

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 21: RANSAC cont., Hough Transform

Menu for Today (October 26, 2018)

Topics:

- RANSCA continued
- Hough Transform

Redings:

- Today's Lecture: Forsyth & Ponce (2nd ed.) 10.1, 10.2
- **Next** Lecture:

Reminders:

- Assignment 3: Texture Syntheis is out, due on October 29th
- Midterms **graded** (average is 64.5%)

— iClicker Quiz?

Forsyth & Ponce (2nd ed.) 7.1.1, 7.2.1, 7.4, 7.6

Today's "fun" Example: Everybody Dance Now

Lecture 20: Re-cap

RANSAC is a technique to fit data to a model

- divide data into inliers and outliers
- estimate model from minimal set of inliers
- improve model estimate using all inliers
- alternate fitting with re-classification as inlier/outlier

easy to implement

- easy to estimate/control failure rate

RANSAC only handles a moderate percentage of outliers without cost blowing up

RANSAC is a general method suited for a wide range of model fitting problems

RANSAC: *k* Samples Chosen (p = 0.99)

Sample size	Proportion of outliers						
n	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

After RANSAC

from minimal set of inliers

Improve this initial estimate with estimation over all inliers (e.g., with standard least-squares minimization)

But this may change inliers, so alternate fitting with re-classification as inlier/ outlier

RANSAC divides data into inliers and outliers and yields estimate computed

Example 2: Fitting a Line

Figure Credit: Hartley & Zisserman

Example 2: Fitting a Line

Example 3: Automatic Matching of Images

— How to get correct correspondences without human intervention?

- Can be used for image stitching or automatic determination of epipolar geometry

Example 3: Feature Extraction

- Find features in pair of images using Harris corner detector Assumes images are roughly the same scale

\approx 500 corner features found in each image

Example 3: Finding Feature Matches

Select best match over threshold within a square search window (here ±320 pixels) using SSD or (normalized) cross-correlation for small patch around the corner

\approx 500 corner features found in each image

15

Example 3: Initial Match Hypothesis

268 matched features (over SSD threshold) superimposed on left image (pointing to locations of corresponding feature in right image)

Example 3: Outliers & Inliers after RANSAC -n is 4 for this problem (a homography relating 2 images)

- Assume up to 50% outliers
- -43 samples used with t = 1.25 pixels

117 outliers

151 inliers

Example 3: Final Matches

final set of 262 matches

Discussion of RANSAC

Advantages:

- General method suited for a wide range of model fitting problems
- Easy to implement and easy to calculate its failure rate

Disadvantages:

- Many real problems have high rate of outliers (but sometimes selective choice of random subsets can help)

The Hough transform can handle high percentage of outliers

- Only handles a moderate percentage of outliers without cost blowing up

Example: Photo Tourism

Takes as input unstructured collections of photographs and reconstructs each photo's viewpoint and a sparse 3D model of the scene

Uses both SIFT and RANSAC

Figure credit: Snavely et al. 2006

Fitting a Model

Suppose we want to fit a model to a set of tokens

- e.g. A line fits well to a set of points. This is unlikely to be due to chance, so we represent the points as a line.

- e.g. A 3D model can be scaled, rotated and translated to closely fit a set of points or line segments. If it fits well, the object is recognized.

Fitting a Model is Difficult

Difficulties arise owing to:

Extraneous data: clutter or multiple models — We do not know what is part of the model clutter?

Missing data: only some parts of model are present Noise

Computational cost:

each possible subset

- Can we fit models with a few parts when there is significant background

— Not feasible to check all combinations of features by fitting a model to

Hough Transform

Idea of **Hough transform**:

- For each token vote for all models to which the token could belong
- Return models that get many votes

Example: For each point, vote for all lines that could pass through it; the true lines will pass through many points and so receive many votes

Lines: Slope intercept form

Hough Transform: Image and Parameter Space

Image space

Hough Transform: Image and Parameter Space

Image space

What would a **point** in image space become in parameter space?

Image space

Parameter space Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

line

Image space

Parameter space Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

29

two

points?

Image space

Parameter space Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Image space

Parameter space Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Image space

Parameter space Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Image space

Parameter space Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Image space

Parameter space Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

four

How would you find the best fitting line?

Parameter space Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Is this method robust to measurement noise? clutter?

Image space

Parameter space Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Line Detection by Hough Transform

Algorithm:

- 1.Quantize Parameter Space(m,c)
- 2.Create Accumulator Array A(m,c)
- 3.Set $A(m,c) = 0 \quad \forall m,c$
- 4. For each image $edge(x_i, y_i)$ For each element in A(m)If (m,c) lies on the line Increment A(m,c) = A(m)

5. Find local maxima in A(m,c)

$$(a, c)$$

$$(a, c) = -x_i m + y_i$$

$$(m, c) + 1$$

$$y$$

 $\int (m,c)$
Parameter Space

A(m,c)

Problems with **Parametrization**

A(m,c)

How big does the accumulator need to be for the parameterization (m,c)?

Problems with **Parametrization**

How big does the accumulator need to be for the parameterization (m,c)?

The space of m is huge!

A(m,c)

 $-\infty \le m \le \infty$

The space of c is huge!

$-\infty \leq C \leq \infty$

Lines: Slope intercept form

Lines: Normal form

$x\sin\theta + y\cos\theta = \rho$

Book's convention

$x\sin\theta + y\cos\theta + r = 0$ $r \ge 0$ $0 < \theta < 2\pi$

Image space

a point becomes?

Parameter space

Image space

Parameter space

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

a point becomes a wave

Image space

Parameter space

Image space

Parameter space

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

a line becomes a point

Image space

Parameter space

Image space

Parameter space

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

a line becomes a point

Image space

Parameter space

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

a line becomes a point

Image space

Parameter space

Image space

Parameter space Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Image space

Parameter space Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)