
Lecture 15: Texture, Intro to Color

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )



Menu for Today (October 10, 2018)
Topics: 

— Texture Analysis  
— Laplacian and Oriented Pyramids

Redings: 

— Today’s Lecture:  Forsyth & Ponce (2nd ed.) 3.1-3.3 

— Next Lecture:       N/A

Reminders: 

— Assignment 2: Face Detection in a Scaled Representation is due today 

— Assignment 3: Texture Syntheis will be out today 

— Practice questions are available now, Additional Office hours Fri, Mon

— iClicker Quiz 
— Introduction to Color
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Today’s “fun” Example: NCIS
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Today’s “fun” Example: LavaRAND
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Today’s “fun” Example: LavaRAND at Cloudflare



Texture representation is hard 
— difficult to define, to analyze 
— texture synthesis appears more tractable  

Objective of texture synthesis is to generate new examples of a texture 
— Efros and Leung: Draw samples directly from the texture to generate one 
pixel at a time. A “data-driven" approach.  

Approaches to texture embed assumptions related to human perception  
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Lecture 14: Re-cap



Spots and Bars (Fine Scale)
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Forsyth & Ponce (1st ed.) Figures 9.3–9.4 



Spots and Bars (Coarse Scale)
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Forsyth & Ponce (1st ed.) Figures 9.3 and 9.5 
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What happens to the details? 
— They get smoothed out as we move  
     to higher levels

What is preserved at the higher levels? 
— Mostly large uniform regions in the 
     original image

How would you reconstruct the original 
image from the image at the upper 
level? 
— That’s not possible

Forsyth & Ponce (2nd ed.) Figure 4.17
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Gaussian Pyramid 



Laplacian Pyramid
Building a Laplacian pyramid:  
— Create a Gaussian pyramid 
— Take the difference between one Gaussian pyramid level and the next 
(before subsampling)  

Properties  
— Also known as the difference-of-Gaussian (DOG) function, a close 
approximation to the Laplacian  
— It is a band pass filter – each level represents a different band of spatial 
frequencies  

Reconstructing the original image: 
— Reconstruct the Gaussian pyramid starting at top 
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Laplacian Pyramid
At each level, retain the residuals 
instead of the blurred images 
themselves.

Why is it called Laplacian Pyramid?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Why Laplacian Pyramid? 
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- =

-

unit Gaussian Laplacian

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Laplacian Pyramid
At each level, retain the residuals 
instead of the blurred images 
themselves.

Can we reconstruct the original image 
using the pyramid? 
— Yes we can!

Why is it called Laplacian Pyramid?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Laplacian Pyramid
At each level, retain the residuals 
instead of the blurred images 
themselves.

Can we reconstruct the original image 
using the pyramid? 
— Yes we can!

What do we need to store to be able 
to reconstruct the original image?

Why is it called Laplacian Pyramid?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Let’s start by just looking at one level 
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= +

level 0 residual

Does this mean we need to store both residuals and the blurred copies of the 
original?

level 1 (upsampled)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Constructing a Laplacian Pyramid 
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repeat:
filter

subsample
until min resolution reached

Algorithm

compute residual

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Constructing a Laplacian Pyramid 
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repeat:
filter

subsample
until min resolution reached

Algorithm

compute residual

What is this part?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Constructing a Laplacian Pyramid 
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repeat:
filter

subsample
until min resolution reached

Algorithm

compute residual

It’s a Gaussian 
Pyramid

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Reconstructing the Original Image 
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repeat:

upsample

until orig resolution reached

Algorithm

sum with residual

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Gaussian vs Laplacian Pyramid
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Shown in opposite 
order for space

Which one takes  
more space to 

store?
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aside: Image Blending
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Burt and Adelson, “A multiresolution spline with application to image mosaics,”ACM 
Transactions on Graphics, 1983, Vol.2, pp.217-236. 



Aside: Image Blending
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Burt and Adelson, “A multiresolution spline with application to image 
mosaics,”ACM Transactions on Graphics, 1983, Vol.2, pp.217-236. 



Aside: Image Blending

Algorithm: 

1. Build Laplacian pyramid LA and LB from images A and B 

2. Build a Gaussian pyramid GR from mask image R (the mask defines which 
image pixels should be coming from A or B) 

3. Forma a combined (blended) Laplacian pyramid LS, using nodes of GR as 
weights: LS(i,j) = GR(i,j) * LA(i,j) + (1-GR(i,j)) * LB(i,j) 

4. Reconstruct the final blended image from LS
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Aside: Image Blending
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Aside: Image Blending
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Aside: Image Blending
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Oriented Pyramids

Laplacian pyramid is orientation independent  

Idea: Apply an oriented filter at each layer 
— represent image at a particular scale and orientation  
— Aside: We do not study details in this course  
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Oriented Pyramids
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Forsyth & Ponce (1st ed.) Figure 9.13



Oriented Pyramids
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Forsyth & Ponce (1st ed.) Figure 9.14

Oriental Filters



Final Texture Representaation

Steps: 

1. Form a Laplacian and oriented pyramid (or equivalent set of responses to 
filters at different scales and orientations) 

2. Square the output (makes values positive)  

3. Average responses over a neighborhood by blurring with a Gaussian  

4. Take statistics of responses 
— Mean of each filter output 
— Possibly standard deviation of each filter  
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Please get your iClickers — Quiz
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