
Lecture 24: Stereo Vision

CPSC 425: Computer Vision 
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Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Menu for Today (November 2, 2018)
Topics: 

— Stereo Vision (cont) 
— Block Matching

Redings: 
— Today’s Lecture:  None                             

— Next Lecture:       Forsyth & Ponce (2nd ed.) 10.6, 6.2.2, 9.3.1, 9.3.3, 9.4.2 

Reminders: 

— Assignment 4: Local Invariant Features and RANSAC due November 14th

— Energy Minimization 
— Structured Light 



RANSAC vs. Hough Transform
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Figure Credit: Hartley & Zisserman

Hough is better with large number of outliers, well over > 50%
Setting bin size to account for certain level of noise is more difficult in Hough 
RANSAC better for high dimensional parameter spaces



RANSAC vs. Hough Transform
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Figure Credit: Hartley & Zisserman

Good scenario for Hough



RANSAC vs. Hough Transform
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Figure Credit: Hartley & Zisserman

Not so Good scenario for Hough
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Today’s “fun” Example: Sunspring



Task: Compute depth from two images acquired from (slightly) different 
viewpoints  

Approach: “Match” locations in one image to those in another  

Sub-tasks:  
— Calibrate cameras and camera positions 

— Image rectification 
— Find all corresponding points (the hardest part)  
— Compute depth and surfaces  
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Lecture 23: Re-cap



Matching points lie along corresponding epipolar lines  
Reduces correspondence problem to 1D search along conjugate epipolar lines  
Greatly reduces cost and ambiguity of matching 
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Slide credit: Steve Seitz

Lecture 23: Re-cap



Image planes of cameras are parallel  

Focal points are at same height  

Focal lengths same  

Then, epipolar lines fall along the horizontal scan lines of the images  

We assume images have been rectified so that epipolar lines correspond to 
scan lines 
— Simplifies algorithms 
— Improves efficiency  
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Lecture 23: Re-cap (simple) Rectified Case
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Rectified Stereo Pair: Example

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Before Rectification

After Rectification
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image plane

camera center camera center

3D point

Rectified Stereo Pair: Depth Estimate

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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image plane

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Rectified Stereo Pair: Depth Estimate



13 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Rectified Stereo Pair: Depth Estimate
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(baseline)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Rectified Stereo Pair: Depth Estimate
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(baseline)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Rectified Stereo Pair: Depth Estimate
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(baseline)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Rectified Stereo Pair: Depth Estimate
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(baseline)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Rectified Stereo Pair: Depth Estimate
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(baseline)

Disparity
(wrt to camera origin of image plane)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Rectified Stereo Pair: Depth Estimate
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(baseline)

Disparity
inversely proportional to depth

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Rectified Stereo Pair: Depth Estimate



(simple) Stereo Algorithm
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1.Rectify images  
(make epipolar lines horizontal) 

2.For each pixel 
a.Find epipolar line 
b.Scan line for best match 
c.Compute depth from disparity

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



(simple) Stereo Algorithm
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1.Rectify images  
(make epipolar lines horizontal) 

2.For each pixel 
a.Find epipolar line 
b.Scan line for best match 
c.Compute depth from disparity

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Correspondence: What should we match?

Objects? 

Edges? 

Pixels? 

Collections of pixels?  
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Random Dot Stereograms

Julesz (1960) showed that recognition is not needed for stereo  
"When viewed monocularly, the images appear completely random. But when 

viewed stereoscopically, the image pair gives the impression of a square 
markedly in front of (or behind) the surround." 
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Method: Pixel Matching

For each epipolar line 
    For each pixel in the left image  
        — compare with every pixel on same epipolar line in right image  
        — pick pixel with minimum match cost  

This leaves too much ambiguity! 
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Slide credit: Steve Seitz



Sum of Squared (Pixel) Differences 

and        are corresponding             windows of pixels  
Define the window function,               , by  

SSD measures intensity difference as a function of disparity:  
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Image Normalization
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Normalized Pixel: subtract the 
mean, normalize to unit length



Image Metrics
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Assume       and            are normalized to unit length (Normalized)  

Sum of Squared Differences:  

(Normalized) Correlation: 
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Image Metrics
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Let      be the value of     that minimizes  

Then      also is the value of     that minimizes 

That is, 
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Image Metrics
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Method: Correlation
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Similarity Measure Formula
Sum of Absolute Differences (SAD)

Sum of Squared Differences (SSD)

Zero-mean SAD

Locally scaled SAD

Normalized Cross Correlation (NCC)

SAD SSD NCC Ground truth

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Method: Edges
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Forsyth & Ponce (2nd ed.) Figure 7.12 (Top & Middle)



The Marr/Poggio (1979) multiscale stereo algorithm:  

1. Convolve the two (rectified) images with ▽       filters of increasing 

2. Find zero crossings along horizontal scanlines of the filtered images  

3. For each filter scale σ, match zero crossings with the same parity and 
roughly equal orientations in a                     disparity range, with 

4. Use the disparities found at larger scales to control eye vergence and cause 
unmatched regions at smaller scales to come into correspondence 
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Method: Edges (aside)

�1 < �2 < �3 < �4
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Which Method is Better: Correlation or Edges?

Edges are more “meaningful” [Marr]. . . . . . but hard to find!  

Edges tend to fail in dense texture (outdoors) 

Correlation tends to fail in smooth, featureless regions  

Note: Correlation-based methods are “dense.” Edge-based methods are 
“relatively sparse”  
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Effect of Window Size
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W = 3 W = 20
Smaller window 
+  More detail 
-   More noise

Larger window 
+   Smoother disparity maps 
-    Less detail 
-    Fails near boundaries

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Note: Some approaches use an adaptive window size  
— try multiple sizes and select best match

Effect of Window Size

W = 3 W = 20



Ordering Constraints
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Ordering constraint …                                     ….  and a failure case

Forsyth & Ponce (2nd ed.) Figure 7.13



Block Matching Techniques: Result 
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Block matching Ground truth

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Block Matching Techniques: Result 
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Block matching Ground truth

Too many discontinuities. 
We expect disparity values to 

change slowly. 

Let’s make an assumption:  
depth should change smoothly

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Stereo Matching as Energy Minimization 
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{ {

(block matching result) (smoothness function)

Want each pixel to find a good match in 
the other image

Adjacent pixels should (usually) move 
about the same amount

data term smoothness term

energy function 
(for one pixel)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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“Potts model”

L1 distance

smoothness term

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Stereo Matching as Energy Minimization 
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Can minimize this independently per scanline 
using dynamic programming (DP)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Stereo Matching as Energy Minimization: Solution
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Match only Match & smoothness (via graph cut)

Ground Truth

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts,  PAMI 2001

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Stereo Matching as Energy Minimization 

http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf


Idea: Use More Cameras
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Forsyth & Ponce (2nd ed.) Figure 7.17

Adding a third camera reduces ambiguity in stereo matching



Point Grey Research Digiclops
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Image credit: Point Grey Research



Structured Light Imaging: Structured Light and One Camera

46

I J

Projector acts like 
“reverse” camera

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Microsoft Kinect 

47



Microsoft Kinect 
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Summary

Stereo is formulated as a correspondence problem 
— determine match between location of a scene point in one image and its 
location in another  

If we assume calibrated cameras and image rectification, epipolar lines are 
horizontal scan lines  

What do we match?  
— Individual pixels?  
— Patches? 
— Edges?  
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