

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 19: SIFT cont., HOG, SURF

Menu for Today (October 22, 2018)

Topics:

- SIFT continued – HOG, SURF descriptors

Redings: - Today's Lecture: Forsyth & Ponce (2nd ed.) 5.4, 10.4.2 - **Next** Lecture: Forsyth & Ponce (2nd ed.) 10.1, 10.2

Reminders:

- Assignment 3: Texture Syntheis is out, due on October 29th

Object detection with SIFT - RANSAC intro

"Distinctive Image Features for Scale-Invariant Keypoints

- We motivated SIFT for identifying locally distinct keypoints in an image (detection)

robust to 3D pose and illumination

2. Keypoint localization

3. Orientation assignment

4. Keypoint descriptor

- SIFT features (**description**) are invariant to translation, rotation, and scale;

- 1. Multi-scale extrema detection

Keypoint is an image location at which a descriptor is computed

- Locally distinct points
- Easily localizable and identifiable
- The feature **descriptor** summarizes the local structure around the key point
- Allows us to (hopefully) unique matching of keypoints in presence of object pose variations, image and photometric deformations

Note, for repetitive structure this would still not give us unique matches.

Keypoint is an image location at which a descriptor is computed

- Locally distinct points
- Easily localizable and identifiable
- The feature **descriptor** summarizes the local structure around the key point
- Allows us to (hopefully) unique matching of keypoints in presence of object pose variations, image and photometric deformations

Note, for repetitive structure this would still not give us unique matches.

Keypoint is an image location at which a descriptor is computed

- Locally distinct points
- Easily localizable and identifiable
- The feature **descriptor** summarizes the local structure around the key point
- Allows us to (hopefully) unique matching of keypoints in presence of object pose variations, image and photometric deformations

Note, for repetitive structure this would still not give us unique matches.

Locally distinct

Locally non-distinct

Keypoint is an image location at which a descriptor is computed

- Locally distinct points
- Easily localizable and identifiable
- The feature **descriptor** summarizes the local structure around the key point
- Allows us to (hopefully) unique matching of keypoints in presence of object pose variations, image and photometric deformations

Note, for repetitive structure this would still not give us unique matches.

Locally distinct

Keypoint is an image location at which a descriptor is computed

- Locally distinct points
- Easily localizable and identifiable
- The feature **descriptor** summarizes the local structure around the key point
- Allows us to (hopefully) unique matching of keypoints in presence of object pose variations, image and photometric deformations

Note, for repetitive structure this would still not give us unique matches.

Locally distinct

- We motivated SIFT for identifying locally distinct keypoints in an image (detection)

robust to 3D pose and illumination

2. Keypoint localization

3. Orientation assignment

4. Keypoint descriptor

- SIFT features (**description**) are invariant to translation, rotation, and scale;

- 1. Multi-scale extrema detection

1. Multi-scale Extrema Detection

Half the size

Difference of Gaussian (DoG)

1. Multi-scale Extrema Detection Detect maxima and minima of Difference of Gaussian in scale space

Selected if larger than all 26 neighbors

Difference of Gaussian (DoG)

1. Multi-scale Extrema Detection

- Detect maxima and minima of Difference of Gaussian in scale space
- Responds to blob-line and corner-like structues
- Could also give strong responses at edges

2. Keypoint Localization

— After keypoints are detected, we read a poorly localized along an edge

How do we decide whether a keypoint is poorly localized, say along an edge, vs. well-localized?

 $C = \begin{bmatrix} \sum_{p \in P} \\ \sum_{p \in P} \end{bmatrix}$

- After keypoints are detected, we remove those that have low contrast or

$$\left[egin{array}{ccc} I_x I_x & \sum\limits_{p \in P} I_x I_y \ P & p \in P \end{array}
ight] \left[egin{array}{ccc} I_y I_x & \sum\limits_{p \in P} I_y I_y \ P & p \in P \end{array}
ight]$$

3. Orientation Assignment

- Create **histogram** of local gradient directions computed at selected scale
- Assign canonical orientation at peak of smoothed histogram
- Each key specifies stable 2D coordinates (x, y, scale, orientation)

4. SIFT Descriptor

Thresholded image gradients are sampled over 16 × 16 array of locations in scale space (weighted by a Gaussian with sigma half the size of the window)
Create array of orientation histograms
8 orientations × 4 × 4 histogram array

4. SIFT Descriptor

How many dimensions are there in a SIFT descriptor?

(**Hint**: This diagram shows a 2 x 2 histogram array but the actual descriptor uses a 4 x 4 histogram array)

Demo

4. SIFT Descriptor

Descriptor is **normalized** to unit length (i.e. magnitude of 1) to reduce the effects of illumination change

- if brightness values are scaled (multiplied) by a constant, the gradients are scaled by the same constant, and the normalization cancels the change

- if brightness values are increased/decreased by a constant, the gradients do not change

Feature Stability to **Noise**

levels of image noise

Find nearest neighbour in database of 30,000 features

Match features after random change in image scale & orientation, with differing

Feature Stability to Affine Change

Match features after random change in image scale & orientation, with differing levels of image noise

Find nearest neighbour in database of 30,000 features

Distinctiveness of Features

noise

Measure % correct for single nearest neighbour match

Vary size of database of features, with 30 degree affine change, 2% image

Summary

Four steps to SIFT feature generation:

1. Scale-space representation and local extrema detection

- use DoG pyramid
- 3 scales/octave, down-sample by factor of 2 each octave

2. Keypoint localization

- select stable keypoints (threshold on magnitude of extremum, ratio of principal curvatures)

3. Keypoint orientation assignment

- based on histogram of local image gradient directions

4. Keypoint descriptor

— histogram of local gradient directions — vector with $8 \times (4 \times 4) = 128$ dim

vector normalized (to unit length)

Histogram of Oriented Gradients (HOG) Features

Dalal, Triggs. Histograms of Oriented Gradients for Human Detection. CVPR, 2005

Single scale, no dominant orientation

Histogram of Oriented Gradients (HOG) Features

Pedestrian detection

128 pixels 16 cells 15 blocks

1 cell step size

64 pixels 8 cells 7 blocks

Redundant representation due to overlapping blocks

visualization

 $15 \times 7 \times 4 \times 36 =$ 3780

'Speeded' Up Robust Features (SURF)

4 x 4 cell grid

Each cell is represented by 4 values: $\left[\sum d_x, \sum d_y, \sum |d_x|, \sum |d_y|\right]$

Haar wavelets filters (Gaussian weighted from center)

How big is the SURF descriptor? 64 dimensions

'Speeded' Up Robust Features (SURF)

