THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision
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Image Credit: http://cannibal-eshafeege.blogspot.com/2014/03/surt-error-free-matching-using-ransac.htmi

Lecture 20: Object Recognition with SIFT, RANSAC


http://cannibal-eshafeeqe.blogspot.com/2014/03/surf-error-free-matching-using-ransac.html

Menu for Today (october 24, 2018)

Topics:

— Object detection with SIFT
— Model fitting: RANSAC

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 10.1, 10.2
— Next Lecture: N/A

Reminders:

— Assignment 3: Texture Syntheis is out, due on October 29th



Today’s “fun” Example: Honda’s ASIMO Robot
Advanced Step In Innovative MODbility (ASIMO) Humanoid Robot

height i 1200mm

depth 440 mm

width 450 mm

weight 43kg
walking speed 0—1.6 km h™!
walking cycle | cycle adjustable, stride adjustable
grasping force 0.5 kg/hand (5-finger hand)

servomotor + harmonic speed reducer

actuator ) .
+ drive unit

walking/operating control unit

control unit . =3 4
wireless transmission unit

foot: 6-axis force sensor
SEMEI L torso: gyroscope, acceleration and sensor

power system | 38V/10AH (Ni-MH)

operating system | workstation and portable controller




Today’s “fun” Example: Honda’s ASIMO Robot
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Today’s “fun” Example: Boston Dynamics’ Spot Mini

Inventions World




Lecture 19: Re-cap

Four steps to SIFT feature generation:
1. Scale-space representation and local extrema detection

2. Keypoint localization
— select stable keypoints (threshold on magnitude of extremum, ratio of
orincipal curvatures)

3. Keypoint orientation assignment

4. Keypoint descriptor
— vector with 8 x 4 x 4 = 128 dimensions



Lecture 19: Re-cap

Histogram of Oriented Gradients (HoG)

— Descriptor similar to SIFT

— Focuses on encoding oriented histogram of gradient magnitudes
— Redundant and high dimensional

SURF Descriptor

— Descriptor similar to SIFT

— Characterizes gradient by sums of raw and absolute gradient in x- and y-dir
— Much smaller In size and faster to compute



SIFT and Object Recognition

Object recognition requires us to first match each keypoint independently to
the datalbase of keypoints

Many features will not have any correct match in the database because they
arise from background clutter

't would be useful to have a way to discard features that do not have any
good match



Probability of Correct Match

Compare ratio of distance of nearest neighbour to second nearest neighlbour
(from different object)

Threshold of 0.8 provides excellent separation
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Nearest-Neighbor Matching to Feature Database

Hypotheses are generated by approximate nearest neighbour matching of
each feature to vectors in the database

— Use best-bin—first (Beis & Lowe, 97) modification to k-d tree algorithm

— Use heap data structure to identify bins in order by their distance from query
poiNt

Result: Can give speedup by factor of 1,000 while finding nearest neighlbour
(of Interest) 95% of the time
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|dentifying Consistent Features

We have matched keypoints to a database of known keypoints extracted from
training iImages

Next we identify clusters of at least 3 features that agree on an object ano
ts pose

— a typical image contains 2,000+ features — detecting less than 1% inliers
among 99% outliers!

Lowe’s solution uses the generalized Hough transform
— vote for each potential match according to model ID and pose
— Insert iInto multiple bins to allow for error in similarity approximation

— (more on Hough transforms later)
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Model Verification

1. Examine all clusters with at least 3 features
2. Perform least-squares affine fit to model

3. Discard outliers and perform top-down check for additional features

4. Evaluate probability that match is correct

— Use Bayesian model, with probabillity that features would arise by
chance if object was not present (Lowe, CVPR 01)
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Aside: Classification of 2D Transformations
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Name Matrix #D.O.F.
translation [ 1 ‘ t ]2X3 2
rigid (Euclidean) [ R | t ]2><3 3
similarity [ sR | t ]2><3 4
ajiine [ A ]‘2><3 6
projective [ H ]:3><3 8

113 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Aside: Classification of 2D Transformations
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14 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Aside: Classification of 2D Transformations
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Which kind transformation is needed to
warp projective plane 1 into projective
plane 27

— A projective transformation
(a.k.a. a homography).
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Aside: \Warping with Different Transformations

Projective
Translation Affine (homography)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Aside: \We can use homographies when ...

1.... the scene Is planar; or

.... The scene Is very far
or has small (relative
depth variation = scene
IS approximately planar

17 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Aside: \We can use homographies when ...

3.... the scene is captured under camera rotation only (no translation
or pose change)

18 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Solution for Affine Parameters

Affine transform of |z, y] to |u, v]

U
U

L1 119 X
m3 Mg | | Y

|
_|_

Rewrite to solve for transformation parameters:

L1
0
L2

0

Y1
0

Y2
0

0 0 1 O 1

r1 y1 0 1 mo
0 0 1 0 T3
ro Y2 0 1 My
b
Ly

(6 equations 6 unknowns)
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Solution for Affine Parameters

Suppose we have k > 3 matches, |z;, ¥i] to |ui, vi], i = 1,2, ---

Then,

Yk

O = O =
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3D Object Recognition

Extract outlines with backgrounad
subtraction
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3D Object Recognition

Only 3 keys are needed for recognition,
SO extra keys provide robustness
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Recognition Under Occlusion
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Location Recognition




Example 1: Sony Aibo

AIBO® Entertainment Robot

Official U.S. Resources and Online Destinations

SIFT Usage
— Recognize charging station

— Communicate with visual cards

Energy Station
AIBOne

Pink Ball

AIBO Cards (15)

WLAN Manager CD
Lattery & AC Adapter

re-order Now!
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Summary of Object Recognition with SIFT

Match each keypoint independently to database of known keypoints
extracted from “training” examples

— use fast (approximate) nearest neighbour matching
— threshold based on ratio of distances to best and to second best match

|[dentify clusters of (at least) 3 matches that agree on an object and a
similarity pose

— use generalized Hough transform

Check each cluster found by performing detailed geometric fit of affine
transformation to the model

— accept/reject interpretation accordingly
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Fitting a Model to Noisy Data

Suppose we are fitting a line to a dataset that consists of 50% outliers

We can fit a line using two points

If we draw pairs of points uniformly at random, what fraction of

pairs will consist entirely of ‘good’ data points (inliers)”
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Fitting a Model to Noisy Data

Suppose we are fitting a line to a dataset that consists of 50% outliers

We can fit a line using two points

— |If we draw pairs of points uniformly at random, then about 1/4 of these pairs
will consist entirely of ‘good’ data points (inliers)

— We can identify these good pairs by noticing that a large collection of other
points lie close to the line fitted to the pair

— A better estimate of the line can be obtained by refitting the line to the points
that lie close to the line
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RANSAC (RANdom SAmple Consensus)

1. Randomly choose minimal subset of data points necessary to fit model (a
sample)

2. Points within some distance threshold, t, of model are a consensus set.
Size of consensus set Is model’s support

3. Repeat for N samples; model with biggest support is most robust fit
— Points within distance t of best model are inliers
— kit final model to all inliers

Slide Credit: Christopher Rasmussen
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RANSAC (RANdom SAmple Consensus)

1. Randomly choose minimal subset of data points necessary to fit model (a
sample)

2. Points within some distance threshold, t, of model are a consensus set.
Size of consensus set Is model’s support

3. Repeat for N samples; model with biggest support is most robust fit
— Points within distance t of best model are inliers
— kit final model to all inliers

RANSAC is very useful for variety of applications

Slide Credit: Christopher Rasmussen
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RANSAC (RANdom SAmple Consensus)

1. Randomly choose minimal subset of data points necessary to fit model (a
sample)

Fitting a Line: 2 points

2. Points within some distance threshold, t, of model are a consensus set.
Size of consensus set Is model’s support

3. Repeat for N samples; model with biggest support is most robust fit
— Points within distance t of best model are inliers
— kit final model to all inliers

Slide Credit: Christopher Rasmussen
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Example 1: Fitting a Line

Figure Credit: Hartley & Zisserman
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Example 1: Fitting a Line

Figure Credit: Hartley & Zisserman
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Example 1: Fitting a Line
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Figure Credit: Hartley & Zisserman
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Algorithm 10.4
This was Algorithm 15.4 in Forsyth & Ponce (1st ed.)

Algorithm 15.4: RANSAC: fitting lines using random sample consensus

Determine:
n — the smallest number of points required
k. — the number of iterations required
t — the threshold used to identify a point that fits well
d — the mumber of nearby points required
to assert a model fits well
Until £ iterations have oceurred
Draw a sample of n points from the data
uniformly and at random
Fit to that set of n points
For each data point outside the sample
Test the distance from the point to the line
against £; if the distance from the point to the line
is less than £, the point is close
end
If there are d or more points close to the line
then there is a good fit. Refit the line using all
these points.
endd
Use the best fit from this collection. using the
fitting error as a criterion

RANSAC: Fitting Lines Using Random Sample Consensus
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RANSAC: How many samples?

Let w be the fraction of inliers (1.e., points on line)

Let n be the number of points needed to define hypothesis
(n = 2 for a line in the plane)

Suppose k samples are chosen

The probabillity that a single sample of n points is correct (all inliers) is

36



RANSAC: How many samples?

Let w be the fraction of inliers (1.e., points on line)

Let n be the number of points needed to define hypothesis
(n = 2 for a line in the plane)

Suppose k samples are chosen

The probabillity that a single sample of n points is correct (all inliers) is

wn

The probabillity that all £ samples fail is
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RANSAC: How many samples?

Let w be the fraction of inliers (1.e., points on line)

Let n be the number of points needed to define hypothesis
(n = 2 for a line in the plane)

Suppose k samples are chosen

The probability that a single sample of n points is correct (all inliers) Is

wn

The probabillity that all £ samples fail is
(1 —w™)"
Choose k large enough (to keep this below a target failure rate)
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RANSAC: kK Samples Chosen (p = 0.99)

Sample
s1ze

N S% 10% 20% 25% 30% 40% 50%

Proportion of outhiers

Figure Credit: Hartley & Zisserman
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After RANSAC

RANSAC divides data into inliers and outliers and yields estimate computed
from minimal set of inliers

Improve this initial estimate with estimation over all inliers (e.g., with standard
least-squares minimization)

But this may change inliers, so alternate fitting with re-classification as inlier/
outlier
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Example 2: Fitting a Line

4 points

Figure Credit: Hartley & Zisserman
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Example 2: Fitting a Line

10 points

Figure Credit: Hartley & Zisserman
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