
Lecture 13: Corner Detection (cont), Texture Intro

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )

Image Credit: https://en.wikipedia.org/wiki/Corner_detection

https://en.wikipedia.org/wiki/Corner_detection


Menu for Today (October 3, 2018)
Topics: 

— Harris Corner Detector (cont) 
— Blob Detection 

Redings: 

— Today’s Lecture:  Forsyth & Ponce (2nd ed.) 6.1, 6.3 

— Next Lecture:       N/A 

Reminders: 

— Assignment 2: Face Detection in a Scaled Representation is October 10th

— Searching over Scale 
— Texture (intro)
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Video Source: https://www.youtube.com/watch?v=2c6lCdDFOY8

Today’s “fun” Example:
Developed by the French company Varioptic, the lenses consist of an oil-
based and a water-based fluid sandwiched between glass discs. Electric 
charge causes the boundary between oil and water to change shape, altering 
the lens geometry and therefore the lens focal length  

The intended applications are: 
auto-focus and image 
stabilization. No moving parts. 
Fast response. Minimal power 
consumption. 

https://www.youtube.com/watch?v=2c6lCdDFOY8
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Video Source: https://www.youtube.com/watch?v=NjLJ77IuBdM

Electrostatic field between the column of water and the electron (other side of 
power supply attached to the pipe) — see full video for complete explanation

Today’s “fun” Example:Today’s “fun” Example:

https://www.youtube.com/watch?v=NjLJ77IuBdM
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Video Source: https://www.youtube.com/watch?v=EU8LXxip1NM

Today’s “fun” Example:
As one example, in 2010, Cognex signed a licence agreement with Varioptic to 
add auto-focus capability to it DataMan line of industrial ID readers (press 
release May 29, 2012) 

https://www.youtube.com/watch?v=EU8LXxip1NM
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Lecture 12: Re-cap (Harris Corner Detection)

1.Compute image gradients over 
small region

2.Compute the covariance matrix

3.Compute eigenvectors and     
eigenvalues

4.Use threshold on eigenvalues to 
detect corners

Slide Adopted: Ioannis (Yannis) Gkioulekas (CMU)



Lecture 12: Re-cap (compute image gradients at patch)
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array of x gradients

array of y gradients

(not just a single pixel)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Lecture 12: Re-cap (compute the covariance matrix)
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Sum over small region  
around the corner

Gradient with respect to x, times 
gradient with respect to y

Matrix is symmetric

C =



Lecture 12: Re-cap
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It can be shown that since every C is symmetric: 



Lecture 12: Re-cap (computing eigenvalues and eigenvectors)
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1. Compute the determinant of 
(returns a polynomial)

eigenvector

eigenvalue

2. Find the roots of polynomial 
(returns eigenvalues)

3. For each eigenvalue, solve 
(returns eigenvectors)

Ce = �e (C � �I)e = 0

det(C � �I) = 0

(C � �I)e = 0

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

(C � �I)e = 0
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‘horizontal’ edge

‘vertical’ edge

flat

corner

λ2 >> λ1

λ1 >> λ2

 λ1 ~ λ2

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

�1

�2

Lecture 12: Re-cap (interpreting eigenvalues)
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‘horizontal’ edge

‘vertical’ edge

flat

corner

λ2 >> λ1

λ1 >> λ2

 λ1 ~ λ2

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

�1

�2

Lecture 12: Re-cap (interpreting eigenvalues)



4. Threshold on Eigenvalues to Detect Corners

13 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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flat

Think of a function to 
score ‘cornerness’

�1

�2

4. Threshold on Eigenvalues to Detect Corners
^

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



flat

strong 
corner
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Think of a function to 
score ‘cornerness’

�1

�2

4. Threshold on Eigenvalues to Detect Corners
^

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



flat

corner

Use the smallest eigenvalue as the 
response function
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flat

�1

�2

4. Threshold on Eigenvalues to Detect Corners
^

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



flat

corner
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flat

�1

�2

4. Threshold on Eigenvalues to Detect Corners
^

Eigenvalues need to be bigger than one:

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



det(C)� trace2(C)

flat

corner

Eigenvalues need to be bigger than one:
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flat

�1

�2

4. Threshold on Eigenvalues to Detect Corners
^

=

(more efficient)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



flat

corner
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flat

�1

�2

4. Threshold on Eigenvalues to Detect Corners
^

 < 0

 > 0

 < 0

Eigenvalues need to be bigger than one:

=

det(C)� trace2(C)

(more efficient)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Harris & Stephens (1988)

Kanade & Tomasi (1994)

Nobel (1998)

det(C)� trace2(C)

det(C)

trace(C) + ✏

4. Threshold on Eigenvalues to Detect Corners
^

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Harris Corner Detection Review

— Filter image with Gaussian 

— Compute magnitude of the x and y gradients at each pixel  

— Construct C in a window around each pixel  
      — Harris uses a Gaussian window  

— Solve for product of the λ’s  

— If λ’s both are big (product reaches local maximum above threshold) then we 
have a corner 
      — Harris also checks that ratio of λs is not too high  
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Compute the Covariance Matrix
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Sum can be implemented as an  
(unnormalized) box filter with 

C =

Harris uses a Gaussian weighting instead  



Compute the Covariance Matrix
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Sum can be implemented as an  
(unnormalized) box filter with 

C =

Harris uses a Gaussian weighting instead  

(has to do with bilinear Taylor expansion of 2D function that measures 
change of intensity for small shifts … remember AutoCorrelation)

IntensityShifted 
intensity

Window 
function

Error 
function



Harris Corner Detection Review

— Filter image with Gaussian 

— Compute magnitude of the x and y gradients at each pixel  

— Construct C in a window around each pixel  
      — Harris uses a Gaussian window  

— Solve for product of the λ’s  

— If λ’s both are big (product reaches local maximum above threshold) then we 
have a corner 
      — Harris also checks that ratio of λs is not too high  
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Harris & Stephens (1988)

det(C)� trace2(C)



Harris Corner Detection Review

— Filter image with Gaussian 

— Compute magnitude of the x and y gradients at each pixel  

— Construct C in a window around each pixel  
      — Harris uses a Gaussian window  

— Solve for product of the λ’s  

— If λ’s both are big (product reaches local maximum above threshold) then we 
have a corner 
      — Harris also checks that ratio of λs is not too high  
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Properties: Rotational Invariance
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Ellipse rotates but its shape  
(eigenvalues) remains the same

Corner response is invariant to image rotation

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Properties: (partial) Invariance to Intensity Shifts and Scaling
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x (image coordinate)

threshold

x (image coordinate)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Only derivatives are used -> Invariance to intensity shifts 

Intensity scale could effect performance



Properties: NOT Invariant to Scale Changes
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edge!
corner!

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Example 1: 
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Harris corners

• Originally developed as features for motion tracking
• Greatly reduces amount of computation compared to 

tracking every pixel
• Translation and rotation invariant (but not scale invariant)



Example 2: Wagon Wheel (Harris Results)
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� = 1 (219 points) � = 2 (155 points) � = 3 (110 points) � = 4 (87 points)



Example 3: Crash Test Dummy (Harris Result)
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� = 1 (175 points)corner response image
Original Image Credit: John Shakespeare, Sydney Morning Herald 



Summary Table
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Summary of what we have seen so far:



Properties: NOT Invariant to Scale Changes
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edge!
corner!

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Intuitively …
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Find local maxima in both position and scale

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Highest response when the signal has the same characteristic scale as 
the filter

Laplacian filter

Formally …

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



36 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Characteristic Scale 
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characteristic scale - the scale that produces peak filter response

characteristic scale
we need to search over characteristic scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales 
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Full size 3/4 size

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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jet color scale 
blue: low, red: high

Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales 
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Full size 3/4 size

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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peak!

Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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peak!

Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales 
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Full size 3/4 size

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



53

2.1 4.2 6.0

9.8 15.5 17.0

peak!

Applying Laplacian Filter at Different Scales 
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2.1 4.2 6.0

9.8 15.5 17.0

Applying Laplacian Filter at Different Scales 

maximum  
response



Optimal Scale
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2.1 4.2 6.0 9.8 15.5 17.0

Full size image

2.1 4.2 6.0 9.8 15.5 17.0

3/4 size image



Optimal Scale
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2.1 4.2 6.0 9.8 15.5 17.0

Full size image

2.1 4.2 6.0 9.8 15.5 17.0

3/4 size image

maximum 
response

maximum 
response



Implementation

57

For each level of the Gaussian pyramid

compute feature response (e.g. Harris, Laplacian)

For each level of the Gaussian pyramid

if local maximum and cross-scale

save scale and location of feature



Summary

A corner is a distinct 2D feature that can be localized reliably  

Edge detectors perform poorly at corners  
→ consider corner detection directly  

Harris corner detection 
— corners are places where intensity gradient direction takes on multiple 
distinct values 
— interpret in terms of autocorrelation of local window 
— translation and rotation invariant, but not scale invariant  
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Texture

59

Texture is widespread, easy to recognize, but hard to define  

Views of large numbers of small objects are often considered textures 
— e.g. grass, foliage, pebbles, hair  

Patterned surface markings are considered textures  
— e.g. patterns on wood 

What is texture?

Figure Credit: Alexei Efros and Thomas Leung 



Definition of Texture

(Functional) Definition:  

Texture is detail in an image that is at a scale too small to be resolved into its 
constituent elements and at a scale large enough to be apparent in the spatial 
distribution of image measurements  

Sometimes, textures are thought of as patterns composed of repeated 
instances of one (or more) identifiable elements, called textons. 
— e.g. bricks in a wall, spots on a cheetah  
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Definition of Texture

(Functional) Definition:  

Texture is detail in an image that is at a scale too small to be resolved into its 
constituent elements and at a scale large enough to be apparent in the spatial 
distribution of image measurements  

Sometimes, textures are thought of as patterns composed of repeated 
instances of one (or more) identifiable elements, called textons. 
— e.g. bricks in a wall, spots on a cheetah  
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Uses of Texture

Texture can be a strong cue to object identity if the object has distinctive 
material properties 


Texture can be a strong cue to an object’s shape based on the deformation 
of the texture from point to point.

— Estimating surface orientation or shape from texture is known as “shape 
from texture" 
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Texture

We will look at two main questions:  

1.  How do we represent texture?  
→ Texture analysis  

2.  How do we generate new examples of a texture?  
→ Texture synthesis  

We begin with texture synthesis to set up Assignment 3 
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Texture Synthesis

Why might we want to synthesize texture?  

1. To fill holes in images (inpainting) 
— Art directors might want to remove telephone wires. Restorers might want to 
remove scratches or marks. 
— We need to find something to put in place of the pixels that were removed 
— We synthesize regions of texture that fit in and look convincing  
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Texture Synthesis

Why might we want to synthesize texture?  

1. To fill holes in images (inpainting) 
— Art directors might want to remove telephone wires. Restorers might want to 
remove scratches or marks. 
— We need to find something to put in place of the pixels that were removed 
— We synthesize regions of texture that fit in and look convincing  

2. To produce large quantities of texture for computer graphics  
— Good textures make object models look more realistic  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Texture Synthesis
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Szeliski, Fig. 10.49 
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Texture Synthesis

Photo Credit: Associated Pres 
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Photo Credit (right): Reuters/Larry Downing 

Cover of “The Economist,” June 19, 2010 

Texture Synthesis



Assignment 3 Preview: Texture Synthesis

69

Task: Make donkey vanish



Assignment 3 Preview: Texture Synthesis
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Task: Make donkey vanish

Method: Fill-in regions using texture from the white box



Assignment 3 Preview: Texture Synthesis
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Task: Make donkey vanish

Method: Fill-in regions using texture from the white box


