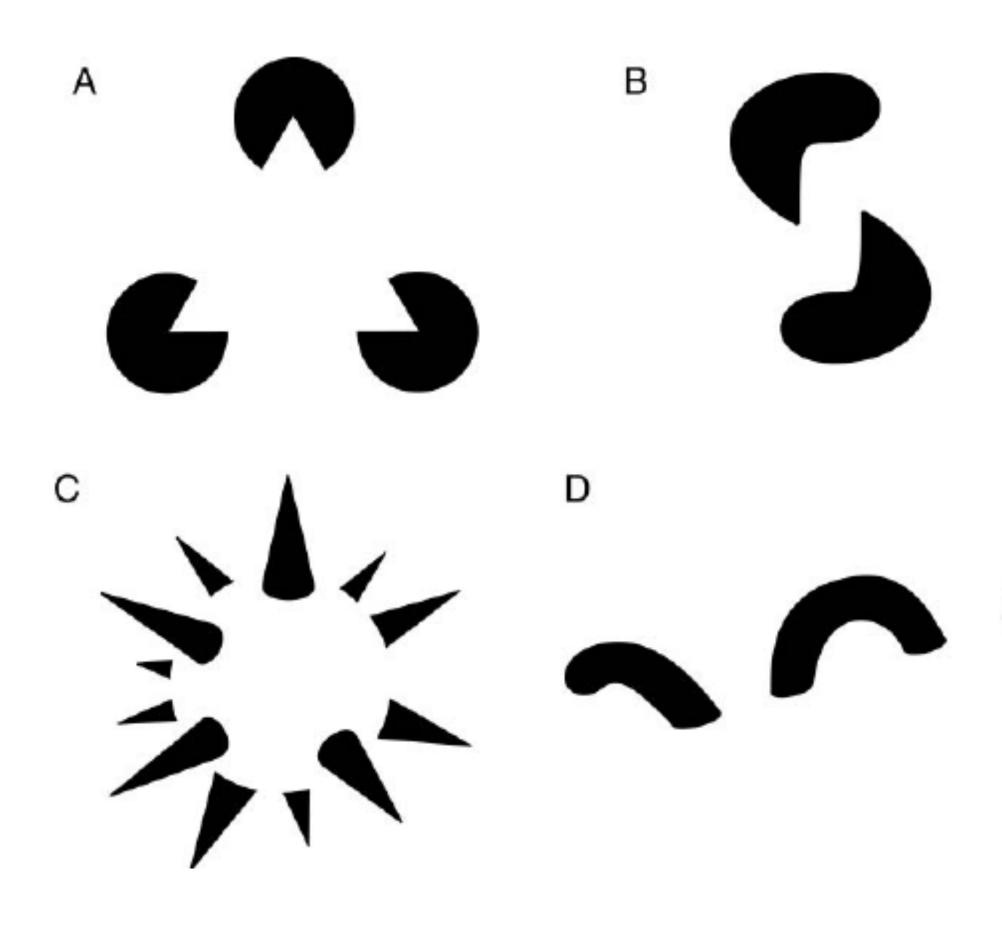
Today's "fun" Example: Tse's Volumetric Illusions

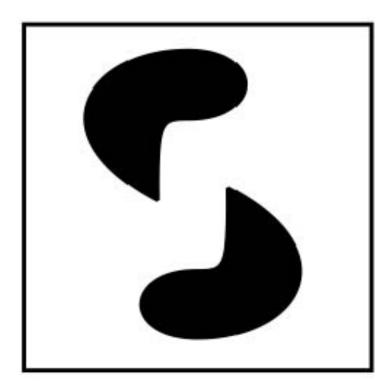


A. Kanizsa triangle
B. Tse's volumetric worm
C. Idesawa's spiky sphere
D. Tse's "sea monster"

Figure credit: Steve Lehar

Today's "fun" Example: Tse's Volumetric Illusions





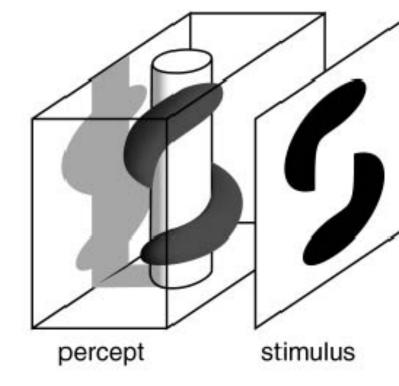


Figure credit: Steve Lehar

1

Today's "fun" Example: FedEx

Lecture 25: Re-cap

Optical flow is the apparent motion of brightness patterns in the image

Applications

- image and video stabilization in digital cameras, camcorders
- motion-compensated video compression schemes such as MPEG
- image registration for medical imaging, remote sensing
- action recognition
- motion segmentation

Lecture 25: Re-cap

Consider image intensity also to be a function of time, t. We write

Applying the **chain rule for differentiation**, we obtain

$$\frac{dI(x,y,t)}{dt} :$$

where subscripts denote partial differentiation

Define $u = \frac{dx}{dt}$ and $v = \frac{dy}{dt}$. Then [u, v] is the 2-D motion and the space of all such u and v is the **2-D velocity space** Suppose $\frac{dI(x, y, t)}{dI(x, y, t)} = 0$. Then we obtain the (classic) optical flow constraint dtequation $I_x u + I$

I(x, y, t)

$$I_x \frac{dx}{dt} + I_y \frac{dy}{dt} + I_t$$

$$I_y v + I_t = 0$$

What are some cues that we use for grouping?

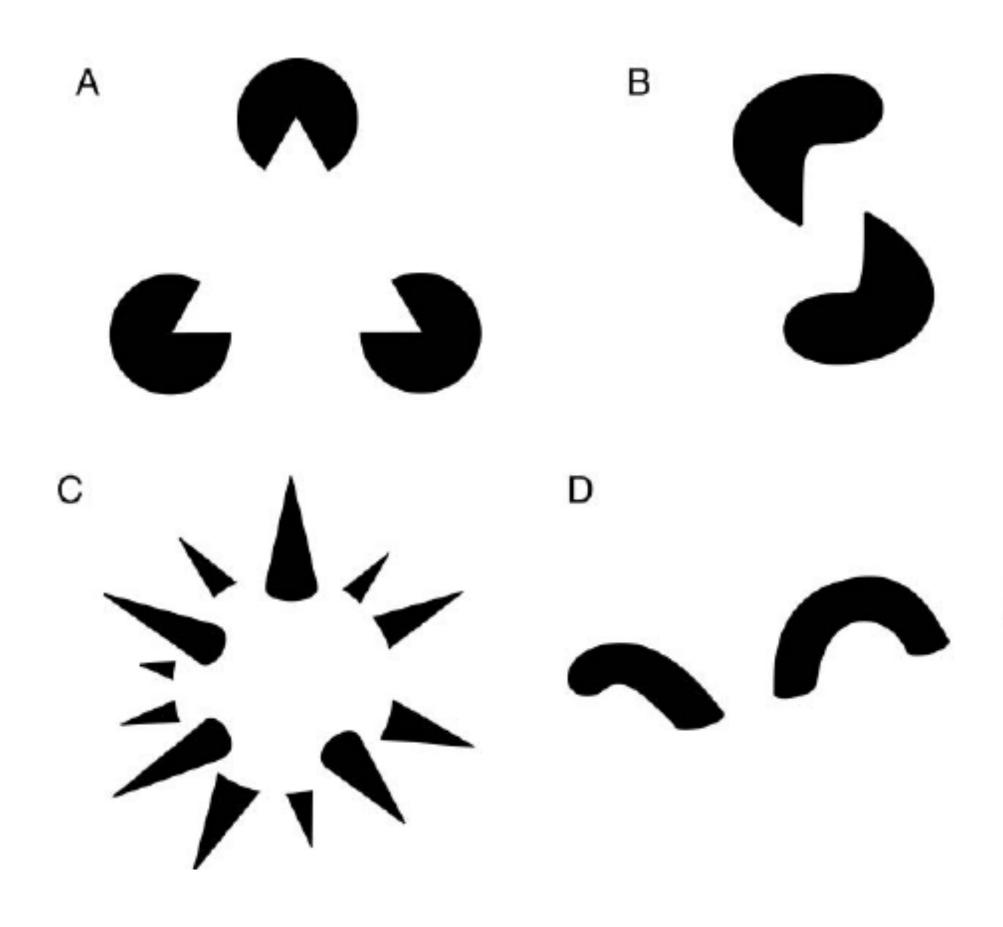
Humans routinely group features that belong together when looking at a scene.

What are some cues that we use for grouping?

- Similarity
- Symmetry
- Common Fate
- Proximity

. . .

Humans routinely group features that belong together when looking at a scene.



A. Kanizsa triangle
B. Tse's volumetric worm
C. Idesawa's spiky sphere
D. Tse's "sea monster"

Figure credit: Steve Lehar

Slide credit: Kristen Grauman

Benjamin Lee @benfraserlee

seem like I didn't hate the film

2:53 PM - 8 Sep 2015 from Montrose, CO

14,153 Retweets 13,994 Likes

|--|

Incredible way of making my two star review

Slide credit: Kristen Grauman

Clustering

- It is often useful to be able to group together image regions with similar appearance (e.g. roughly coherent colour or texture)
- image compression
- approximate nearest neighbour search
- base unit for higher-level recognition tasks
- moving object detection in video sequences
- video summarization

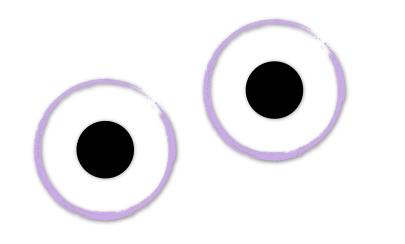
Clustering

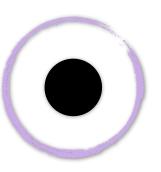
- **Clustering** is a set of techniques to try to find components that belong together (i.e., components that form clusters). — Unsupervised learning (access to data, but no labels)
- Two basic clustering approaches are
 agglomerative clustering
 divisive clustering

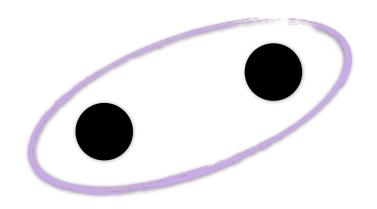
Algorithm:

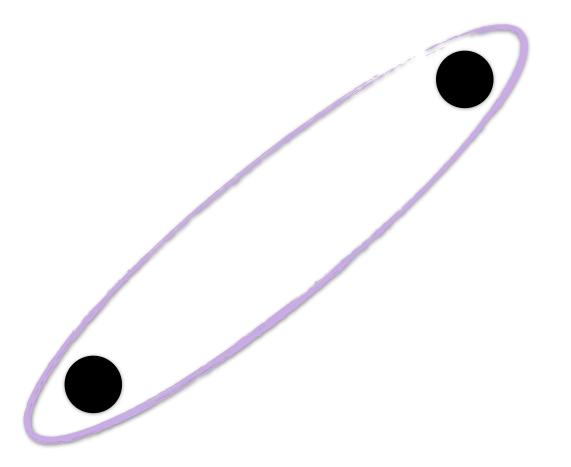
Make each point a separate cluster Until the clustering is satisfactory Merge the two clusters with the smallest inter-cluster distance end

Each data point starts as a separate cluster. Clusters are recursively merged.





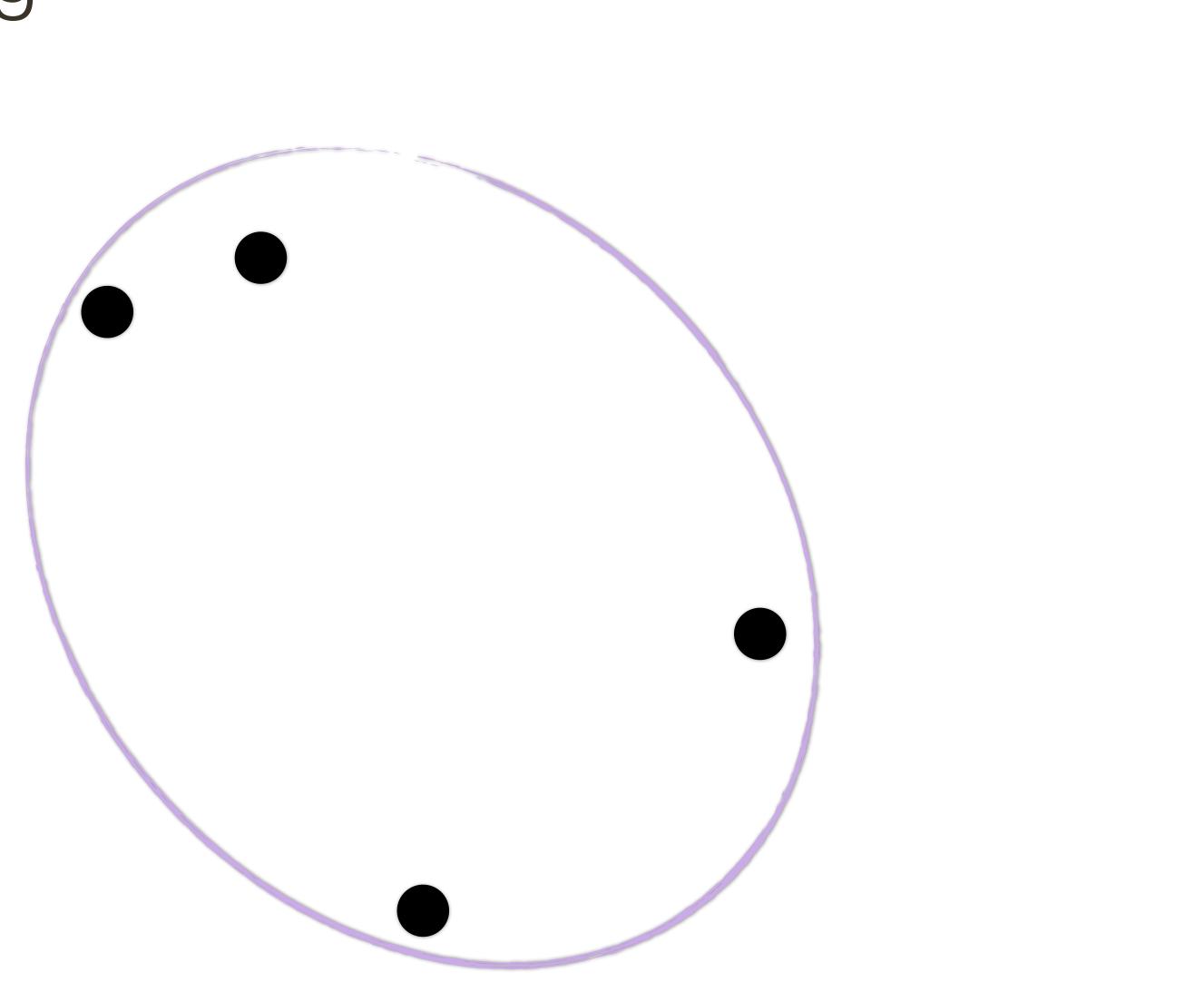


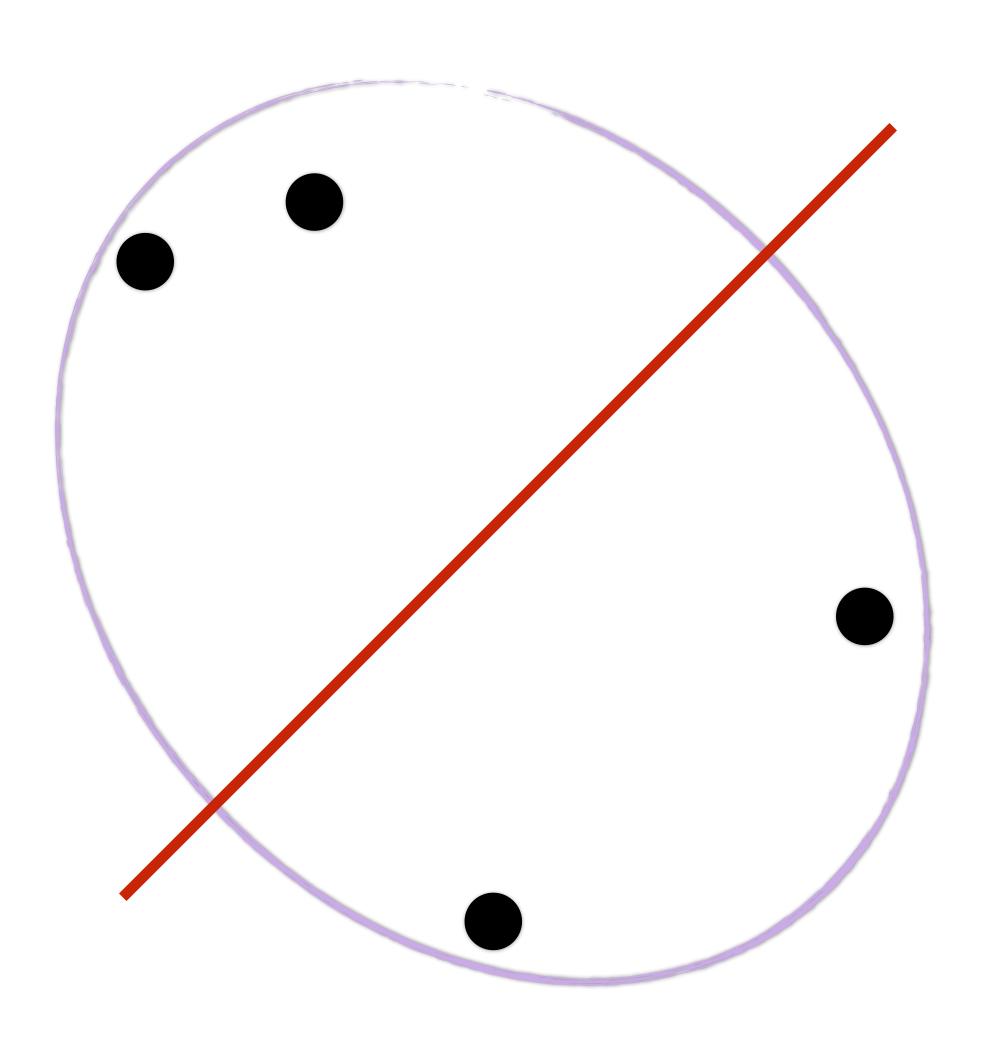


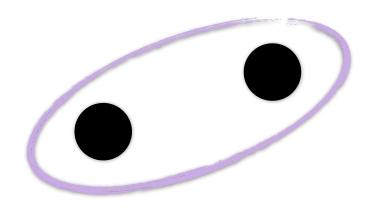
The entire data set starts as a single cluster. Clusters are recursively split.

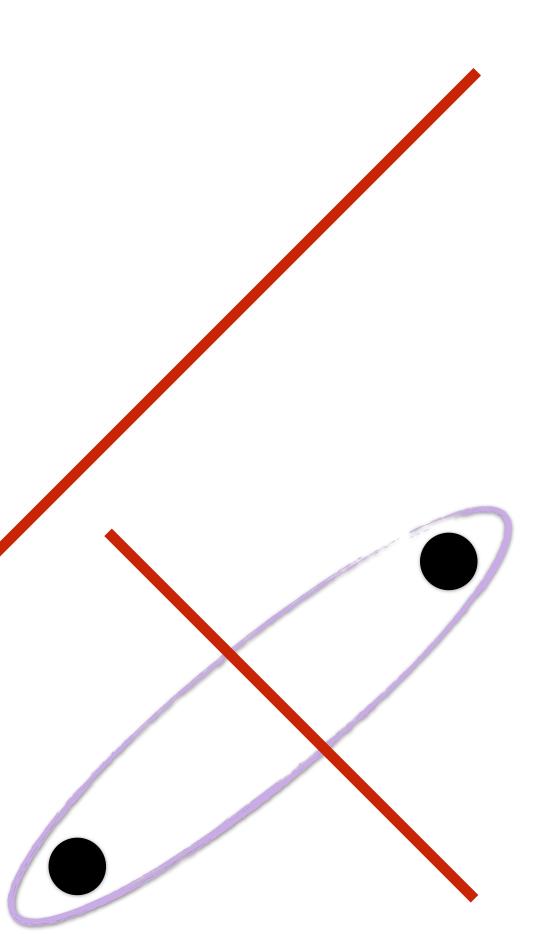
Algorithm:

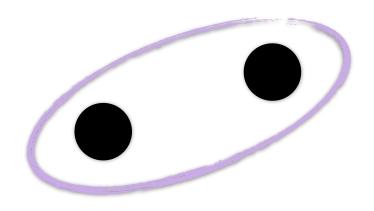
Construct a single cluster containing all points Until the clustering is satisfactory Split the cluster that yields the two components with the largest inter-cluster distance end

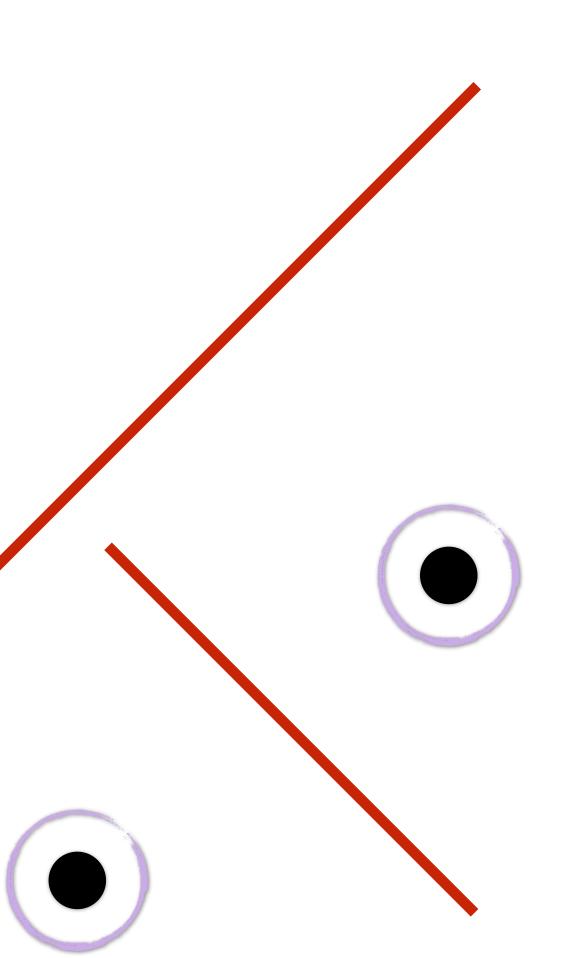












Inter-Cluster Distance

agglomerative and divisive clustering? Some common options:

the distance between the closest members of C_1 and C_2

- single-link clustering
- the distance between the farthest members of C_1 and a member of C_2

– complete-link clustering

- How can we define the cluster distance between two clusters C_1 and C_2 in

 - $\min d(a, b), a \in C_1, b \in C_2$

 $\max d(a, b), a \in C_1, b \in C_2$

Inter-Cluster Distance

agglomerative and divisive clustering? Some common options:

an average of distances between members of C_1 and C_2

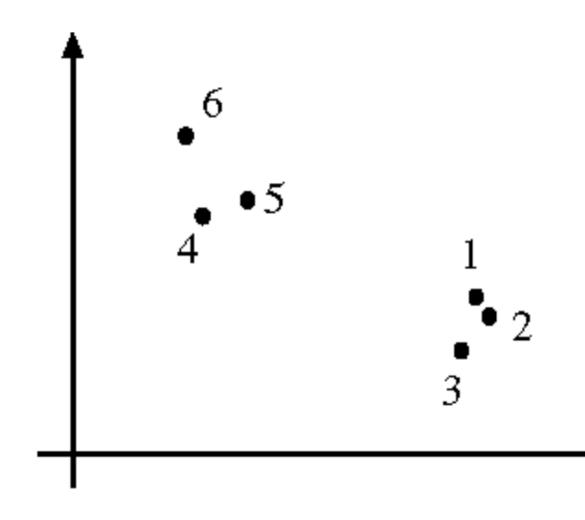
- group average clustering

How can we define the cluster distance between two clusters C_1 and C_2 in

 $\frac{1}{|C_1||C_2|} \sum_{a \in C_1} \sum_{b \in C_2} d(a, b)$

Dendrogram

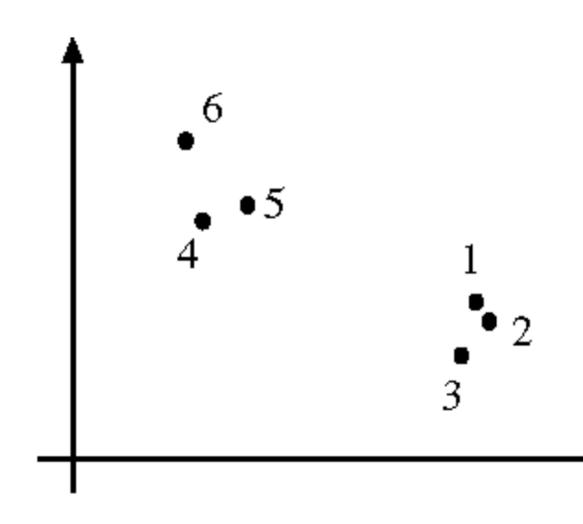
The algorithms described generate a hierarchy of clusters

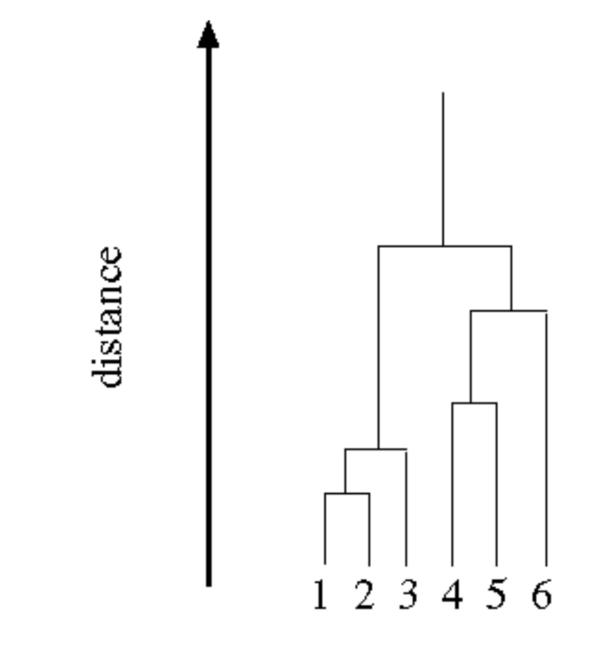


Forsyth & Ponce (2nd ed.) Figure 9.15

Dendrogram

The algorithms described generate a hierarchy of clusters, which can be visualized with a **dendrogram**.





Forsyth & Ponce (2nd ed.) Figure 9.15

27

A simple dataset is shown below. Draw the dendrogram obtained by

agglomerative clustering with single-link (closest member) inter-cluster distance.

A simple dataset is shown below. Draw the dendrogram obtained by

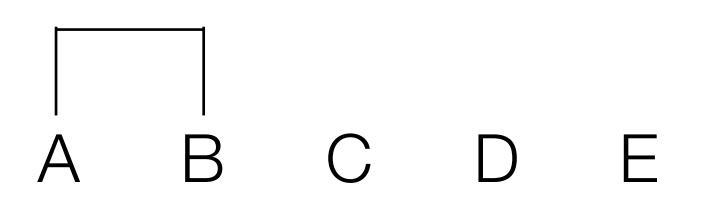
agglomerative clustering with single-link (closest member) inter-cluster distance.

A B C D E

A simple dataset is shown below. Draw the dendrogram obtained by

A В

agglomerative clustering with single-link (closest member) inter-cluster distance.

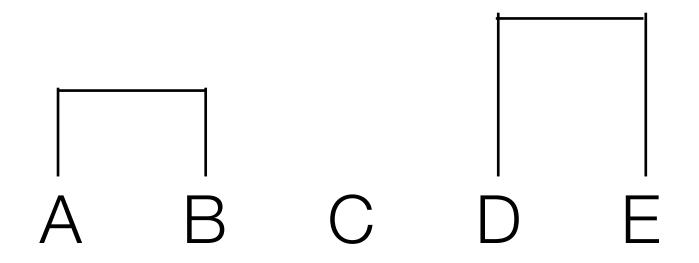


Ε

A simple dataset is shown below. Draw the dendrogram obtained by

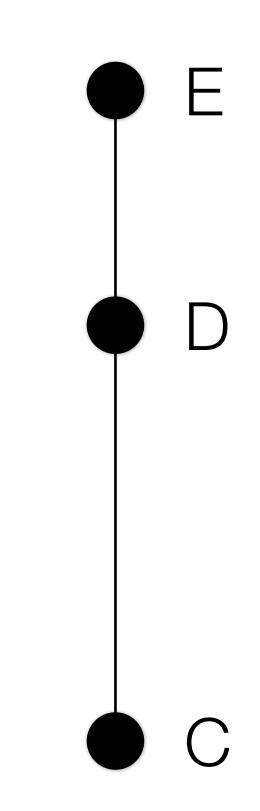
A В

agglomerative clustering with single-link (closest member) inter-cluster distance.

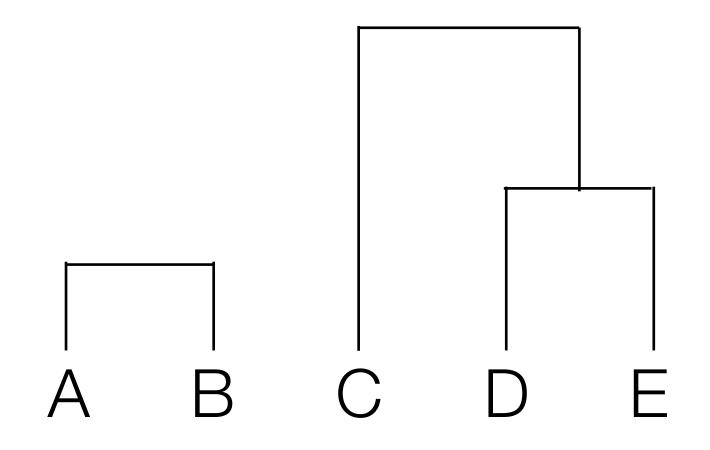


A simple dataset is shown below. Draw the dendrogram obtained by

A В

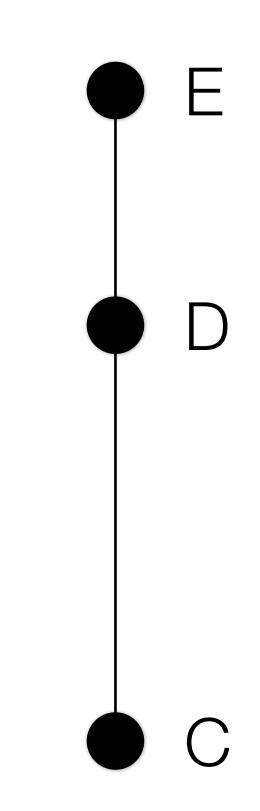


agglomerative clustering with single-link (closest member) inter-cluster distance.

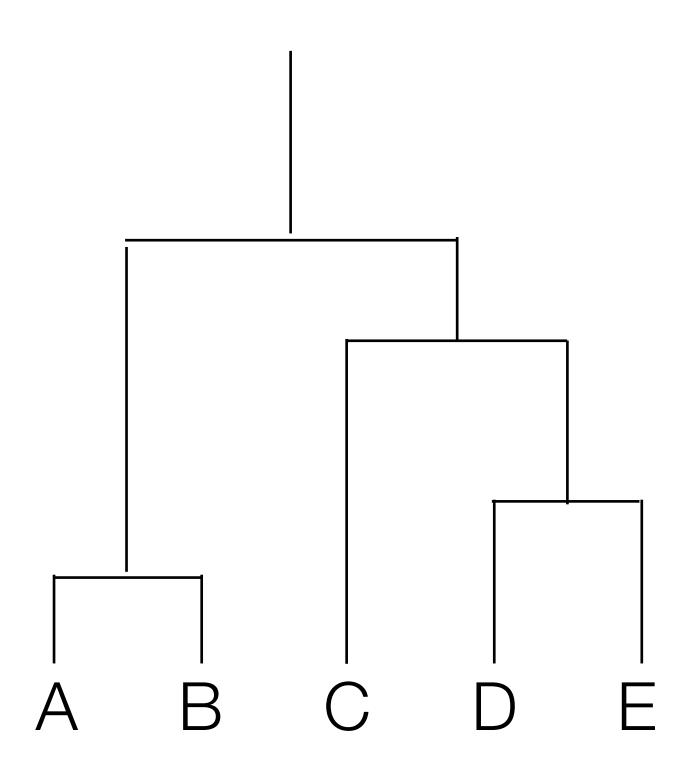


A simple dataset is shown below. Draw the dendrogram obtained by

A В



agglomerative clustering with single-link (closest member) inter-cluster distance.



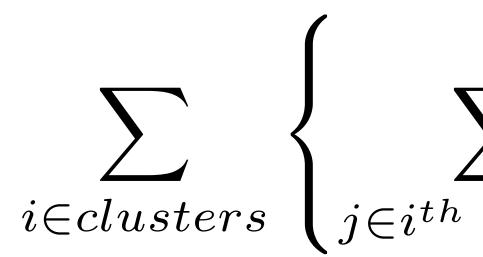
K-Means Clustering

Assume we know how many clusters there are in the data - denote by K

Each cluster is represented by a cluster center, or mean

letting each data point be represented by some cluster center

Minimize



- Our objective is to minimize the representation error (or quantization error) in

$$\sum_{h \ cluster} ||x_j - \mu_i||^2 \bigg\}$$

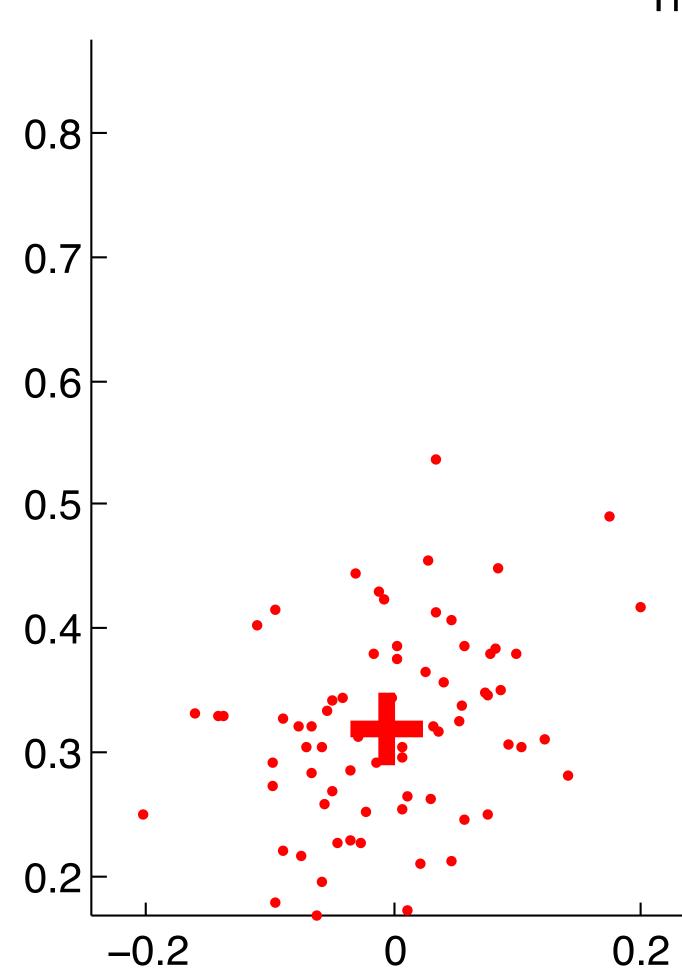
K-Means Clustering

K-means clustering alternates between two steps:

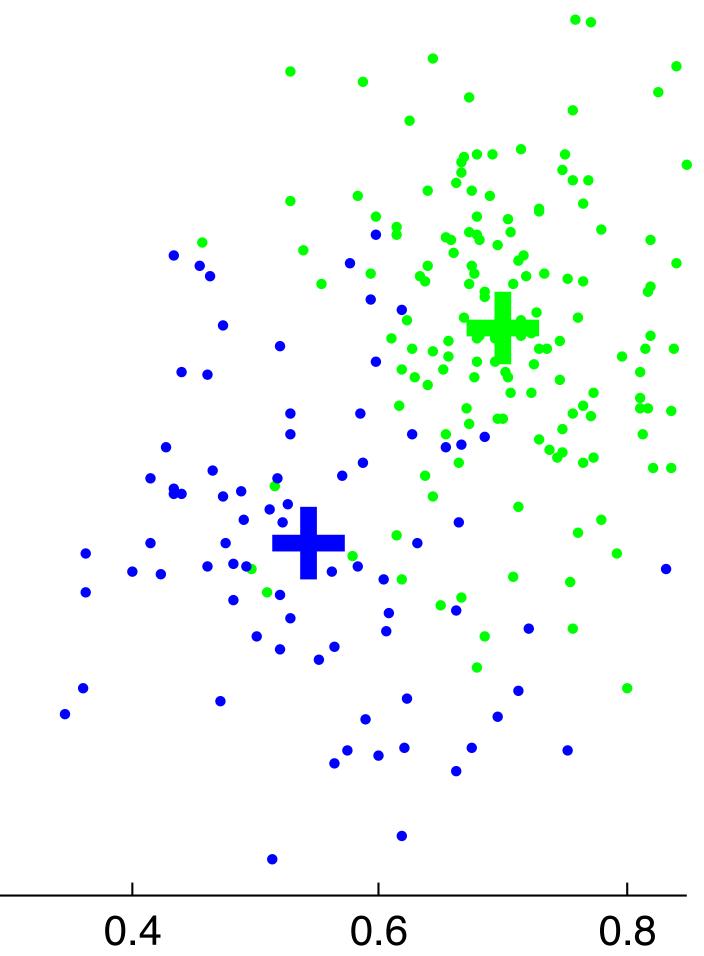
- **1**. Assume the cluster centers are known (fixed). Assign each point to the closest cluster center.
- **2**. Assume the assignment of points to clusters is known (fixed). to the cluster.
- The algorithm is initialized by choosing K random cluster centers
- K-means converges to a local minimum of the objective function Results are initialization dependent

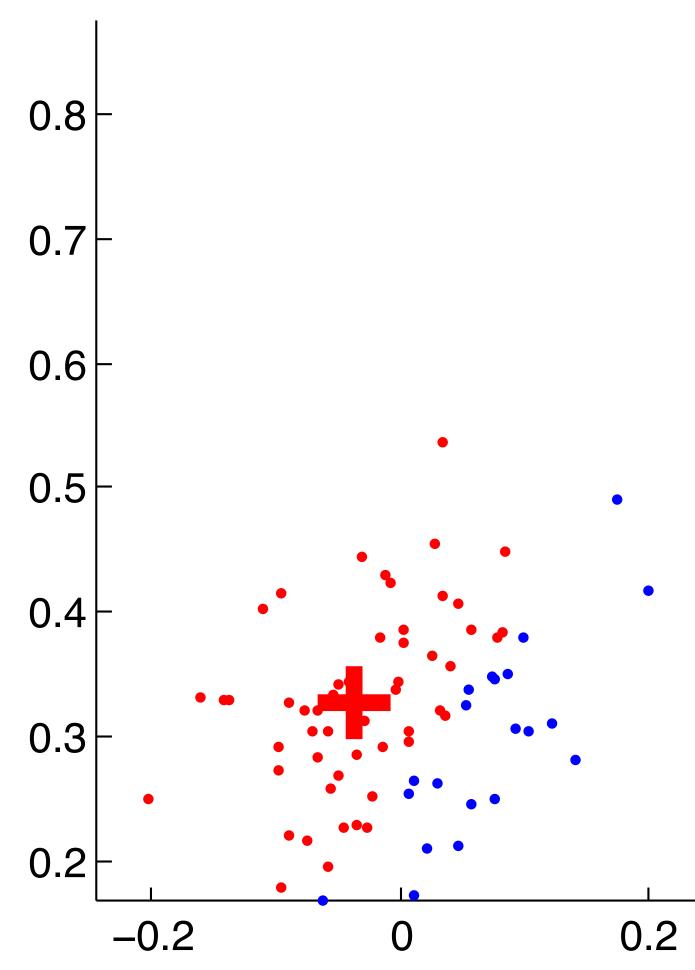
Compute the best center for each cluster, as the mean of the points assigned

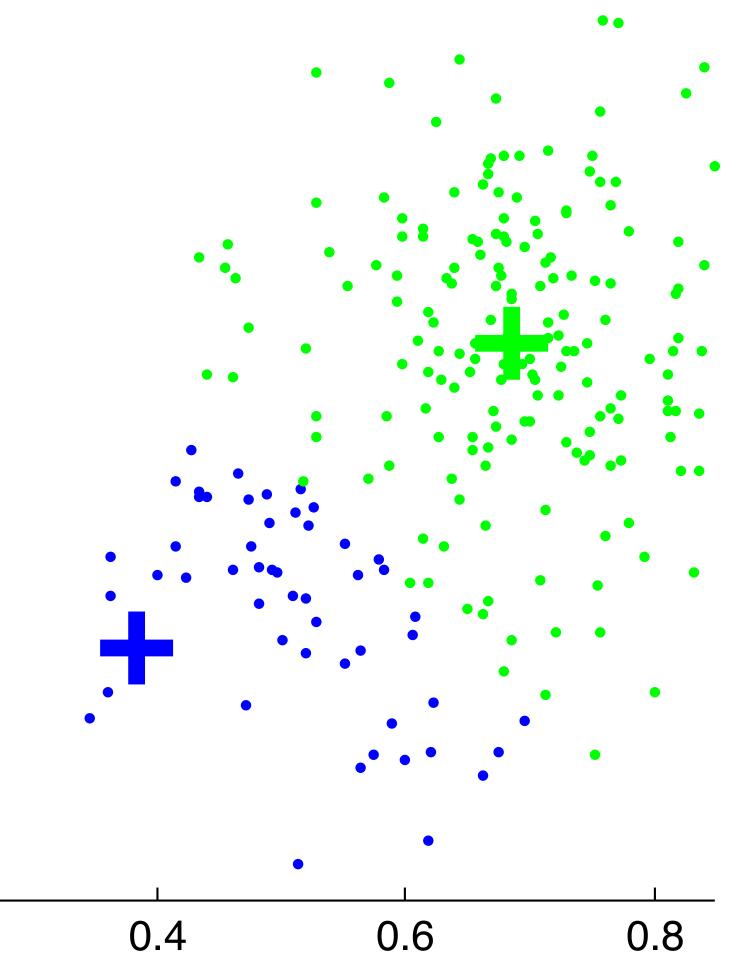
Example 1: K-Means Clustering

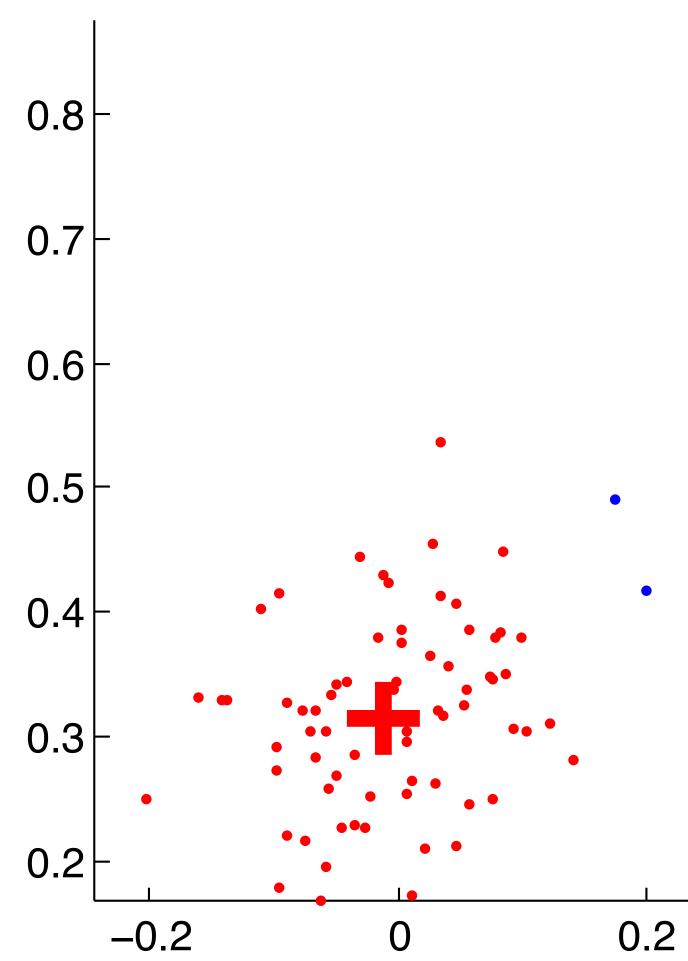


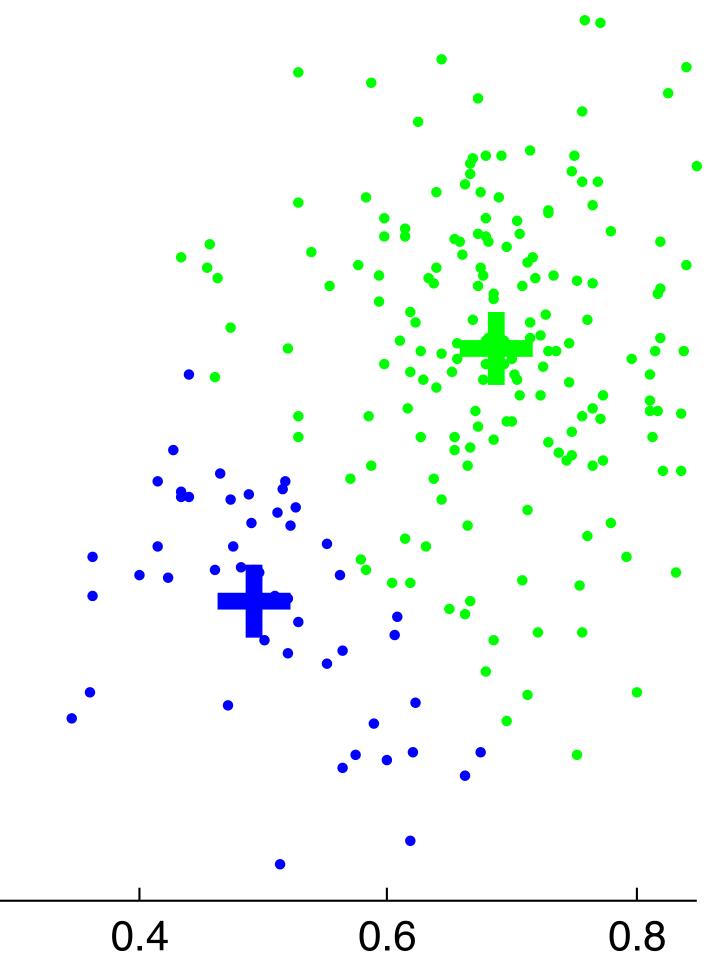
True Clusters

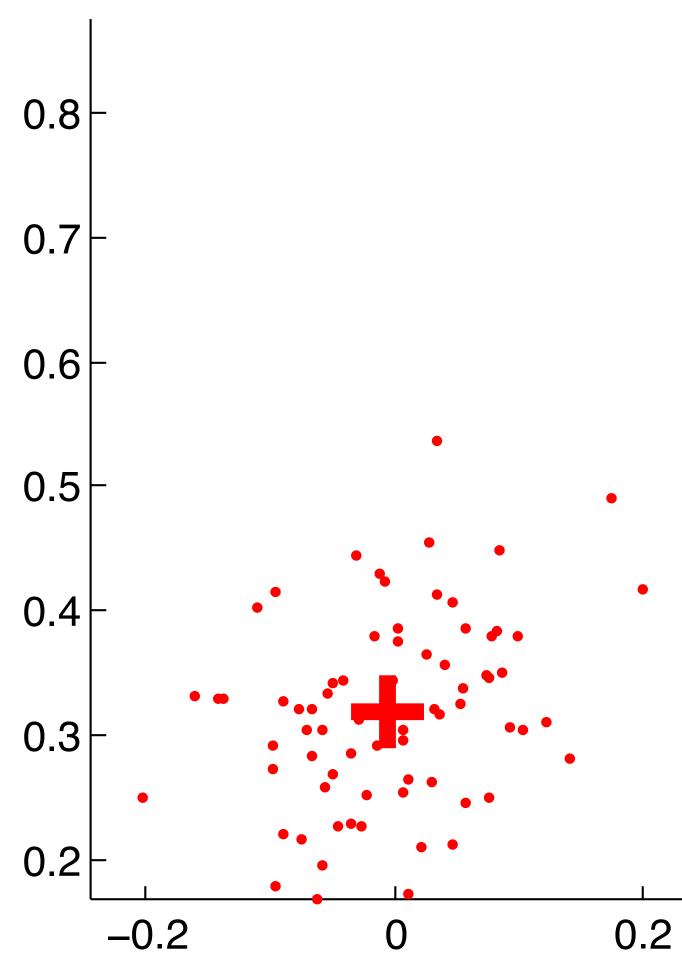


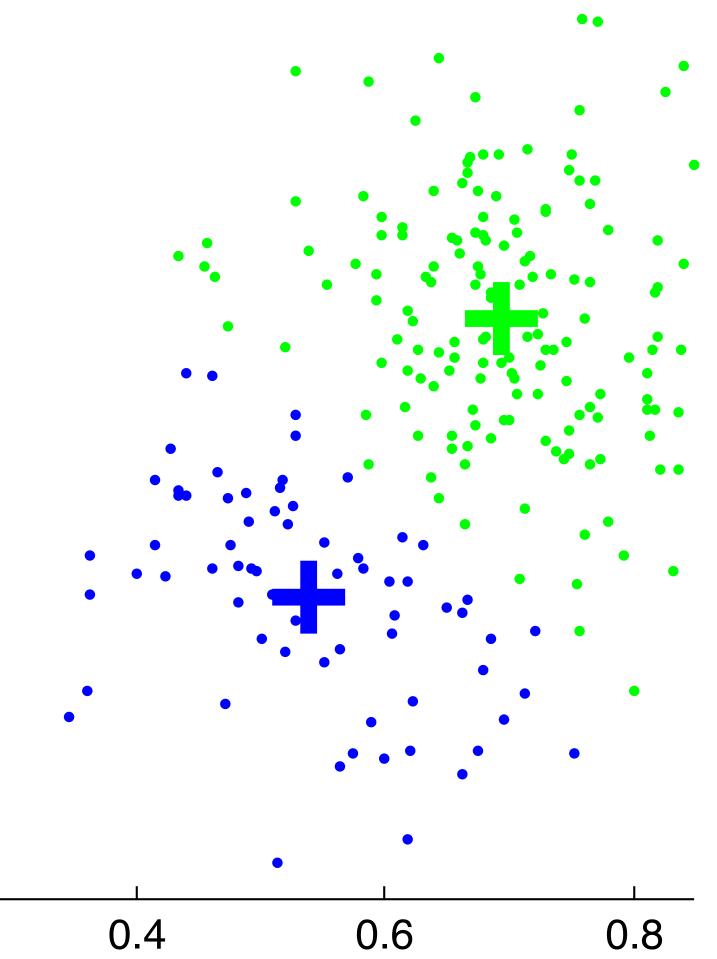


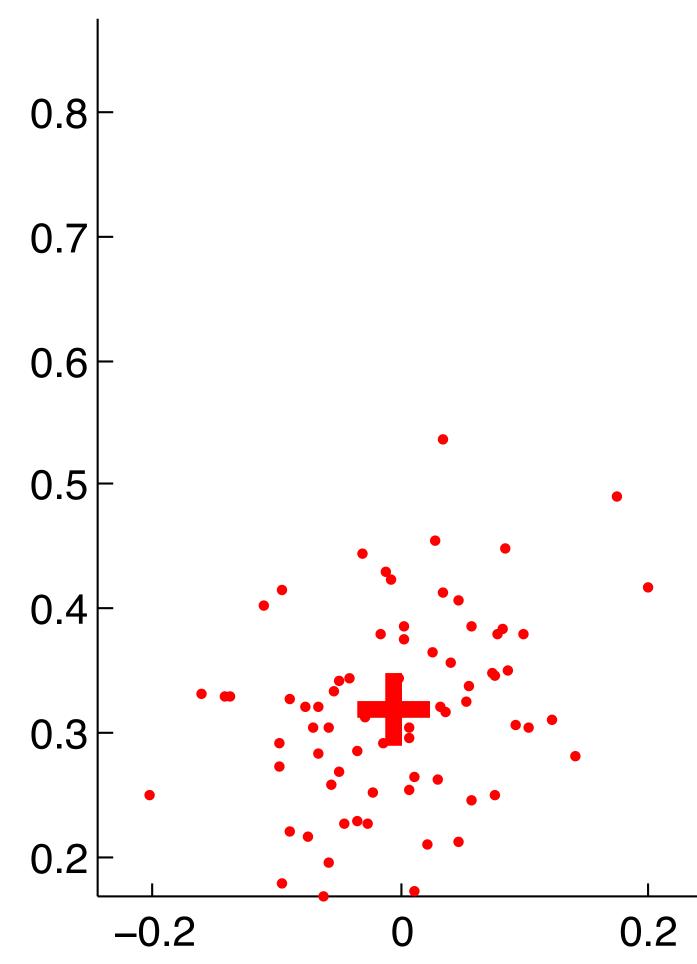


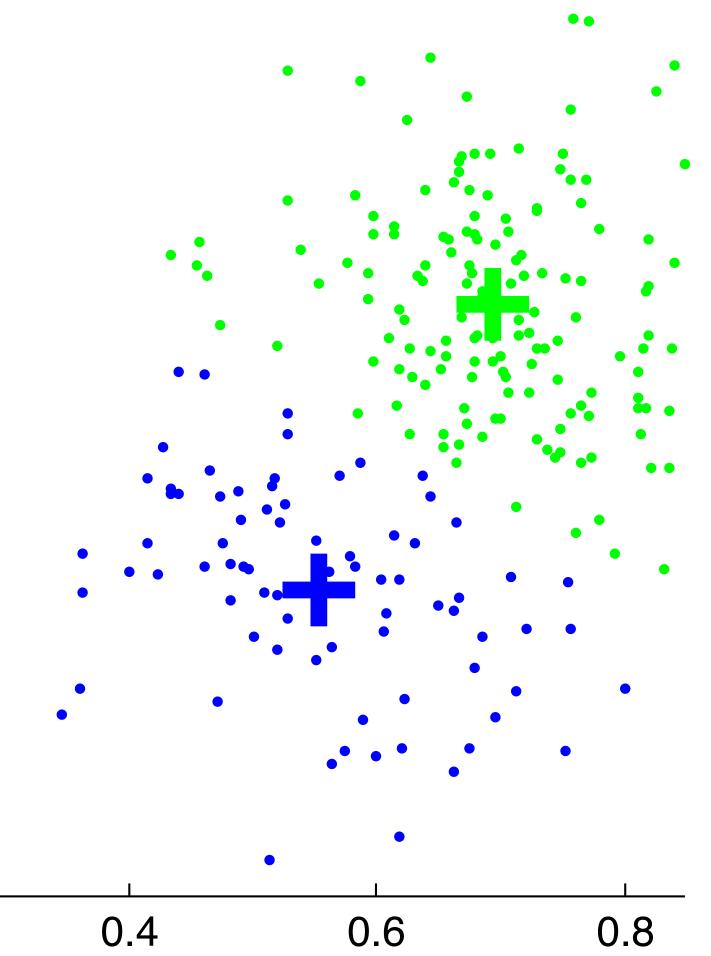












Example 2: Mixed Vegetables

Original Image

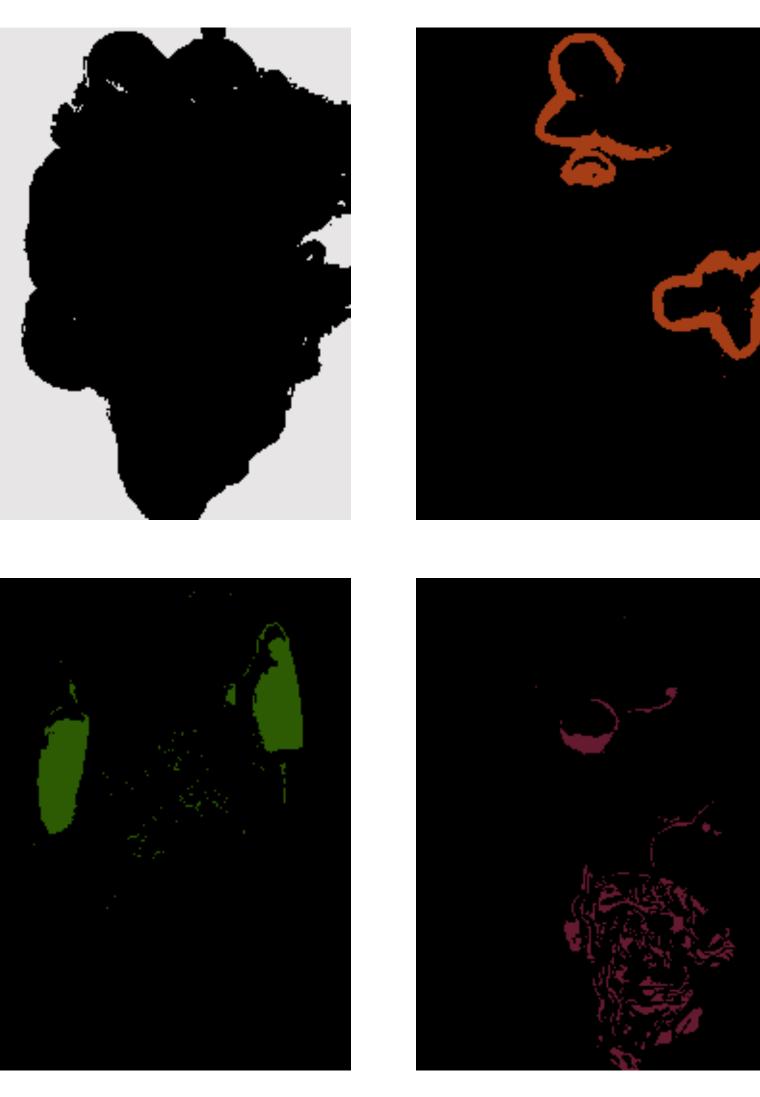
K-means using colour alone, 11 segments

Segmentation Using Colour

Example 2: Mixed Vegetables

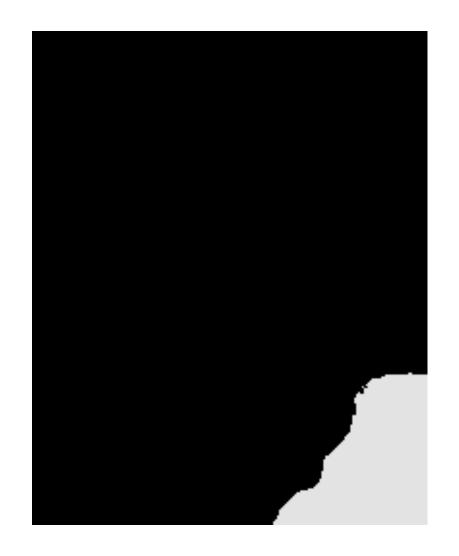
K-means using colour alone, 11 segments

Forsyth & Ponce (2nd ed.) Figure 9.18



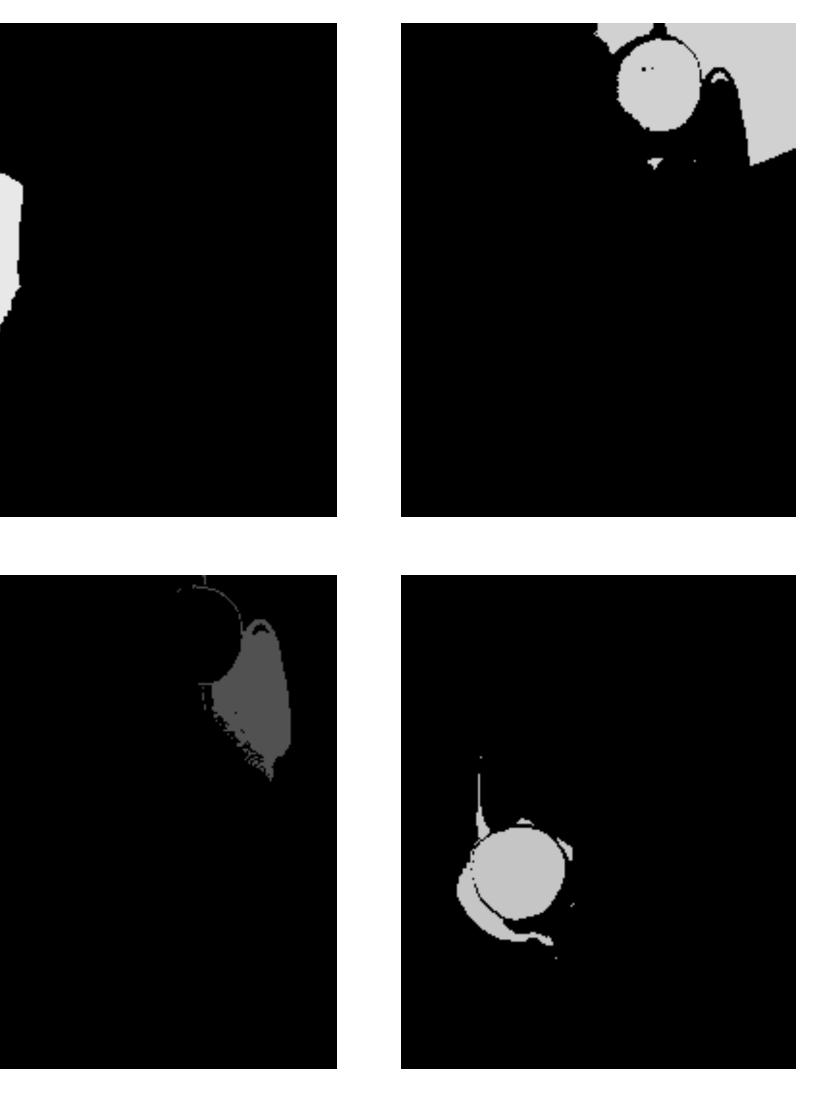
42

Example 2: Mixed Vegetables



K-means using colour alone, 20 segments

Forsyth & Ponce (2nd ed.) Figure 9.19

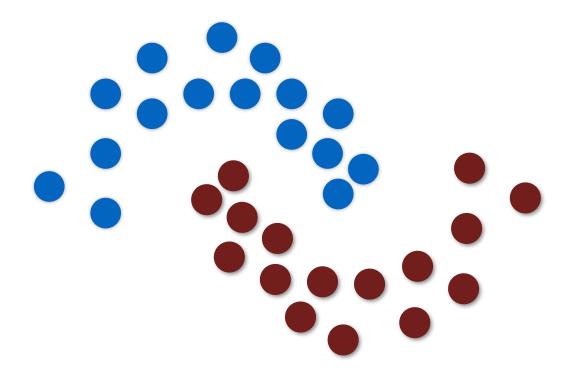


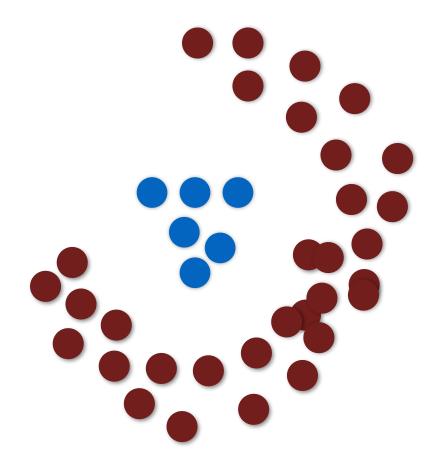
43

An **Exercise**

Sketch an example of a 2D dataset for which agglomerative clustering performs well (finds the two true clusters) but K-means clustering fails.

Sketch an example of a 2D dataset for which agglomerative clustering performs well (finds the two true clusters) but K-means clustering fails.





Discussion of K-Means

Advantages:

- Algorithm always converges
- Easy to implement

Disadvantages:

- The number of classes, K, needs to be given as input
- Algorithm doesn't always converge to the (globally) optimal solution
- Limited to compact/spherical clusters

to be given as input to the (globally) optimal solution ters

Segmentation by Clustering

but segmentation typically makes use of a richer set of features.

- texture
- corners, lines, ...
- geometry (size, orientation, ...)

We just saw a simple example of segmentation based on colour and position,

- Suppose we represent an image as a weighted graph.
- Any pixels that are neighbours are connected by an edge.
- Each edge has a weight that measures the similarity between the pixels — can be based on colour, texture, etc.
- low weights \rightarrow similar, high weights \rightarrow different
- We will segment the image by performing an agglomerative clustering guided by this graph.

Recall that we need to define the inter-cluster distance for agglomerative clustering. Let

We also need to determine when to stop merging.

$d(C_1, C_2) = \min_{v_1 \in C_1, v_2 \in C_2, (v_1, v_2) \in \epsilon} w(v_1, v_2)$

Denote the 'internal difference' of a cluster as the largest weight in the minimum spanning tree of the cluster, M(C):

 $int(C) = \max_{e \in M(C)} w(e)$

Algorithm: (Felzenszwalb and Huttenlocher, 2004)

Make each point a separate cluster. For i = 1 to rIf both ends of e_i lie in the same cluster Do nothing Else

If $d(C_l, C_m) \leq MInt(C_l, C_m)$

Report the remaining set of clusters.

- Sort edges in order of non-decreasing weight so that $w(e_1) \ge w(e_2) \ge \cdots \ge w(e_r)$

- One end is in cluster C_l and the other is in cluster C_m

 - Merge C_l and C_m Report the remaining set of clusters.

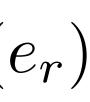


Image credit: KITTI Vision Benchmark

Summary

To use standard clustering techniques we must define an inter-cluster distance measure

A **dendrogram** visualizes a hierarchical clustering process

K-means is a clustering technique that iterates between

1. Assume the cluster centers are known. Assign each point to the closest cluster center.

2. Assume the assignment of points to clusters is known. Compute the best cluster center for each cluster (as the mean).

K-means clustering is initialization dependent and converges to a local minimum