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Menu for Today (october 19, 2018)

Topics:
— Scale Invariant Feature Transform (SIFT) — SIFT Descriptor
— SIFT Detector — Analysis of stability

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 5.4
“Distinctive Image Features for Scale-Invariant Keypoints
— Next Lecture: Forsyth & Ponce (2nd ed.) 10.4.2, 10.1, 10.2

Reminders:

— Assignment 3: Texture Syntheis is out, due on October 29th




Today’s “fun” Example: Dazzle Camouflage

A type of ship camouflage that uses strongly contrasted colours and shapes to
make it difficult to estimate the ship’s speed and heading




Today’s “fun” Example: Dazzle Camouflage

A type of ship camouflage that uses strongly contrasted colours and shapes to
make it difficult to estimate the ship’s speed and heading

Difficult long-
range attack



Lecture 16: Re-cap

— Human colour perception
— colour matching experiments
— additive and subtractive matching
— principle of trichromacy

— RGB and CIE XYZ are linear colour spaces

— Uniform colour space: differences in coordinates are a good guide to
differences In perceived colour

— HSV colour space: more intuitive description of colour for human
INnterpretation

— (Human) colour constancy: perception of intrinsic surface colour under
different colours of lighting



Back to Good Local Features

Where are the good features, and

how do we match them?

6 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Photometric [ranstormations

ve Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Geometric Transformations

Multiple View
Geometry

10 COMAuLer vision

objects will appear at different scales,
translation and rotation

g Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Lets assume for the moment we can figure out where the good features
(patches) are ... how do we match them?



Intensity Image

Just use the pixel values of the patch

= (EIEEOE - EEEEYY)

vector of intensity values

Perfectly fine If geometry and appearance Is unchanged

(a.k.a. template matching)

What are the problems”?

10 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Intensity Image

Just use the pixel values of the patch

= (EIEEOE - EEEEYY)

vector of intensity values

Perfectly fine If geometry and appearance Is unchanged

(a.k.a. template matching)

What are the problems”?

How can you be less sensitive to absolute intensity values®?

11 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Image Gradients / Edges

Use pixel differences

=L = )

vector of x derivatives

Feature Is invariant to absolute intensity values

What are the problems”?

19 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Image Gradients / Edges

Use pixel differences

=L = )

vector of x derivatives

Feature Is invariant to absolute intensity values

What are the problems”?

How can you be less sensitive to deformations”?

113 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Where does SIFT fit In

Representation Result is. .. Approach Technique
tamplate (normalized)
Intensity dense (2D) mat(F:)hin correlation,
J SSD
relatively s 5
edge sparse (1D) derivatives V-G, Canny
‘corner” sparse (0D) LZZ?LIXGS'SUHCJ[ Harris, SIFT

14




Object Recognition with Invariant Features

Task: |dentity objects or scenes and determine their pose and model
parameters

Applications:

— Industrial automation and inspection
— Mobile robots, toys, user interfaces

— Location recognition

— Digital camera panoramas

— 3D scene modeling, augmented reality
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David Lowe’s Invariant Local Features

Image content Is transformed into local feature coordinates that are invariant to
translation, rotation, scale, and other Imaging parameters

SIFT Features

10



Advantages of Invariant Local Features

Locality: features are local, so robust to occlusion and clutter (no prior
segmentation)

Distinctiveness: individual features can be matched to a large database of
objects

Quantity: many features can be generated for even small objects

Efficiency: close to real-time performance

17



cale Invariant Feature Transform (SIFT

é.‘ ..:‘ e ®,%8%2 - %% o e o :...?.

SIFT describes both a detector and descriptor

18 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



1. Multi-scale Extrema Detection

Half the size
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1. Multi-scale Extrema Detection

Laplacian
20



1. Multi-scale Extrema Detection

Detect maxima and minima of Difference of Gaussian in scale space
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)
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1. Multi-scale Extrema Detection — Sampling Frequency

More points are found as sampling frequency increases, but accuracy of matching
decreases after 3 scales/octave
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2. Keypoint Localization

— After keypoints are detected, we remove those that have low contrast or
are poorly localized along an edge

23



2. Keypoint Localization

— After keypoints are detected, we remove those that have low contrast or
are poorly localized along an edge

How do we decide whether a keypoint is poorly localized, say along an edge,
vs. well-localized?

24



2. Keypoint Localization

— After keypoints are detected, we remove those that have low contrast or
are poorly localized along an edge

How do we decide whether a keypoint is poorly localized, say along an edge,
vs. well-localized?

oy LI, > 1.1, 7
C peP peP

2 Lyl ). Iyl
L pEP pEP |
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2. Keypoint Localization

— After keypoints are detected, we remove those that have low contrast or
are poorly localized along an edge

How do we decide whether a keypoint is poorly localized, say along an edge,
vs. well-localized?

— Lowe suggests computing the ratio of the eigenvalues of C (recall Harris
corners) and checking if it is greater than a threshold

— Aside: The ratio can be computed efficiently in fewer than 20 floating point
operations, using a trick involving the trace and determinant of C - no need to
explicitly compute the eigenvalues

20



2. Keypoint Localization

—ample (a) 233 x 189
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¢ -

~ A , - > 4 ;
: - \l-;.: ‘.‘V‘ l' J.
— L S "\_ : - :. ’,:': r - - e -
o PEEl T g O \ =/
a 1-1_-11 | ok " . l b 832 DOG
| lu"' g AV i o4 B us 'ﬁ' ' - R e ;’ ( )
X L VA i _ 3
g s extrema
16”! BNERBNE LY % ® L= ‘.-"‘ > - e R | ‘
] — 3 i " g, 3

J..:.Jl T

(c) 729 left after
peak value
threshold

(d) 536 left after
testing ratio
of principal
curvatures

27



3. Orientation Assignment

— Create histogram of local gradient
directions computed at selected scale /

— Assign canonical orientation at peak
of smoothed histogram

— Each key specifies stable 2D
coordinates (x , vy , scale, orientation)

28



4. Keypoint Description

We have seen how to assign a location, scale, and orientation to each key point
— keypoint detection

— [he next step Is to compute a keypoint descriptor: should be robust to
local shape distortions, changes in illumination or 3D viewpoint

— Keypoint detection Is not the same as keypoint description, e.g. some
applications skip keypoint detection and extract SIFT descriptors on a regularly
spaced grio

29



4. SIFT Descriptor

— Thresholded image gradients are sampled over 16 x 16 array of locations in
scale space (weighted by a Gaussian with sigma half the size of the window)

— Create array of orientation histograms
— 8 orientations x 4 x 4 histogram array

Image gradients Keypoint descriptor

30



4. SIFT Descriptor

How many dimensions are there in a SIFT descriptor”?

(Hint: This diagram shows a 2 x 2 histogram array but the actual descriptor
uses a 4 x 4 histogram array)

Image gradients Keypoint descriptor

31



