
Lecture 17: Midterm Review

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )





Menu for Today (October 15, 2018)
Topics: 

— Midterm Review 

Redings: 

— Today’s Lecture:  N/A 

— Next Lecture:       N/A

Reminders: 

— Assignment 3: Texture Syntheis is out, due on October 29th  

— Midterm next class, Wednsday October 17th



Lecture 16: Re-cap
Human colour perception 
— colour matching experiments 
— additive and subtractive matching  
— principle of trichromacy  

RGB and CIE XYZ are linear colour spaces  

Uniform colour space: differences in coordinates are a good guide to 
differences in perceived colour  

HSV colour space: more intuitive description of colour for human interpretation 

(Human) colour constancy: perception of intrinsic surface colour under 
different colours of lighting 
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Midterm Details

50 minutes 

Closed book, no calculators  

Format similar to posted practice problems  
      — Part A: Multiple-part true/false 
      — Part B: Short answer  

No coding questions  

No complex math questions (see no calculators above)
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Midterm Review: Readings

Lecture 1–15 slides  

Assigned readings from Forsyth & Ponce (2nd ed.) 
— Paper “Texture Synthesis by Non-parametric Sampling”  

Assignments 1–2 

iClicker questions (come see me) 

Lecture exercises / examples 

Practice problems (with solutions)  
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Paths  to Understanding 

Five distinct “paths” to a deeper understanding of CPSC 425 course material:  

1. mathematics (i.e., theory)  

2. “visualize” computation(s)  

3. experiment  
       — on simple (test) cases  
       — on real images  

4. read code  

5. write code 
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Overview: Image Formation, Cameras and Lenses

The image formation process that produces a particular image depends on 
— Lightening condition 
— Scene geometry 
— Surface properties  
— Camera optics 

Sensor (or eye) captures amount of light reflected from the object

source

surface 
element

normal

sensor

eye
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Camera Obscura (latin for “dark chamber”)

Reinerus Gemma-Frisius observed an eclipse of the sun at Louvain on January 
24, 1544. He used this illustration in his book, “De Radio Astronomica et 
Geometrica,” 1545. It is thought to be the first published illustration of a camera 
obscura.  

Credit: John H., Hammond, “Th Camera Obscure, A Chronicle”

principles behind the pinhole camera or camera obscura were first 
mentioned by Chinese philosopher Mozi (Mo-Ti) (470 to 390 BCE)
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Pinhole Camera (Simplified) 

x’

x

zf’

image
plane

pinhole object

f’ is the focal length of the camera 

Note: In a pinhole camera we can adjust the focal length, all this will do is change the size of the resulting image 
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x’

x

zf’

image
plane

pinhole object

f’

x’

image
plane

Pinhole Camera (Simplified) 
It is convenient to think of the image plane which is in from of the pinhole

What happens if object moves towards the camera? Away from the camera? 
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Perspective Projection

P =

2

4
x

y

z

3

5
P

0 =


x

0

y

0

� x

0 = f

0 x

z

y

0 = f

0 y

z

Forsyth & Ponce (1st ed.) Figure 1.4 

Note: this assumes world coordinate frame at the optical center (pinhole) and aligned with the image plane, image 
coordinate frame aligned with the camera coordinate frame
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Summary of Projection Equations 
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Sample Question: Image Formation

True of false: A pinhole camera uses an orthographic projection. 
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Why Not a Pinhole Camera?

— If pinhole is too big then many directions 
are averaged, blurring the image  

— If pinhole is too small then diffraction 
becomes a factor, also blurring the image  

— Generally, pinhole cameras are dark, 
because only a very small set of rays from a 
particular scene point hits the image plane  

— Pinhole cameras are slow, because only a 
very small amount of light from a particular 
scene point hits the image plane per unit time 

Image Credit: Credit: E. Hecht. “Optics,” Addison-Wesley, 1987 15



Pinhole Model (Simplified) with Lens

x’

x

z

image
plane

objectlens

z’
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Vignetting

Image Credit: Cambridge in Colour17



Chromatic Aberration 
— Index of refraction depends on wavelength, λ, of light  

— Light of different colours follows different paths 

— Therefore, not all colours can be in equal focus  

Image Credit: Trevor Darrell
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Lens Distortion 

Szeliski (1st ed.) Figure 2.13 

Fish-eye Lens

Lines in the world are no longer lines on the image, they are curves! 
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Sample Question: Cameras and Lenses

True of false: Snell’s Law describes how much light is reflected and how much 
passes through the boundary between two materials. 
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Compute the new pixel value,              , as the sum of             values, where 
each value is the product of the original pixel value in              and the 
corresponding values in the filter

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5I(X,Y )

F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y )

For a give     and   , superimpose the filter on the image centered at I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I 0(X,Y ) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

Linear Filters
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Linear Filter Example

I 0(X,Y ) =
kX
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kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output
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m = 5

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)22
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1.  Ignore these locations: Make the computation undefined for the top and  
     bottom k rows and the leftmost and rightmost k columns  

	2.  Pad the image with zeros: Return zero whenever a value of I is required    
      at some position outside the defined limits of X and Y  

	3.  Assume periodicity: The top row wraps around to the bottom row; the  
      leftmost column wraps around to the rightmost column  

Linear Filters: Boundary Effects 
Three standard ways to deal with boundaries: 
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— The correlation of               and             is:

43

  

— Visual interpretation: Superimpose the filter    on the image   at           , 
perform an element-wise multiply, and sum up the values  

— Convolution is like correlation except filter “flipped” 

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

          if                                       then correlation = convolution.F (X,Y ) = F (�X,�Y )
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j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

Linear Filters



Linear System: Characterization Theorem

Any linear, shift invariant operation can be expressed as a convolution  
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Linear System: Characterization Theorem

Any linear, shift invariant operation can be expressed as a convolution  

45

(`if and only if’ result)



Smoothing with a Gaussian

46

Idea: Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

Forsyth & Ponce (2nd ed.)  
Figure 4.2
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Efficient Implementation: Separability

A 2D function of x and y is separable if it can be written as the product of two 
functions, one a function only of x and the other a function only of y  

Both the 2D box filter and the 2D Gaussian filter are separable  

Both can be implemented as two 1D convolutions:  
— First, convolve each row with a 1D filter 
— Then, convolve each column with a 1D filter 
— Aside: or vice versa  

The 2D Gaussian is the only (non trivial) 2D function that is both separable and 
rotationally invariant. 
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— Convolution is symmetric. That is,

Linear Filters: Additional Properties

49

Let     denote convolution. Let              be a digital image. Let F and G be  
digital filters
⌦ k F1 F2 F I(X,Y )

(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

G⌦ (F ⌦ I(X,Y )) = (G⌦ F )⌦ I(X,Y )

(G⌦ F )⌦ I(X,Y ) = (F ⌦G)⌦ I(X,Y )

— Convolution is associative. That is,

Convolving              with filter F and then convolving the result with filter G can 
be achieved in single step, namely convolving              with filter G⌦ F = F ⌦G

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

(G⌦ F )⌦ I(X,Y ) = (G⌦ F )⌦ I(X,Y )



Bilateral Filter

An edge-preserving non-linear filter  

Like a Gaussian filter:  
— The filter weights depend on spatial distance from the center pixel 
— Pixels nearby (in space) should have greater influence than pixels far away  

Unlike a Gaussian filter:  
— The filter weights also depend on range distance from the center pixel  
— Pixels with similar brightness value should have greater influence than pixels 
with dissimilar brightness value 
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Gaussian filter: weights of neighbor at a spatial offset         away from the 
center pixel             given by:

G�(x, y) =
1

2⇡�

2
exp

� x

2+y

2

2�2

=

✓
1p
2⇡�

exp

� x

2

2�2

◆✓
1p
2⇡�

exp

� y

2

2�2

◆

I(X,Y )

(x, y)

Bilateral filter: weights of neighbor at a spatial offset         away from the center 
pixel             given by a product:

exp

� x

2+y

2

2�2
d

exp

� (I(X+x,Y +y)�I(X,Y ))2

2�2
r

(x, y)

I(X,Y )

(with appropriate normalization)

(with appropriate normalization)

domain  
kernel

range  
kernel

Bilateral Filter



Bilateral Filter Application: Denoising
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Noisy Image Gaussian Filter Bilateral Filter

Slide Credit: Alexander Wong 



Sample Question: Filters

What does the following 3 × 3 linear, shift invariant filter compute when applied 
to an image?  
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4
�1 �1 �1
0 0 0
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Denote the image as a function,          , where    and    are spatial variables  

Aside: The convention for this section is to use lower case letters for the 
continuous case and upper case letters for the discrete case 
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Continuous Case

x

y
i(x,y)

i(x, y) i(x, y)i(x, y)



Discrete Case
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i(x,y)

x

y

Idea: Superimpose (regular) grid on continuous image

Sample the underlying continuous image according to the tessellation 
imposed by the grid 



i(x,y)

x

y

pixel

Discrete Case
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Each grid cell is called a picture element (pixel)

Denote the discrete image as  

We can store the pixels in a matrix or array

I(X,Y )



It is clear that some information may be lost when we work on a discrete pixel grid. 
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Sampling

Forsyth & Ponce (2nd ed.) Figure 4.7 



It is clear that some information may be lost when we work on a discrete pixel grid. 
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Sampling
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It is clear that some information may be lost when we work on a discrete pixel grid. 
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Sampling

Forsyth & Ponce (2nd ed.) Figure 4.7 



Exact reconstruction requires constraint on the rate at which            can change 
between samples 
— “rate of change” means derivative 
— the formal concept is bandlimited signal  
— “bandlimit” and “constraint on derivative” are linked  

An image is bandlimited if it has some maximum spatial frequency  

A fundamental result (Sampling Theorem) is:  
For bandlimited signals, if you sample regularly at or above twice the 
maximum frequency (called the Nyquist rate), then you can reconstruct 
the original signal exactly 

62

Sampling Theory

i(x, y)



Sometimes undersampling is unavoidable, and there is a trade-off between 
“things missing” and “artifacts.”  

Medical imaging: usually try to maximize information content, tolerate some 
artifacts  

Computer graphics: usually try to minimize artifacts, tolerate some 
information missing  

63

Sampling Theory
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Template Matching

Slide Credit: Kristen Grauman



We can think of convolution/correlation as comparing a template (the filter) 
with each local image patch.  
— Consider the filter and image patch as vectors.  
— Applying a filter at an image location can be interpreted as computing the 
dot product between the filter and the local image patch.  

65

Template Matching



We can think of convolution/correlation as comparing a template (the filter) 
with each local image patch.  
— Consider the filter and image patch as vectors.  
— Applying a filter at an image location can be interpreted as computing the 
dot product between the filter and the local image patch.  
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We can think of convolution/correlation as comparing a template (the filter) 
with each local image patch.  
— Consider the filter and image patch as vectors.  
— Applying a filter at an image location can be interpreted as computing the 
dot product between the filter and the local image patch.  
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We can think of convolution/correlation as comparing a template (the filter) 
with each local image patch.  
— Consider the filter and image patch as vectors.  
— Applying a filter at an image location can be interpreted as computing the 
dot product between the filter and the local image patch.  
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We can think of convolution/correlation as comparing a template (the filter) 
with each local image patch.  
— Consider the filter and image patch as vectors.  
— Applying a filter at an image location can be interpreted as computing the 
dot product between the filter and the local image patch.  
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We can think of convolution/correlation as comparing a template (the filter) 
with each local image patch.  
— Consider the filter and image patch as vectors.  
— Applying a filter at an image location can be interpreted as computing the 
dot product between the filter and the local image patch.  
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We can think of convolution/correlation as comparing a template (the filter) 
with each local image patch.  
— Consider the filter and image patch as vectors.  
— Applying a filter at an image location can be interpreted as computing the 
dot product between the filter and the local image patch.  
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The dot product may be large simply because the image region is bright.  
We need to normalize the result in some way. 



Let    and    be vectors. Let    be the angle between them. We know  

where · is dot product and | | is vector magnitude  

Correlation is a dot product  

Correlation measures similarity between the filter and each local image region  

Normalized correlation varies between −1 and 1  

Normalized correlation attains the value 1 when the filter and image region are 
identical (up to a scale factor) 
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Template Matching

cos ✓ =

a · b
|a||b| =

a · bp
(a · a)(b · b)

=

a

|a|
b

|b|

a b ✓
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Template Matching

Slide Credit: Kristen Grauman



Example 1:
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Credit: W. Freeman et al., “Computer Vision for Interactive Computer Graphics,” 
IEEE Computer Graphics and Applications, 1998 

Template (left), image (middle), 
normalized correlation (right)  

Note peak value at the true 
position of the hand



Sample Question: Template Matching

True or false: Normalized correlation is robust to a constant scaling in the 
image brightness.  
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Scaled Representations: Goals

to find template matches at all scales  
— template size constant, image scale varies 
— finding hands or faces when we don’t know what size they are in the image  

efficient search for image–to–image correspondences  
— look first at coarse scales, refine at finer scales  
— much less cost (but may miss best match)  

to examine all levels of detail  
—  find edges with different amounts of blur  
—  find textures with different spatial frequencies (i.e., different levels of detail)  
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Shrinking the Image

Forsyth & Ponce (2nd ed.) Figure 4.12-4.14 (top rows) 



Image Pyramid 

An image pyramid is a collection of representations of an image. Typically, 
each layer of the pyramid is half the width and half the height  
of the previous layer. 

In a Gaussian pyramid, each layer is smoothed by a Gaussian filter and 
resampled to get the next layer  
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Gaussian Pyramid 
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Forsyth & Ponce (2nd ed.) Figure 4.17
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From Template Matching to Local Feature Detection

Slide Credit: Li Fei-Fei, Rob Fergus, and Antonio Torralba



Recall, for a 2D (continuous) function, f(x,y)  

Differentiation is linear and shift invariant, and therefore can be implemented as 
a convolution  

A (discrete) approximation is  
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@f

@x

= lim
✏!0

f(x+ ✏, y)� f(x, y)

✏

@f
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Estimating Derivatives

@f

@x
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f(x+ ✏, y)� f(x, y)
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A similar definition (and approximation) holds for  

Image noise tends to result in pixels not looking exactly like their neighbours, 
so simple “finite differences” are sensitive to noise.  

The usual way to deal with this problem is to smooth the image prior to 
derivative estimation.  
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@f

@y

Estimating Derivatives



What Causes Edges?
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What causes an edge?

• Depth discontinuity
• Surface orientation 

discontinuity
• Reflectance 

discontinuity (i.e., 
change in surface 
material properties)

• Illumination 
discontinuity (e.g., 
shadow)

Slide credit: Christopher Rasmussen

Slide Credit: Christopher Rasmussen



Smoothing and Differentiation 

Edge: a location with high gradient (derivative) 

Need smoothing to reduce noise prior to taking derivative  

Need two derivatives, in x and y direction  

We can use derivative of Gaussian filters 
— because differentiation is convolution, and  
— convolution is associative  

Let     denote convolution  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D ⌦ (G⌦ I(X,Y )) = (D ⌦G)⌦ I(X,Y )

⌦



Gradient Magnitude

Let              be a (digital) image 

Let               and                be estimates of the partial derivatives in the    and    
directions, respectively. 

Call these estimates     and      (for short) The vector            is the gradient  

The scalar                 is the gradient magnitude  
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Two Generic Approaches for Edge Detection
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r
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i(r)

d i(r)
 dr

d2i(r)
 dr2
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r

Two generic approaches to edge point detection: 
— (significant) local extrema of a first derivative operator  
— zero crossings of a second derivative operator 



Marr / Hildreth Laplacian of Gaussian
A “zero crossings of a second derivative operator” approach  

Steps:  
1. Gaussian for smoothing  

2. Laplacian (     ) for differentiation where  

3. Locate zero-crossings in the Laplacian of the Gaussian (         ) where  
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Here’s a 3D plot of the Laplacian of the Gaussian (         ) 

. . . with its characteristic “Mexican hat” shape
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Marr / Hildreth Laplacian of Gaussian

r2G



Canny Edge Detector
Steps:  

1. Apply directional derivatives of Gaussian  

2. Compute gradient magnitude and gradient direction  

3. Non-maximum suppression  
    — thin multi-pixel wide “ridges” down to single pixel width  

4. Linking and thresholding 
    — Low, high edge-strength thresholds 
    — Accept all edges over low threshold that are connected to edge over high    
         threshold 
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Edge Hysteresis

One way to deal with broken edge chains is to use hysteresis  

Hysteresis: A lag or momentum factor  

Idea: Maintain two thresholds          and  
— Use khigh to find strong edges to start edge chain 
— Use klow to find weak edges which continue edge chain  

Typical ratio of thresholds is (roughly):  
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k
high

k
low

= 2

khigh k
low
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"Divide the image into some number of segments, where the segments 
represent ’things’ or ’parts of things’ in the scene. The number of segments is 
up to you, as it depends on the image. Something between 2 and 30 is likely to 
be appropriate. It is important that all of the segments have approximately equal 
importance."  

(Martin et al. 2004) 

How do humans perceive boundaries? 
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Figure Credit: Szeliski Fig. 4.31. Original: Martin et al. 2004

Each image shows multiple (4-8) human-marked boundaries. Pixels are darker 
where more humans marked a boundary. 

How do humans perceive boundaries? 



Sample Question: Edges

Why is non-maximum suppression applied in the Canny edge detector?  
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What is a corner?

We can think of a corner as any locally distinct 2D image feature that (hopefully) 
corresponds to a distinct position on an 3D object of interest in the scene. 
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Image Credit: John Shakespeare, Sydney Morning Herald 



Why are corners distinct?
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A corner can be localized reliably.  

Thought experiment:  

— Place a small window over a patch of constant image value. 
If you slide the window in any direction, the image in the 
window will not change.  

“corner”: 
significant change 

in all directions

— Place a small window over an edge. If you slide the window in the direction of 
the edge, the image in the window will not change 
     → Cannot estimate location along an edge (a.k.a., aperture problem) 

— Place a small window over a corner. If you slide the window in any direction, 
the image in the window changes. 

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Autocorrelation
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Szeliski, Figure 4.5



Corner Detection

Edge detectors perform poorly at corners  

Observations:  
— The gradient is ill defined exactly at a corner 
— Near a corner, the gradient has two (or more) distinct values  
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Harris Corner Detection
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1.Compute image gradients over 
small region

2.Compute the covariance matrix

3.Compute eigenvectors and     
eigenvalues

4.Use threshold on eigenvalues to 
detect corners

Slide Adopted: Ioannis (Yannis) Gkioulekas (CMU)



2. Compute the covariance matrix (a.k.a. 2nd moment matrix)
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Sum over small region  
around the corner

Gradient with respect to x, times 
gradient with respect to y

Matrix is symmetric

C =



Harris Corner Detection

— Filter image with Gaussian 

— Compute magnitude of the x and y gradients at each pixel  

— Construct C in a window around each pixel  
      — Harris uses a Gaussian window  

— Solve for product of the λ’s  

— If λ’s both are big (product reaches local maximum above threshold) then we 
have a corner 
      — Harris also checks that ratio of λs is not too high  
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Harris corners

• Originally developed as features for motion tracking
• Greatly reduces amount of computation compared to 

tracking every pixel
• Translation and rotation invariant (but not scale invariant)

Harris Corner Detection



Properties: NOT Invariant to Scale Changes

102

edge!
corner!

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Sample Questions: Corners

The Harris corner detector is stable under some image transformations 
(features are considered stable if the same locations on an object are typically 
selected in the transformed image). 

True or false: The Harris corner detector is stable under image blur.  
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Texture

We will look at two main questions:  

1.  How do we represent texture?  
→ Texture analysis  

2.  How do we generate new examples of a texture?  
→ Texture synthesis  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Texture Synthesis

Why might we want to synthesize texture?  

1. To fill holes in images (inpainting) 
— Art directors might want to remove telephone wires. Restorers might want to 
remove scratches or marks. 
— We need to find something to put in place of the pixels that were removed 
— We synthesize regions of texture that fit in and look convincing  

2. To produce large quantities of texture for computer graphics  
— Good textures make object models look more realistic  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Texture Synthesis
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Szeliski, Fig. 10.49 
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Texture Synthesis

Photo Credit: Associated Pres 



Infinite sample image

SAMPLE

p

— What is conditional probability distribution of p, given the neighbourhood 
window?  
— Directly search the input image for all such neighbourhoods to produce a    
histogram for p 
— To synthesize p, pick one match at random
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Efros and Leung: Synthesizing One Pixel



Infinite sample image

SAMPLE

p

— Since the sample image is finite, an exact neighbourhood match might not 
be present 
— Find the best match using SSD error, weighted by Gaussian to emphasize 
local structure, and take all samples within some distance from that match 
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Efros and Leung: Synthesizing One Pixel



For multiple pixels, "grow" the texture in layers 
— In the case of hole-filling, start from the edges of the hole  

For an interactive demo, see  
                    https://una-dinosauria.github.io/efros-and-leung-js/ 
(written by Julieta Martinez, a previous CPSC 425 TA)  
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Efros and Leung: Synthesizing Many Pixels

https://una-dinosauria.github.io/efros-and-leung-js/


Randomness Parameter

111
Slide Credit: http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt
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“Big Data” Meets Inpainting

Original Image Input

Figure Credit: Hays and Efros 2007



113 Figure Credit: Hays and Efros 2007

Scene MatchesInput Output

“Big Data” Meets Inpainting



Algorithm sketch (Hays and Efros 2007):  

1.  Create a short list of a few hundred “best matching" images based on global   
image statistics  

2.  Find patches in the short list that match the context surrounding the image 
region we want to fill  

3.  Blend the match into the original image  

Purely data-driven, requires no manual labeling of images
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“Big Data” Meets Inpainting
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Credit: Bill Freeman

Compare textures and decide if they’re mae of the same “stuff” 

Goal of Texture Analysis



Texture Representation
Observation: Textures are made up of generic sub-elements, repeated over a 
region with similar statistical properties  

Idea: Find the sub-elements with filters, then represent each point in the image 
with a summary of the pattern of sub-elements in the local region  
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Texture Representation
Observation: Textures are made up of generic sub-elements, repeated over a 
region with similar statistical properties  

Idea: Find the sub-elements with filters, then represent each point in the image 
with a summary of the pattern of sub-elements in the local region  

Question: What filters should we use? 

Answer: Human vision suggests spots and oriented edge filters at a variety of 
different orientations and scales 
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Texture Representation
Observation: Textures are made up of generic sub-elements, repeated over a 
region with similar statistical properties  

Idea: Find the sub-elements with filters, then represent each point in the image 
with a summary of the pattern of sub-elements in the local region  

Question: What filters should we use? 

Answer: Human vision suggests spots and oriented edge filters at a variety of 
different orientations and scales  

Question: How do we “summarize”?  

Answer: Compute the mean or maximum of each filter response over the region 
— Other statistics can also be useful 
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Texture Representation

119
Figure Credit: Leung and Malik, 2001



Spots and Bars (Fine Scale)
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Forsyth & Ponce (1st ed.) Figures 9.3–9.4 



Spots and Bars (Coarse Scale)
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Forsyth & Ponce (1st ed.) Figures 9.3 and 9.5 
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Laplacian Pyramid



Laplacian Pyramid
Building a Laplacian pyramid:  
— Create a Gaussian pyramid 
— Take the difference between one Gaussian pyramid level and the next 
(before subsampling)  

Properties  
— Also known as the difference-of-Gaussian (DOG) function, a close 
approximation to the Laplacian  
— It is a band pass filter – each level represents a different band of spatial 
frequencies  

Reconstructing the original image: 
— Reconstruct the Gaussian pyramid starting at top 
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Constructing a Laplacian Pyramid 
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repeat:
filter

subsample
until min resolution reached

Algorithm

compute residual

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Reconstructing the Original Image 
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repeat:

upsample

until orig resolution reached

Algorithm

sum with residual

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Gaussian vs Laplacian Pyramid
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Shown in opposite 
order for space

Which one takes  
more space to 

store?
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Oriented Pyramids
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Forsyth & Ponce (1st ed.) Figure 9.13



Final Texture Representaation

Steps: 

1. Form a Laplacian and oriented pyramid (or equivalent set of responses to 
filters at different scales and orientations) 

2. Square the output (makes values positive)  

3. Average responses over a neighborhood by blurring with a Gaussian  

4. Take statistics of responses 
— Mean of each filter output 
— Possibly standard deviation of each filter  
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Sample Question: Texture

How does the top-most image in a Laplacian pyramid differ from the others? 
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