

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Image Credit: <u>http://cannibal-eshafeege.blogspot.com/2014/03/surf-error-free-matching-using-ransac.html</u>

Lecture 20: Object Recognition with SIFT, RANSAC

Menu for Today (October 24, 2018)

Topics:

 Object detection with SIFT Model fitting: RANSAC

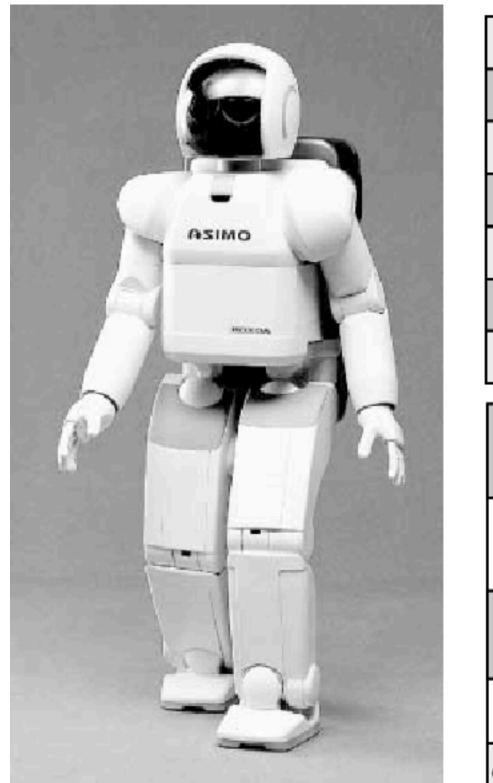
Redings:

- Today's Lecture: Forsyth & Ponce (2nd ed.) 10.1, 10.2
- **Next** Lecture: N/A

Reminders:

— Assignment 3: Texture Syntheis is out, due on October 29th

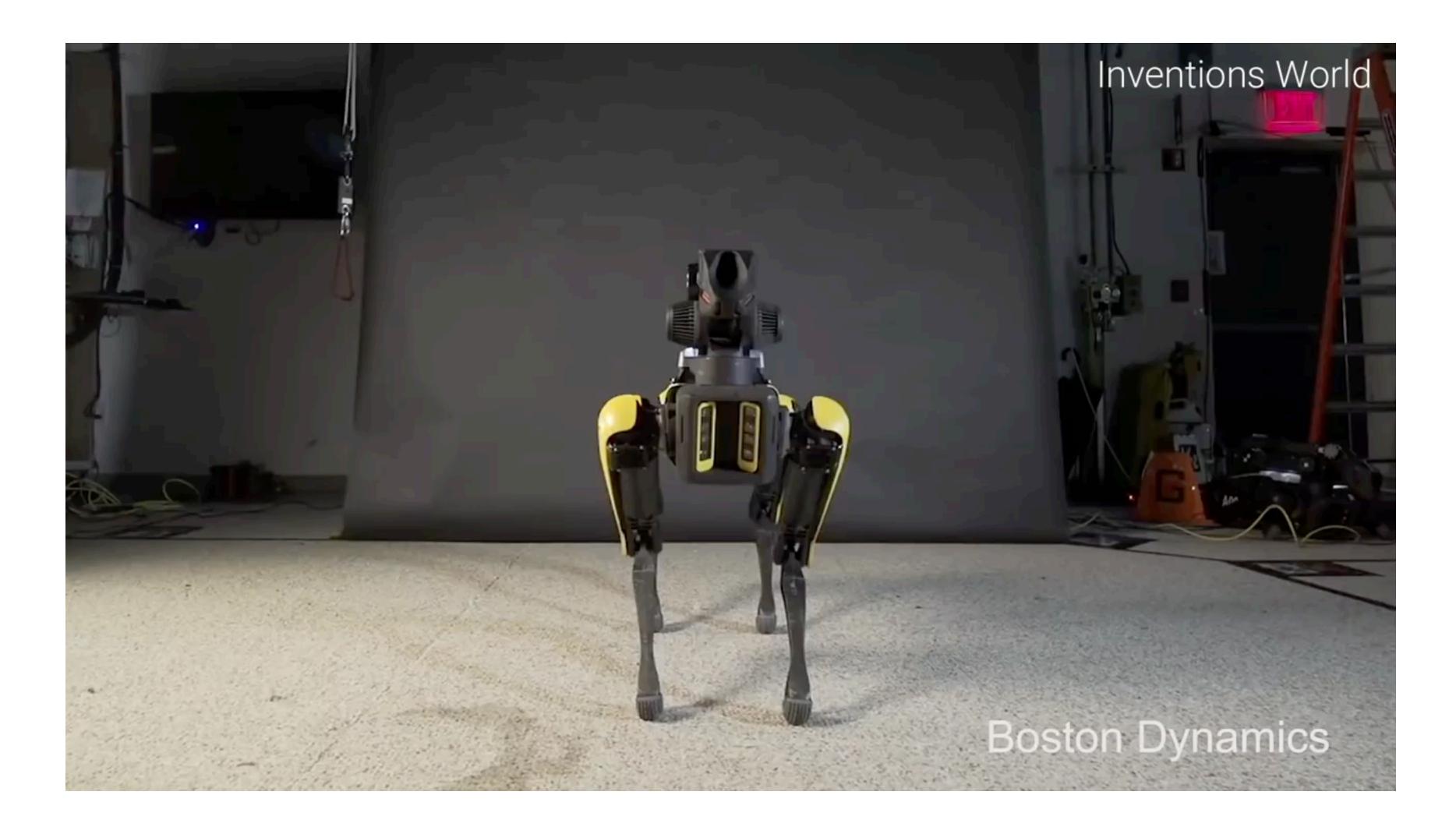
Today's "fun" Example: Honda's ASIMO Robot Advanced Step in Innovative MObility (ASIMO) Humanoid Robot



height		1200 mm	
depth		440 mm	
width		450mm	
weight		43kg	
walking speed		0–1.6 km h ⁻¹	
walking cycle		cycle adjustable, stride adjustable	
grasping force		0.5 kg/hand (5-finger hand)	
actuator	servomotor + harmonic speed reducer + drive unit		
control unit	walking/operating control unit wireless transmission unit		
sensors	foot: 6-axis force sensor torso: gyroscope, acceleration and sensor		
power system	38V/10AH (Ni-MH)		
operating system	workstation and portable controller		

Today's "fun" Example: Honda's ASIMO Robot

Today's "fun" Example: Boston Dynamics' Spot Mini



5

Lecture 19: Re-cap

Four steps to SIFT feature generation:

- 1. Scale-space representation and local extrema detection
- 2. Keypoint localization principal curvatures)
- 3. Keypoint orientation assignment
- 4. Keypoint descriptor - vector with $8 \times 4 \times 4 = 128$ dimensions

- select stable keypoints (threshold on magnitude of extremum, ratio of

Lecture 19: Re-cap

- Histogram of Oriented Gradients (**HoG**)
- Descriptor similar to SIFT
- Focuses on encoding oriented histogram of gradient magnitudes
- Redundant and high dimensional

SURF Descriptor

- Descriptor similar to SIFT
- Much smaller in size and faster to compute

- Characterizes gradient by sums of raw and absolute gradient in x- and y-dir

SIFT and Object Recognition

the database of keypoints

Many features will not have any correct match in the database because they arise from background clutter

good match

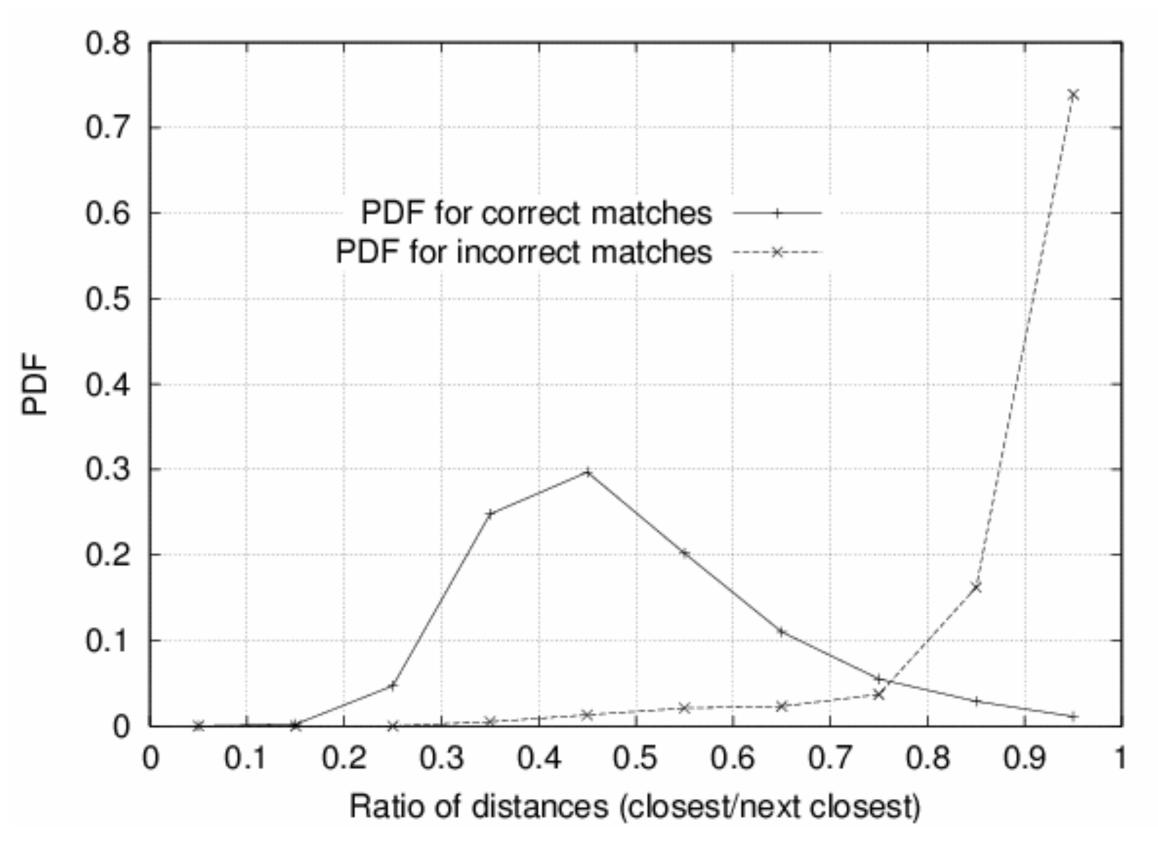
Object recognition requires us to first match each keypoint independently to

It would be useful to have a way to **discard features** that do not have any

Probability of **Correct** Match

(from different object)

Threshold of 0.8 provides excellent separation



Compare ratio of distance of **nearest** neighbour to **second** nearest neighbour

Nearest-Neighbor Matching to Feature Database

- Hypotheses are generated by **approximate nearest neighbour** matching of each feature to vectors in the database
- Use best-bin-first (Beis & Lowe, 97) modification to k-d tree algorithm
- Use heap data structure to identify bins in order by their distance from query point
- **Result**: Can give speedup by factor of 1,000 while finding nearest neighbour (of interest) 95% of the time

Identifying **Consistent** Features

We have matched keypoints to a database of known keypoints extracted from training images

Next we identify clusters of at least 3 features that agree on an object and its pose

- a typical image contains 2,000+ features \rightarrow detecting less than 1% inliers among 99% outliers!

Lowe's solution uses the generalized **Hough transform**

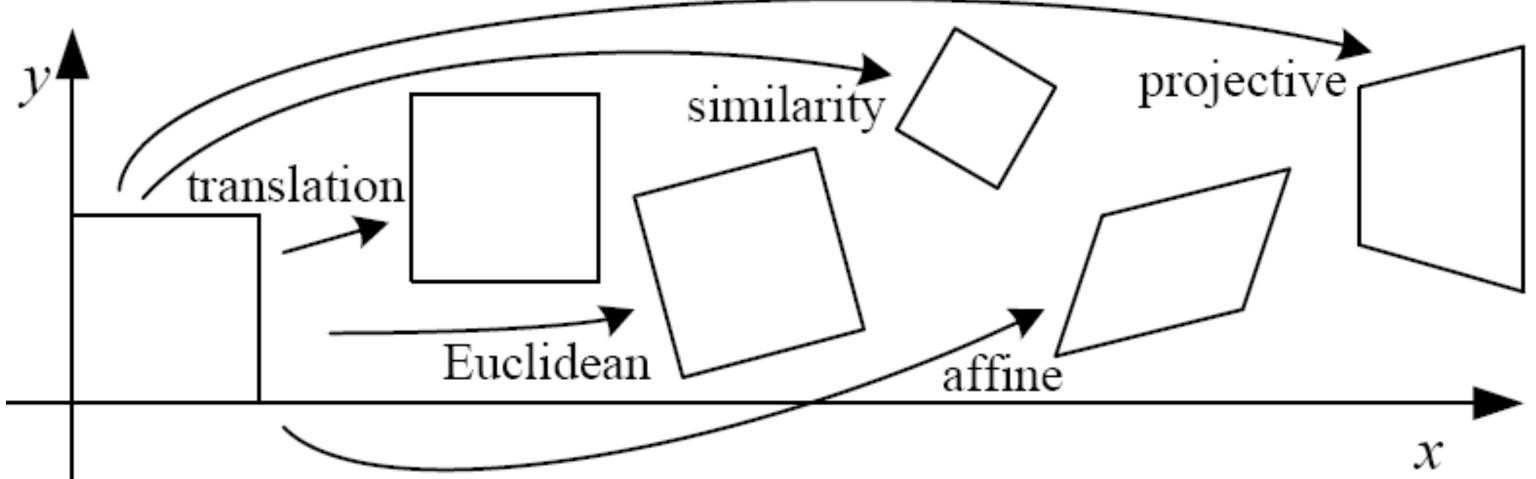
- vote for each potential match according to model ID and pose
- insert into multiple bins to allow for error in similarity approximation — (more on Hough transforms later)

Model Verification

- 1. Examine all clusters with at least 3 features
- 2. Perform least-squares affine fit to model
- 3. **Discard outliers** and perform top-down check for additional features
- 4. Evaluate probability that match is correct chance if object was not present (Lowe, CVPR 01)

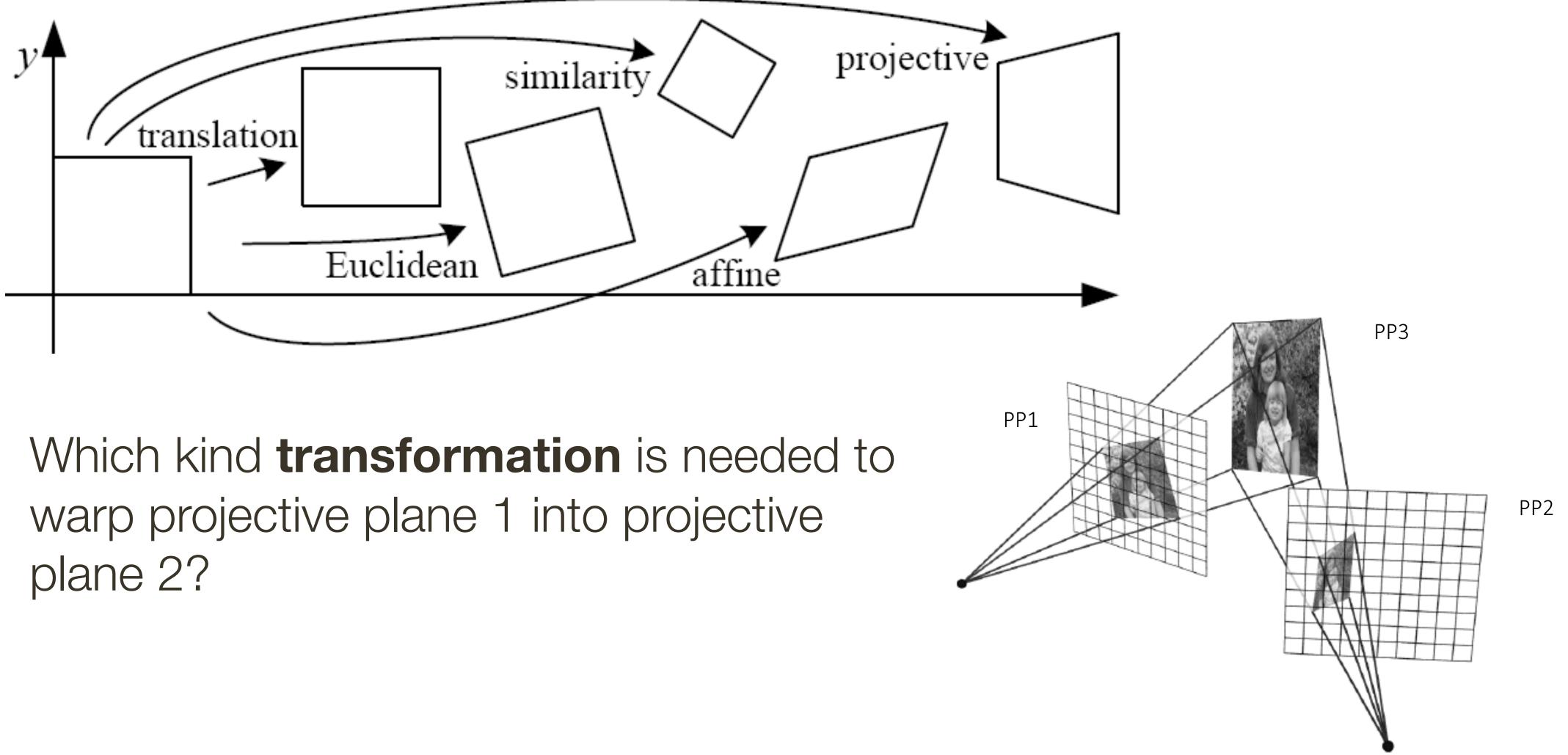
Use Bayesian model, with probability that features would arise by

Aside: Classification of 2D Transformations

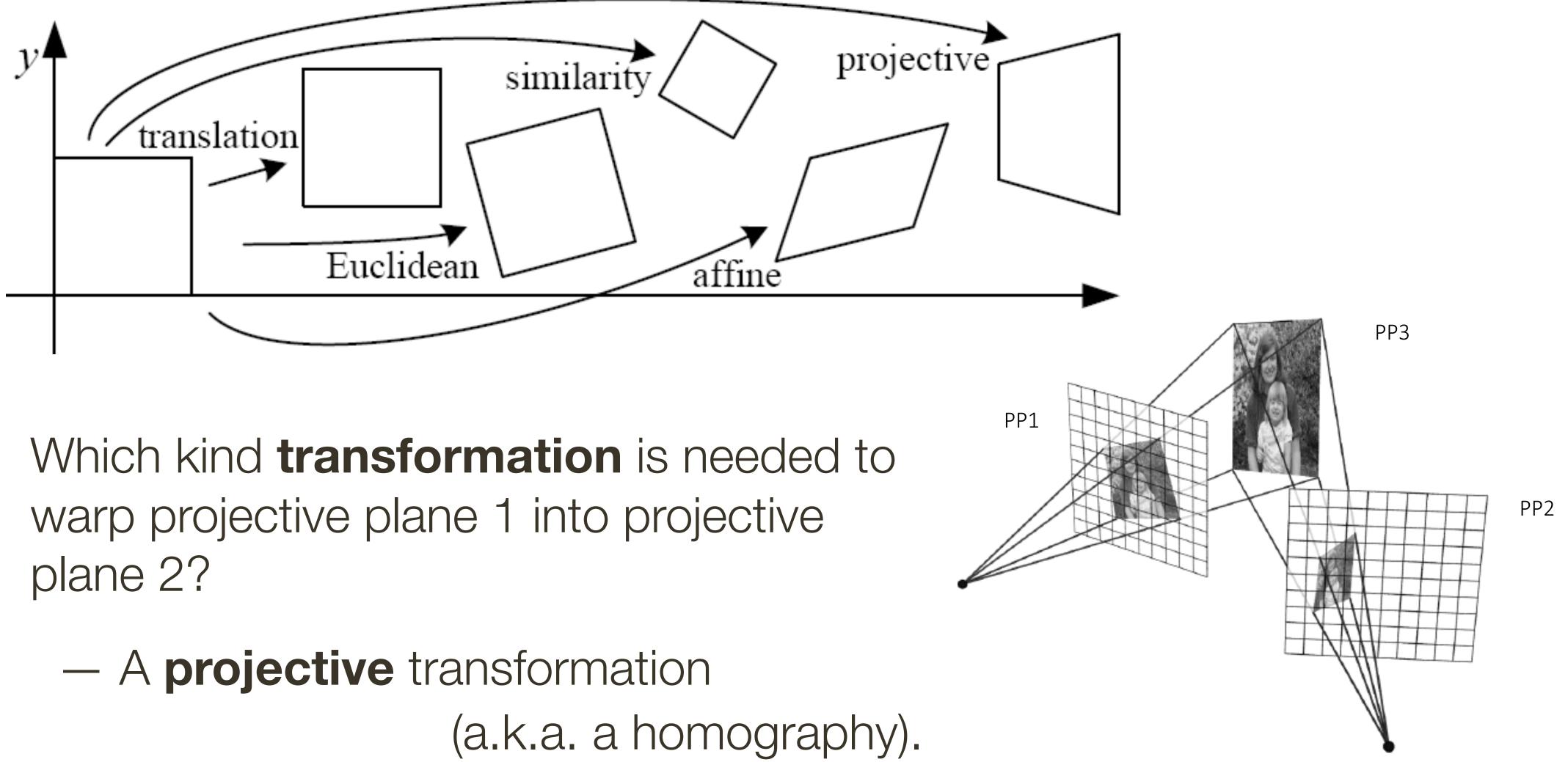


Name	Matrix	# D.O.F.
translation	$igg[egin{array}{c c} I & t \end{array} igg]_{2 imes 3} \end{array}$	2
rigid (Euclidean)	$igg[egin{array}{c c} m{R} & t \end{array} igg]_{2 imes 3} \end{array}$	3
similarity	$\left[\left. s oldsymbol{R} \right t ight]_{2 imes 3}$	4
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8

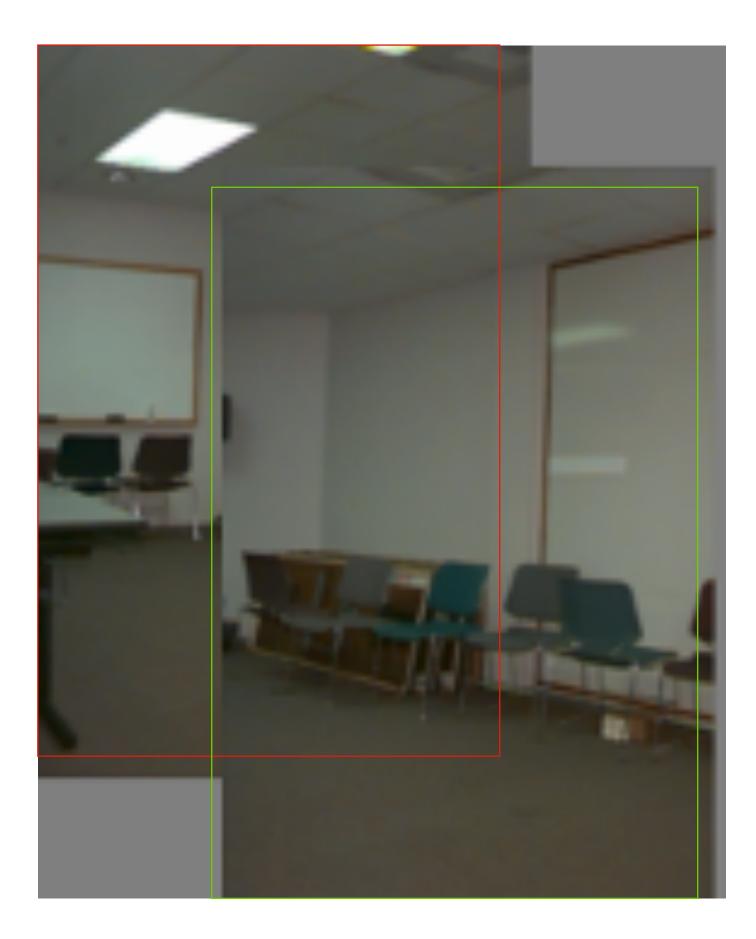
Aside: Classification of 2D Transformations

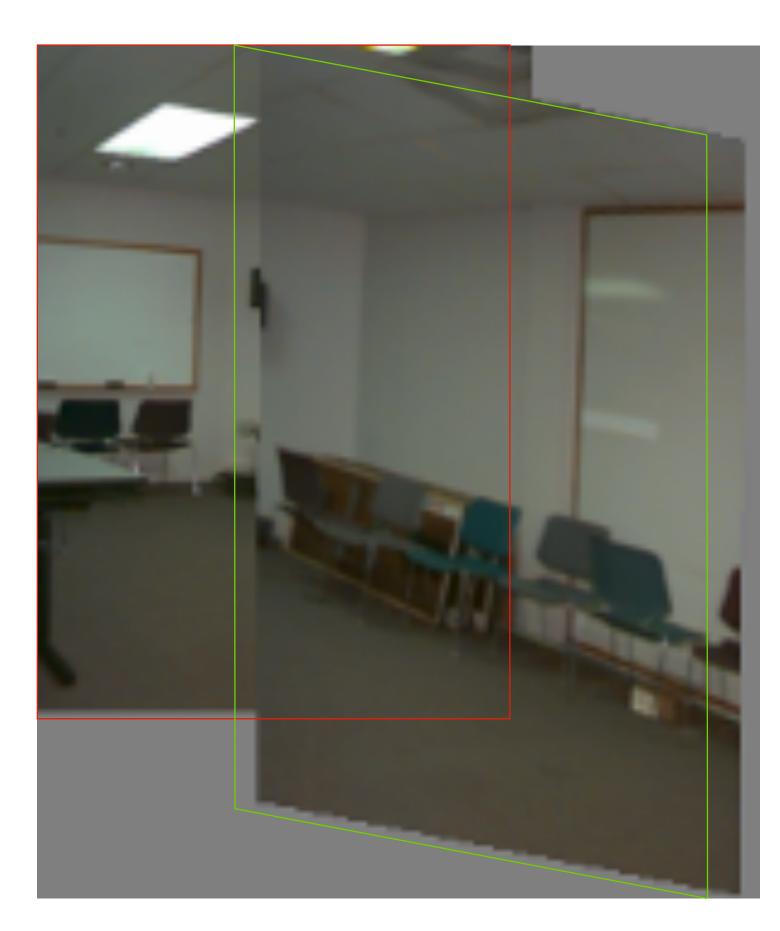


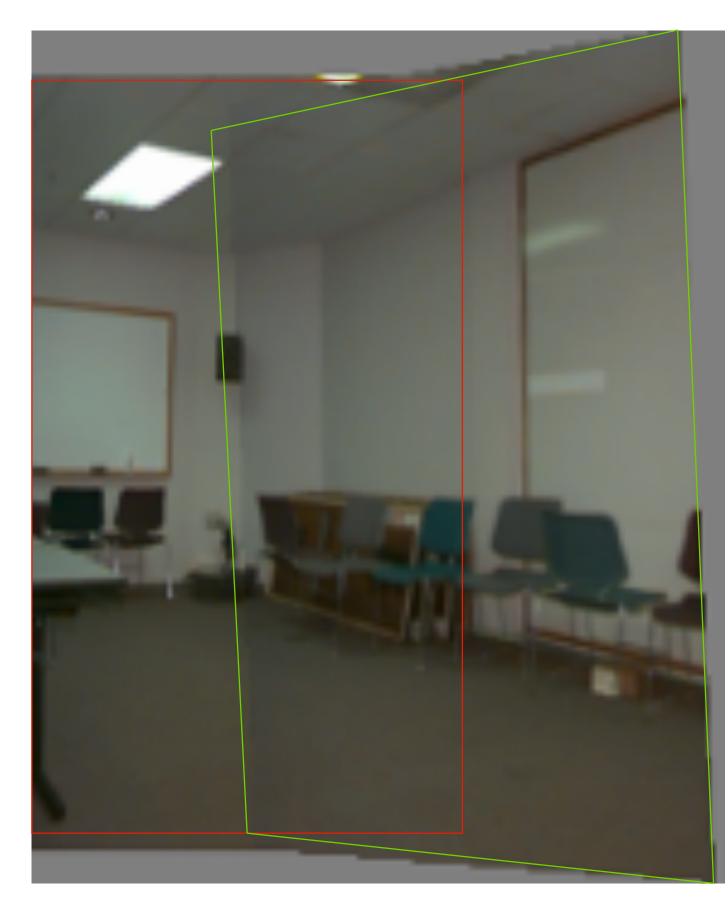
Aside: Classification of 2D Transformations



Aside: Warping with Different Transformations Projective Translation Affine (homography)



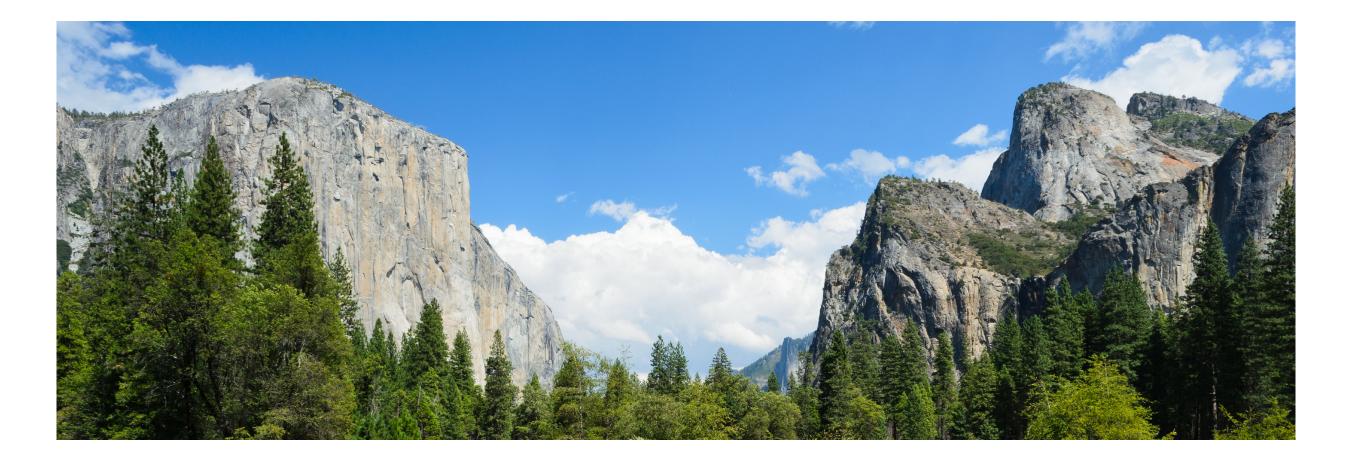




Aside: We can use homographies when ...

1.... the scene is planar; or

2.... the scene is very far or has small (relative) depth variation \rightarrow scene is approximately planar



Aside: We can use homographies when ...

3.... the scene is captured under camera rotation only (no translation) or pose change)

Solution for **Affine** Parameters

Affine transform of [x, y] to [u, v]

$$\left[\begin{array}{c} u \\ v \end{array}\right] = \left[\begin{array}{c} m_1 \\ m_3 \end{array}\right]$$

Rewrite to solve for **transformation** parameters:

$-x_1$	y_1	0	0
0	0	x_1	y_1
x_2	y_2	0	0
0	0	x_2	y_2
		• • •	• • •

$$\begin{array}{c} m_2 \\ m_4 \end{array} \right] \left[\begin{array}{c} x \\ y \end{array} \right] + \left[\begin{array}{c} t_x \\ t_y \end{array} \right]$$

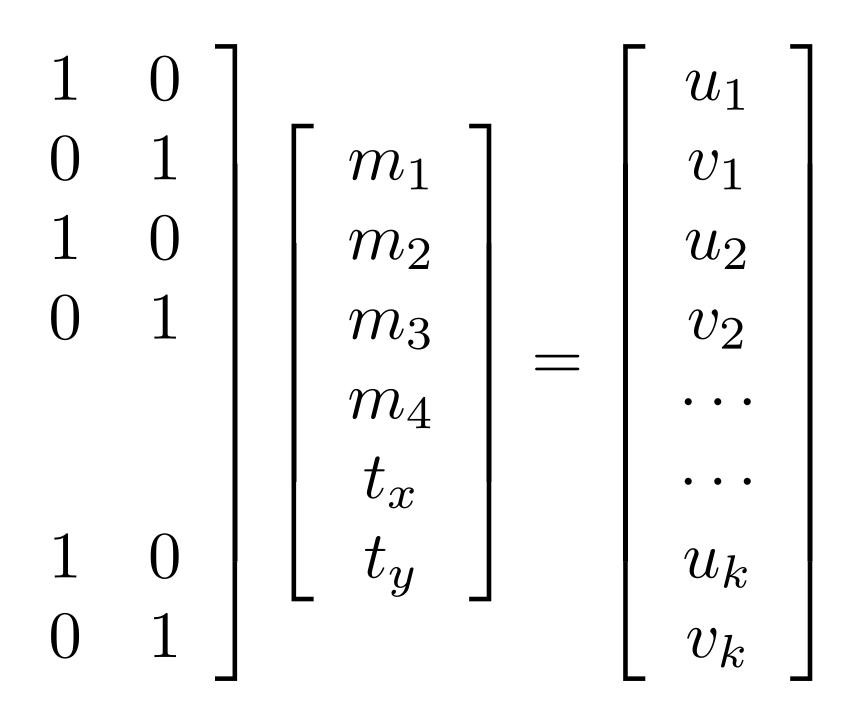
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ t_x \\ t_y \end{bmatrix} = \begin{bmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ \cdots \\ \cdots \end{bmatrix}$$

(6 equations 6 unknowns)

Solution for Affine Parameters

Suppose we have $k \ge 3$ matches, $[x_i, y_i]$ to $[u_i, v_i]$, $i = 1, 2, \cdots, k$ Then,

x_1	y_1	0	0
0	0	x_1	y_1
x_2	y_2	0	0
0	0	x_2	y_2
		• • •	• • •
		• • •	• • •
x_k	y_k	0	0
0	0	x_k	y_k

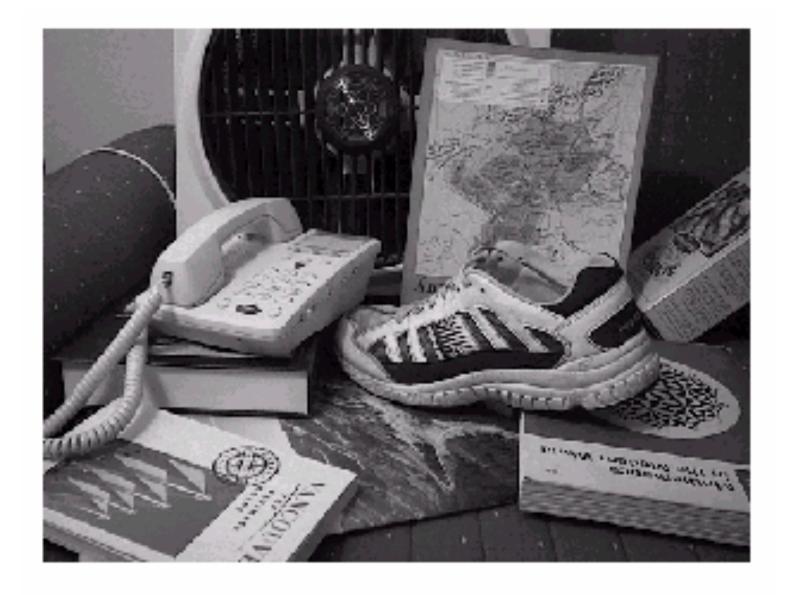


20

3D Object Recognition

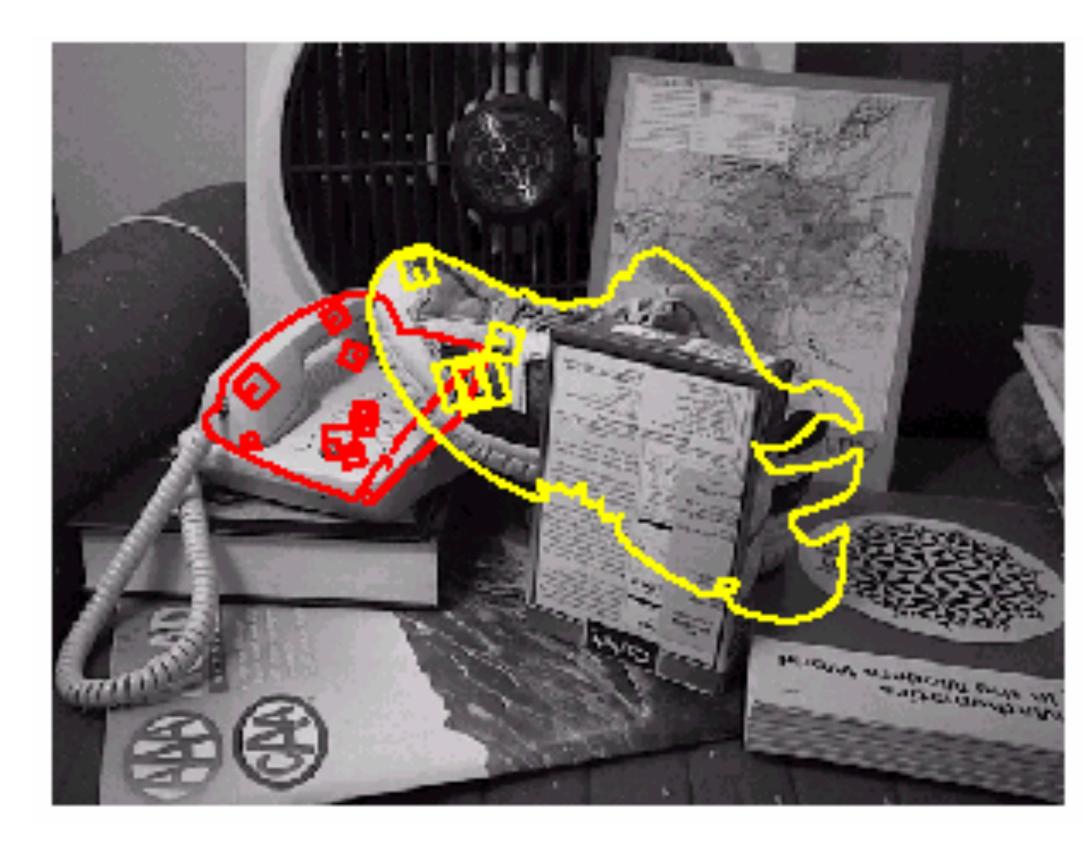
Extract outlines with background subtraction

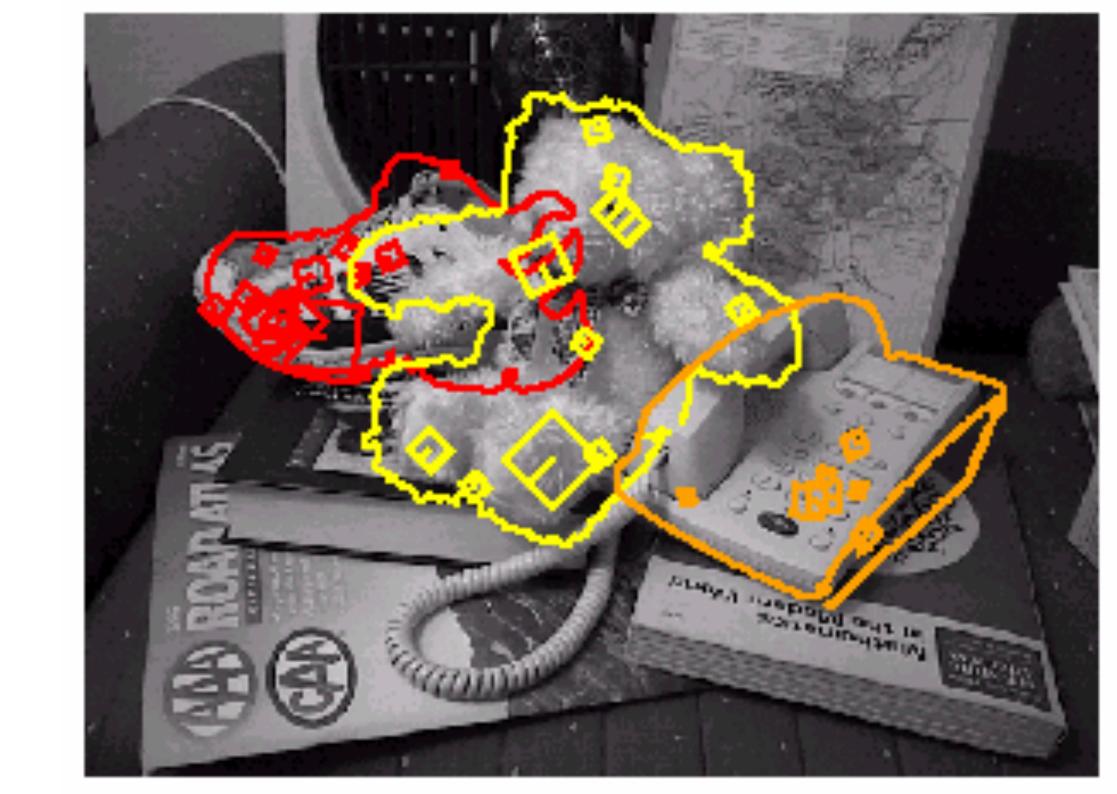
3D Object Recognition



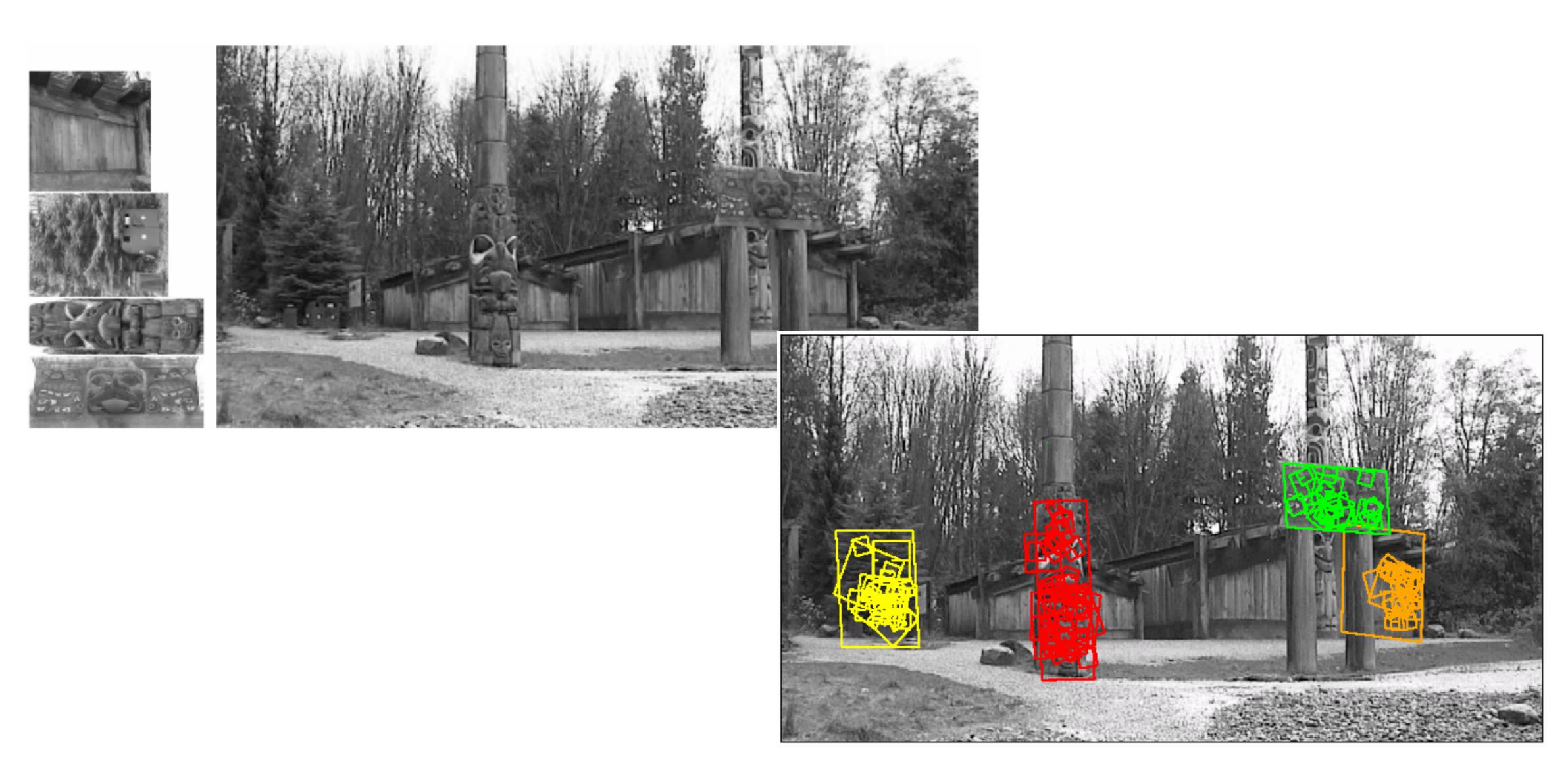
Only 3 keys are needed for recognition, so extra keys provide robustness

Recognition Under Occlusion





Location Recognition



Example 1: Sony Aibo

- SIFT Usage
- Recognize charging station
- Communicate with visual cards

AIBO[®] Entertainment Robot

Official U.S. Resources and Online Destinations

Summary of Object Recognition with SIFT

- Match each keypoint independently to database of known keypoints extracted from "training" examples
- use fast (approximate) nearest neighbour matching
- threshold based on ratio of distances to best and to second best match
- Identify clusters of (at least) 3 matches that agree on an object and a similarity pose
- use generalized Hough transform
- **Check each cluster found** by performing detailed geometric fit of affine transformation to the model
- accept/reject interpretation accordingly

Fitting a Model to Noisy Data Suppose we are **fitting a line** to a dataset that consists of 50% outliers

We can fit a line using two points

If we draw pairs of points uniformly at random, what fraction of pairs will consist entirely of 'good' data points (inliers)?

Fitting a Model to Noisy Data Suppose we are fitting a line to a dataset that consists of 50% outliers We can fit a line using two points

will consist entirely of 'good' data points (inliers)

points lie close to the line fitted to the pair

that lie close to the line

- If we draw pairs of points uniformly at random, then about 1/4 of these pairs
- We can identify these good pairs by noticing that a large collection of other
- A better estimate of the line can be obtained by refitting the line to the points

RANSAC (RANdom SAmple Consensus)

- sample)
- Size of consensus set is model's **support**
- 3. Repeat for N samples; model with biggest support is most robust fit
 - Points within distance t of best model are inliers
 - Fit final model to all inliers

1. Randomly choose minimal subset of data points necessary to fit model (a

2. Points within some distance threshold, t, of model are a **consensus set**.

Slide Credit: Christopher Rasmussen

RANSAC (**RAN**dom **SA**mple **C**onsensus)

- sample)
- Size of consensus set is model's support
- 3. Repeat for N samples; model with biggest support is most robust fit
 - Points within distance t of best model are inliers
 - Fit final model to all inliers

RANSAC is very useful for variety of applications

1. Randomly choose minimal subset of data points necessary to fit model (a

2. Points within some distance threshold, t, of model are a **consensus set**.

Slide Credit: Christopher Rasmussen

RANSAC (**RAN**dom **SA**mple **C**onsensus)

sample) Fitting a Line: 2 points

2. Points within some distance threshold, t, of model are a **consensus set**. Size of consensus set is model's **support**

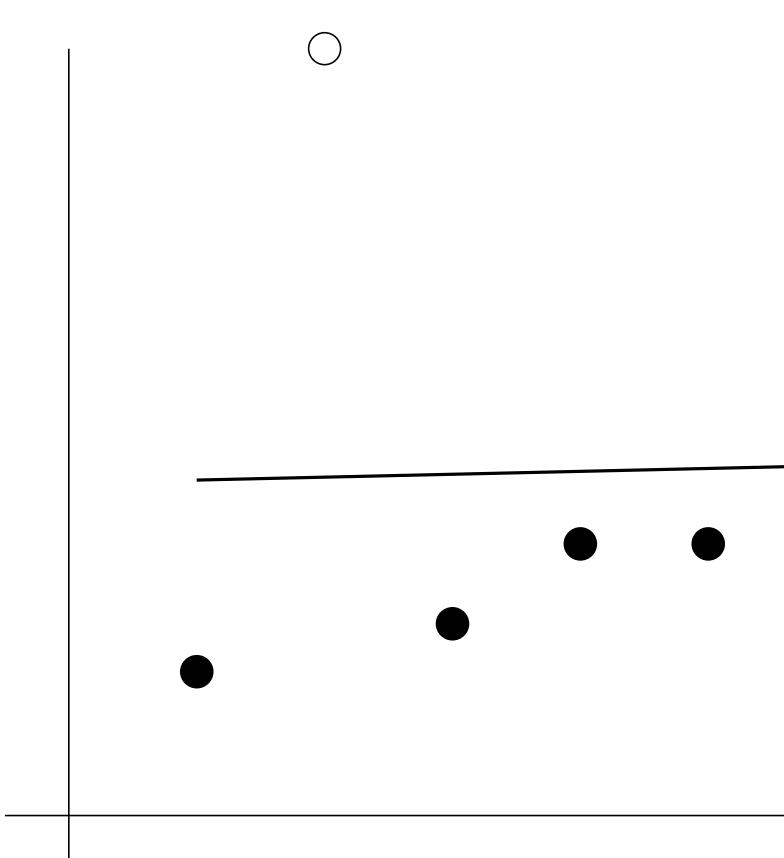
3. Repeat for N samples; model with biggest support is most robust fit Points within distance t of best model are inliers

- Fit final model to all inliers

1. Randomly choose minimal subset of data points necessary to fit model (a

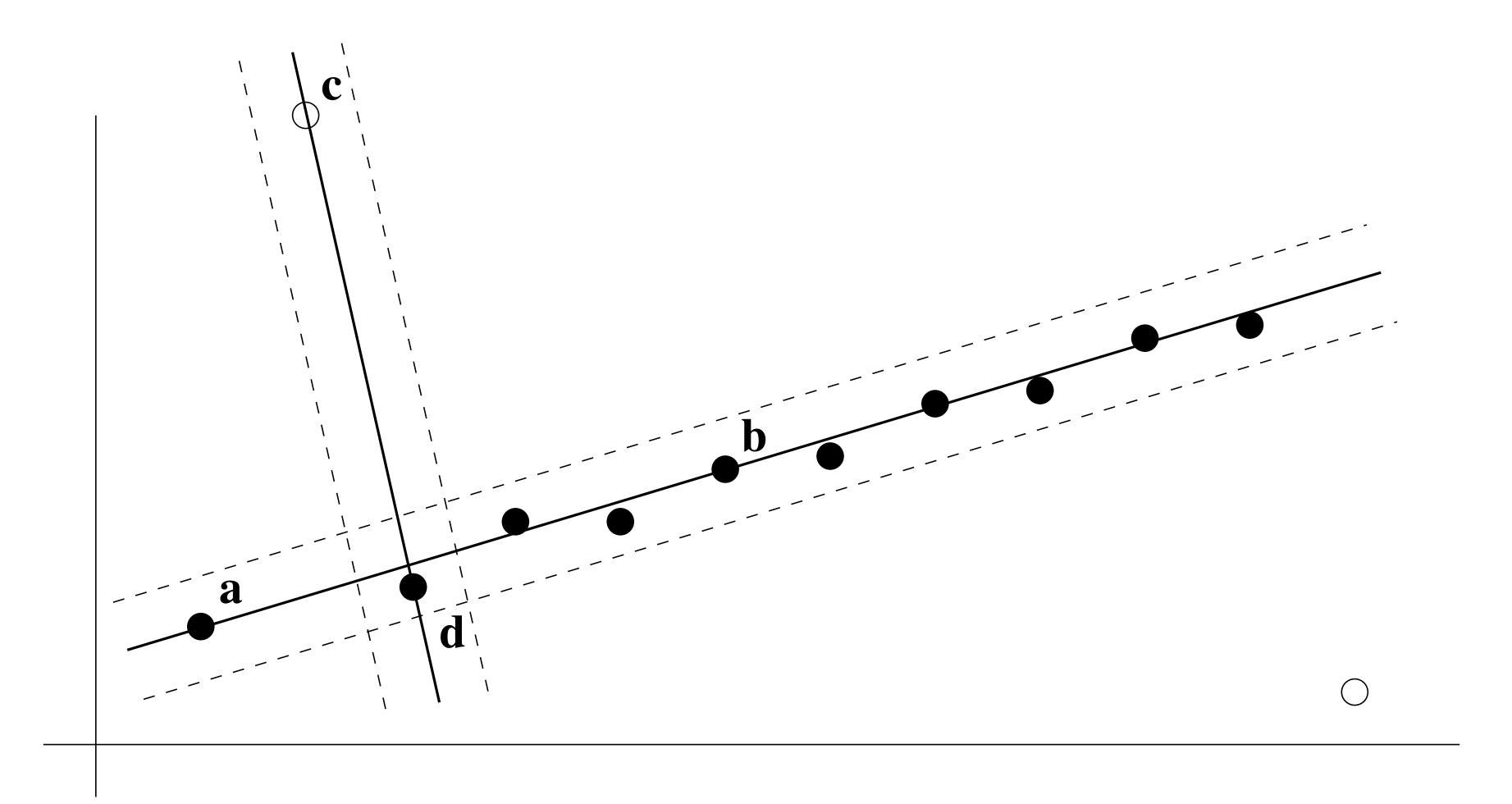
Slide Credit: Christopher Rasmussen

Example 1: Fitting a Line

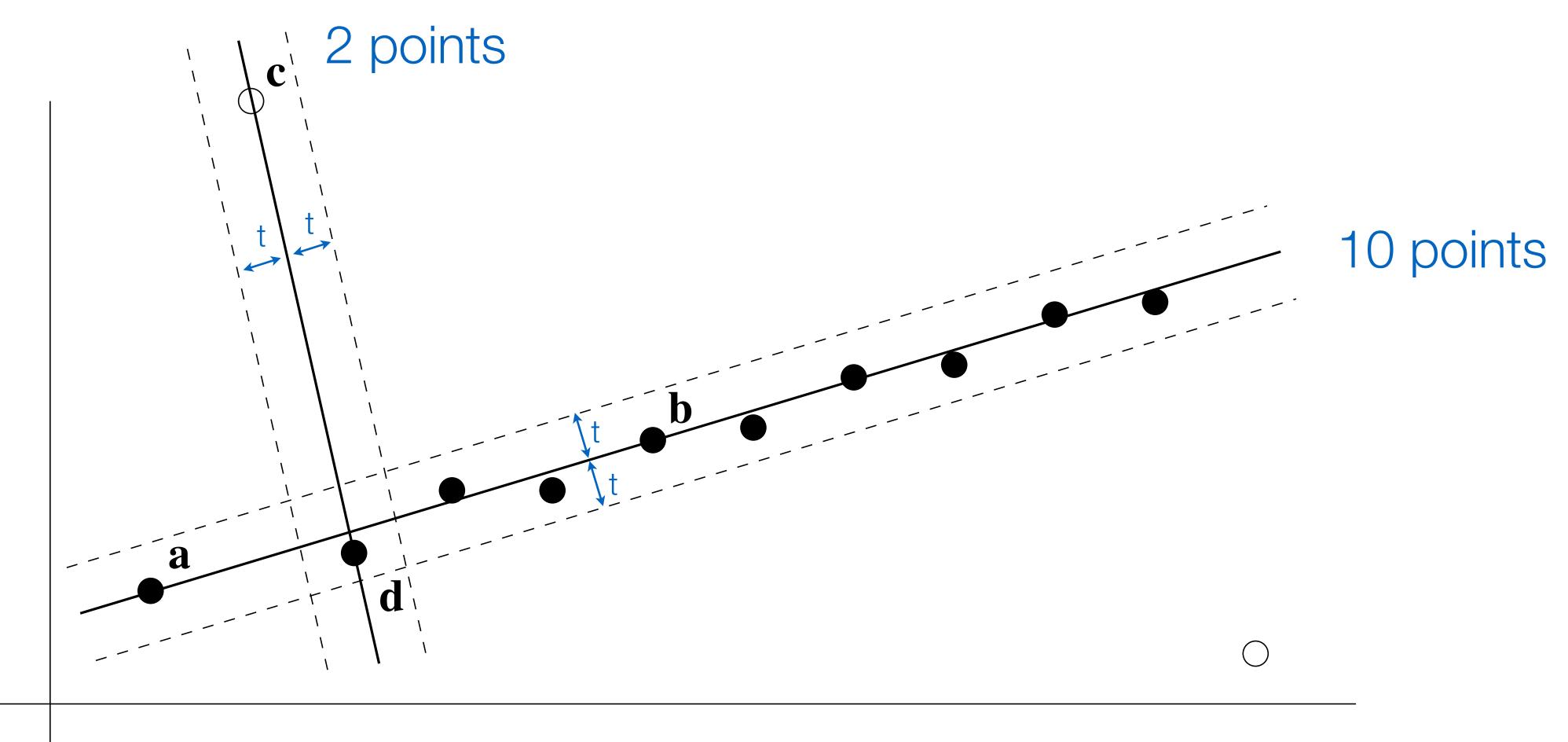


\bigcirc

Example 1: Fitting a Line



Example 1: Fitting a Line



Algorithm 10.4

This was Algorithm 15.4 in Forsyth & Ponce (1st ed.)

Algorithm 15.4: RANSAC: fitting lines using random sample consensus

Determine:

n — the smallest number of points required k — the number of iterations required t — the threshold used to identify a point that fits well d — the number of nearby points required to assert a model fits well Until k iterations have occurred Draw a sample of n points from the data uniformly and at random Fit to that set of n points For each data point outside the sample Test the distance from the point to the line against t; if the distance from the point to the line is less than t, the point is close endIf there are d or more points close to the line then there is a good fit. Refit the line using all these points. end Use the best fit from this collection, using the

fitting error as a criterion

RANSAC: Fitting Lines Using Random Sample Consensus

RANSAC: How many samples?

Let ω be the fraction of inliers (i.e., points on line)

- Let *n* be the number of points needed to define hypothesis (n = 2 for a line in the plane)
- Suppose k samples are chosen
- The probability that a single sample of n points is correct (all inliers) is

RANSAC: How many samples?

Let ω be the fraction of inliers (i.e., points on line)

- Let n be the number of points needed to define hypothesis (n = 2 for a line in the plane)
- Suppose k samples are chosen
- The probability that a single sample of n points is correct (all inliers) is

The probability that all k samples fail is

$$\omega^n$$

RANSAC: How many samples?

Let ω be the fraction of inliers (i.e., points on line)

- Let n be the number of points needed to define hypothesis (n = 2 for a line in the plane)
- Suppose k samples are chosen
- The probability that a single sample of n points is correct (all inliers) is

The probability that all k samples fail is Choose k large enough (to keep this below a target failure rate)

$$\omega^n$$

$$(-\omega^n)^k$$

RANSAC: *k* Samples Chosen (p = 0.99)

Sample size	Proportion of outliers						
n	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

After RANSAC

from minimal set of inliers

Improve this initial estimate with estimation over all inliers (e.g., with standard least-squares minimization)

But this may change inliers, so alternate fitting with re-classification as inlier/ outlier

RANSAC divides data into inliers and outliers and yields estimate computed

Example 2: Fitting a Line

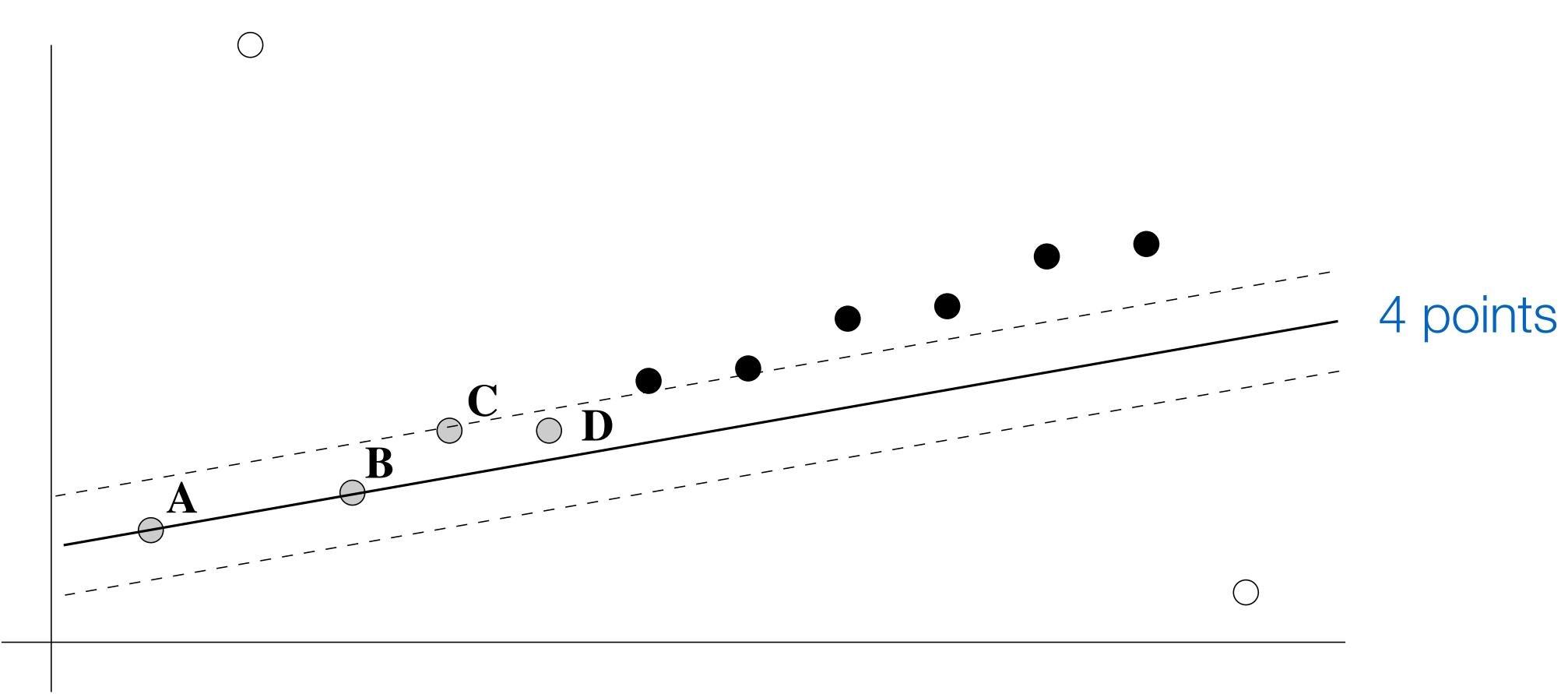


Figure Credit: Hartley & Zisserman

41

Example 2: Fitting a Line

