

#### THE UNIVERSITY OF BRITISH COLUMBIA

# **CPSC 425: Computer Vision**



Image Credit: <u>https://en.wikipedia.org/wiki/Corner\_detection</u>

( unless otherwise stated slides are taken or adopted from **Bob Woodham, Jim Little** and **Fred Tung** )

Lecture 12: Corner Detection

# Menu for Today (October 1, 2018)

### **Topics:**

- Corner Detection
- Autocorrelation

### **Redings:**

- Today's Lecture: Forsyth & Ponce (2nd ed.) 5.3.0 5.3.1
- Next Lecture: Forsyth & Ponce (2nd ed.) 6.1, 6.3

#### **Reminders:**

— Assignment 2: Face Detection in a Scaled Representation is October 10th

#### Harris Corner Detector

![](_page_1_Picture_13.jpeg)

# Today's "fun" Example:

![](_page_2_Picture_1.jpeg)

# Today's "fun" Example:

![](_page_3_Picture_1.jpeg)

# Today's "fun" Example:

![](_page_4_Picture_1.jpeg)

### Lecture 11: Re-cap

Physical properties of a 3D scene cause "edges" in an image:

- depth discontinuity
- surface orientation discontinuity
- reflectance discontinuity
- illumination boundaries

Two generic approaches to edge detection:

- local extrema of a first derivative operator  $\rightarrow$  Canny
- zero crossings of a second derivative operator  $\rightarrow$  Marr/Hildreth

Many algorithms consider "boundary detection" as a high-level recognition task and output a probability or confidence that a pixel is on a human-perceived boundary

# **Motivation:** Template Matching

When might template matching fail?

Different scales

![](_page_6_Picture_3.jpeg)

![](_page_6_Picture_4.jpeg)

- Different orientation
- Lighting conditions
- Left vs. Right hand

![](_page_6_Picture_8.jpeg)

![](_page_6_Picture_9.jpeg)

# - Partial Occlusions

![](_page_6_Picture_13.jpeg)

#### Different Perspective

#### — Motion / blur

# **Motivation:** Template Matching in Scaled Representation

When might template matching in scaled representation fail?

![](_page_7_Picture_2.jpeg)

Lighting conditions

![](_page_7_Picture_4.jpeg)

![](_page_7_Picture_5.jpeg)

Partial Occlusions

![](_page_7_Picture_7.jpeg)

Different Perspective

— Motion / blur

![](_page_7_Picture_11.jpeg)

# Motivation: Edge Matching in Scaled Representation

When might edge matching in scaled representation fail?

![](_page_8_Figure_2.jpeg)

### - Partial Occlusions

![](_page_8_Picture_4.jpeg)

- Different Perspective

Motion / blur

# Planar Object Instance Recognition

#### Database of planar objects

![](_page_9_Picture_2.jpeg)

![](_page_9_Picture_3.jpeg)

![](_page_9_Picture_4.jpeg)

![](_page_9_Picture_5.jpeg)

![](_page_9_Picture_6.jpeg)

![](_page_9_Picture_7.jpeg)

#### Instance recognition

![](_page_9_Picture_9.jpeg)

![](_page_9_Picture_10.jpeg)

# Recognition under Occlusion

![](_page_10_Picture_1.jpeg)

# Image Matching

![](_page_11_Picture_1.jpeg)

![](_page_11_Picture_2.jpeg)

# Image Matching

![](_page_12_Picture_1.jpeg)

# Finding Correspondences

![](_page_13_Picture_1.jpeg)

#### NASA Mars Rover images

# Finding Correspondences

![](_page_14_Picture_1.jpeg)

# What is a **Good Feature**?

![](_page_15_Picture_1.jpeg)

#### Pick a point in the image. Find it again in the next image.

# What is a **Good Feature**?

![](_page_16_Picture_1.jpeg)

Pick a point in the image. Find it again in the next image.

### What is a **corner**?

![](_page_17_Picture_2.jpeg)

Image Credit: John Shakespeare, Sydney Morning Herald

We can think of a corner as any locally distinct 2D image feature that (hopefully) corresponds to a distinct position on an 3D object of interest in the scene.

![](_page_17_Picture_6.jpeg)

A corner can be **localized reliably**.

Thought experiment:

#### 19

- A corner can be **localized reliably**.
- Thought experiment:
- Place a small window over a patch of constant image value.

![](_page_19_Picture_4.jpeg)

"flat" region:

![](_page_19_Picture_9.jpeg)

- A corner can be **localized reliably**.
- Thought experiment:

 Place a small window over a patch of constant image value. If you slide the window in any direction, the image in the window will not change.

![](_page_20_Picture_4.jpeg)

"flat" region: no change in all directions

![](_page_20_Picture_9.jpeg)

- A corner can be **localized reliably**.
- Thought experiment:

 Place a small window over a patch of constant image value. If you slide the window in any direction, the image in the window will not change.

Place a small window over an edge.

![](_page_21_Picture_5.jpeg)

"edge":

![](_page_21_Picture_11.jpeg)

- A corner can be **localized reliably**.
- Thought experiment:

 Place a small window over a patch of constant image value. If you slide the window in any direction, the image in the window will not change.

- Place a small window over an edge. If you slide the window in the direction of the edge, the image in the window will not change  $\rightarrow$  Cannot estimate location along an edge (a.k.a., **aperture** problem)

![](_page_22_Picture_5.jpeg)

"edge": no change along the edge direction

![](_page_22_Picture_9.jpeg)

![](_page_22_Figure_10.jpeg)

![](_page_22_Picture_11.jpeg)

- A corner can be **localized reliably**.
- Thought experiment:

- Place a small window over a patch of constant image value. If you slide the window in any direction, the image in the window will not change.

- Place a small window over an edge. If you slide the window in the direction of the edge, the image in the window will not change  $\rightarrow$  Cannot estimate location along an edge (a.k.a., **aperture** problem)

- Place a small window over a corner.

![](_page_23_Picture_6.jpeg)

"corner":

![](_page_23_Picture_11.jpeg)

- A corner can be **localized reliably**.
- Thought experiment:

- Place a small window over a patch of constant image value. If you slide the window in any direction, the image in the window will not change.

- Place a small window over an edge. If you slide the window in the direction of the edge, the image in the window will not change  $\rightarrow$  Cannot estimate location along an edge (a.k.a., **aperture** problem)

- Place a small window over a corner. If you slide the window in any direction, the image in the window changes.

![](_page_24_Picture_6.jpeg)

"corner": significant change in all directions

![](_page_24_Picture_10.jpeg)

![](_page_24_Picture_11.jpeg)

![](_page_24_Picture_12.jpeg)

![](_page_24_Picture_13.jpeg)

![](_page_24_Picture_14.jpeg)

![](_page_24_Picture_15.jpeg)

![](_page_24_Picture_16.jpeg)

![](_page_24_Picture_17.jpeg)

# How do you find a corner?

![](_page_25_Picture_1.jpeg)

Shifting the window should give large change in intensity

Easily recognized by looking through a small window

### **Autocorrelation** is the correlation of the image with itself.

slowly in the direction along the edge and rapidly in the direction across (perpendicular to) the edge.

rapidly in all directions.

- Windows centered on an edge point will have autocorrelation that falls off
- Windows centered on a corner point will have autocorrelation that falls of

![](_page_27_Picture_1.jpeg)

![](_page_27_Picture_2.jpeg)

![](_page_28_Picture_1.jpeg)

![](_page_28_Picture_2.jpeg)

![](_page_28_Picture_3.jpeg)

![](_page_29_Picture_1.jpeg)

![](_page_29_Picture_2.jpeg)

![](_page_29_Picture_3.jpeg)

![](_page_30_Picture_1.jpeg)

![](_page_30_Picture_2.jpeg)

![](_page_30_Picture_3.jpeg)

![](_page_30_Picture_5.jpeg)

![](_page_31_Picture_1.jpeg)

![](_page_31_Picture_2.jpeg)

![](_page_31_Picture_3.jpeg)

![](_page_31_Picture_5.jpeg)

![](_page_32_Picture_1.jpeg)

100

![](_page_32_Picture_3.jpeg)

![](_page_32_Picture_4.jpeg)

![](_page_32_Picture_6.jpeg)

### **Autocorrelation** is the correlation of the image with itself.

slowly in the direction along the edge and rapidly in the direction across (perpendicular to) the edge.

rapidly in all directions.

- Windows centered on an edge point will have autocorrelation that falls off
- Windows centered on a corner point will have autocorrelation that falls of

### **Corner** Detection

### Edge detectors perform poorly at corners

### **Observations**:

- The gradient is ill defined exactly at a corner
- Near a corner, the gradient has two (or more) distinct values

#### t a corner o (or more) distinct values

### Harris Corner Detection

- 1.Compute image gradients ov small region
- 2.Compute the covariance matrix
- 3.Compute eigenvectors and eigenvalues
- 4.Use threshold on eigenvalues to detect corners

$$I_x = \frac{\partial I}{\partial x} \qquad \qquad I_y = \frac{\partial I}{\partial y}$$
  
for

![](_page_35_Figure_7.jpeg)

![](_page_35_Picture_8.jpeg)

### 1. Compute image gradients over a small region (not just a single pixel)

![](_page_36_Picture_1.jpeg)

![](_page_36_Figure_2.jpeg)

![](_page_36_Figure_3.jpeg)

![](_page_36_Figure_4.jpeg)

array of y gradients

![](_page_36_Figure_6.jpeg)

![](_page_36_Picture_10.jpeg)

![](_page_36_Picture_11.jpeg)

# Visualization of Gradients

![](_page_37_Picture_1.jpeg)

#### image

#### X derivative

Y derivative

![](_page_37_Picture_5.jpeg)

![](_page_37_Picture_6.jpeg)

# What Does a **Distribution** Tells You About the **Region**?

![](_page_38_Picture_1.jpeg)

![](_page_38_Figure_2.jpeg)

![](_page_38_Figure_3.jpeg)

![](_page_38_Figure_4.jpeg)

![](_page_38_Picture_5.jpeg)

# What Does a **Distribution** Tells You About the **Region**?

![](_page_39_Picture_1.jpeg)

![](_page_39_Figure_2.jpeg)

# What Does a **Distribution** Tells You About the **Region**?

![](_page_40_Picture_1.jpeg)

![](_page_40_Figure_2.jpeg)

#### How do we quantify the orientation and magnitude?

![](_page_41_Figure_1.jpeg)

![](_page_41_Picture_6.jpeg)

Sum over small region around the corner

![](_page_42_Picture_2.jpeg)

 $C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$ 

![](_page_42_Picture_7.jpeg)

Sum over small region around the corner

![](_page_43_Picture_2.jpeg)

**Gradient** with respect to x, times gradient with respect to y

 $C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$ 

![](_page_43_Picture_6.jpeg)

Sum over small region around the corner

![](_page_44_Picture_2.jpeg)

 $\sum I_x I_y = \text{Sum}($  $p \in P$ 

**Gradient** with respect to x, times gradient with respect to y

$$\begin{array}{cc} {}_{x}I_{x} & \sum\limits_{p \in P} I_{x}I_{y} \ {}_{y}I_{x} & \sum\limits_{p \in P} I_{y}I_{y} \ {}_{p \in P} \end{array}$$

\*

![](_page_44_Figure_7.jpeg)

array of x gradients

![](_page_44_Figure_9.jpeg)

array of y gradients

![](_page_44_Picture_12.jpeg)

Sum over small region around the corner

Matrix is **symmetric** 

**Gradient** with respect to x, times gradient with respect to y

 $C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$ 

![](_page_45_Picture_8.jpeg)

By computing the gradient covariance matrix ...

 $C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$ 

we are fitting a quadratic to the gradients over a small image region

![](_page_46_Picture_7.jpeg)

![](_page_47_Picture_1.jpeg)

#### Local Image Patch

 $C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix} = ?$ 

#### 48

![](_page_48_Picture_1.jpeg)

#### Local Image Patch

 $C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix} = ?$ 

![](_page_48_Figure_4.jpeg)

![](_page_49_Picture_1.jpeg)

#### Local Image Patch

high value along vertical strip of pixels and 0 elsewhere

 $C = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix} = ?$ 

![](_page_49_Figure_5.jpeg)

![](_page_50_Picture_1.jpeg)

#### Local Image Patch

high value along vertical strip of pixels and 0 elsewhere

 $\begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ p \in P & p \in P \end{bmatrix} = \mathbf{2}$  $C = \left[ \sum_{p \in P} I_y I_x \quad \sum_{p \in P} I_y I_y \right] = \mathbf{I}$ 

![](_page_50_Figure_5.jpeg)

high value along horizontal strip of pixels and 0 elsewhere

![](_page_51_Picture_1.jpeg)

#### Local Image Patch

high value along vertical strip of pixels and 0 elsewhere

 $\begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ p \in P & p \in P \end{bmatrix}$  $C = \left[ \sum_{p \in P} I_y I_x \quad \sum_{p \in P} I_y I_y \right] = \left[ \sum_{p \in P} I_y I_y \right]$ 

![](_page_51_Figure_5.jpeg)

high value along horizontal strip of pixels and 0 elsewhere

$$\begin{array}{cc} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array} \right]$$

### **General** Case

It can be shown that since every C is symmetric:

![](_page_52_Picture_2.jpeg)

 $C = \begin{bmatrix} \sum_{p \in P} I_x I_x \\ \sum_{p \in P} I_y I_x \end{bmatrix}$ 

... so general case is like a **rotated** version of the simple one

$$\begin{bmatrix} x & \sum_{p \in P} I_x I_y \\ x & \sum_{p \in P} I_y I_y \end{bmatrix} = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

# 3. Computing Eigenvalues and Eigenvectors

# Quick Eigenvalue/Eigenvector Review

a nonzero vector v that satisfies

The eigenvalues of A are obtained by solving

- Given a square matrix A, a scalar  $\lambda$  is called an **eigenvalue** of A if there exists
  - $Av = \lambda v$
- The vector v is called an **eigenvector** for A corresponding to the eigenvalue  $\lambda$ .

  - $\det(\mathbf{A} \lambda I) = 0$

# 3. Computing Eigenvalues and Eigenvectors

eigenvalue  $Ce = \lambda e$ RZ eigenvector

### $(C - \lambda I)e = 0$

# 3. Computing Eigenvalues and Eigenvectors eigenvalue

R 7 eigenvector

 $Ce = \lambda e$ 

1. Compute the determinant of (returns a polynomial)

### $(C - \lambda I)e = 0$

 $C - \lambda I$ 

# 3. Computing Eigenvalues and Eigenvectors eigenvalue

RZ eigenvector

 $Ce = \lambda e$ 

1. Compute the determinant of (returns a polynomial)

2. Find the roots of polynomial (returns eigenvalues)

### $(C - \lambda I)e = 0$

![](_page_57_Figure_5.jpeg)

# 3. Computing Eigenvalues and Eigenvectors eigenvalue

 $Ce = \lambda e$ R 7 eigenvector

1. Compute the determinant of (returns a polynomial)

2. Find the roots of polynomial (returns eigenvalues)

3. For each eigenvalue, solve (returns eigenvectors)

### $(C - \lambda I)e = 0$

![](_page_58_Figure_6.jpeg)

## Example

# $C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$

#### 1. Compute the determinan (returns a polyn

2. Find the roots of polynon (returns eigenv

3. For each eigenvalue, solv (returns eigenvec

| nt of<br>nomial) | $C - \lambda I$           |
|------------------|---------------------------|
| nial<br>alues)   | $\det(C - \lambda I) = 0$ |
| ve<br>ctors)     | $(C - \lambda I)e = 0$    |

### Example

# $C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \quad \det\left(\begin{bmatrix} 2 - \lambda \\ 1 & 2 \end{bmatrix}\right)$ $(2-\lambda)(2-\lambda)$ -

### 1. Compute the determinar (returns a polyr

2. Find the roots of polynon (returns eigenv

3. For each eigenvalue, solv (returns eigenved

$$\begin{pmatrix} 1 \\ 2 - \lambda \end{bmatrix}$$
)  
-  $(1)(1)$ 

| nt of<br>nomial) | $C - \lambda I$           |
|------------------|---------------------------|
| nial<br>alues)   | $\det(C - \lambda I) = 0$ |
| ve<br>ctors)     | $(C - \lambda I)e = 0$    |
|                  |                           |

### Example

# $C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \quad \det\left(\begin{bmatrix} 2 - \lambda \\ 1 \end{bmatrix}\right)$ $(2-\lambda)(2-\lambda)$

### 1. Compute the determinal (returns a poly

2. Find the roots of polynoi (returns eigen)

3. For each eigenvalue, so (returns eigenve

| $ \begin{array}{c} 1 \\ 2 - \lambda \end{array} \right) $ $ - (1)(1) $ | $(2 - \lambda)(2 - \lambda) - (1)(1)$ $\lambda^2 - 4\lambda + 3 = 0$ $(\lambda - 3)(\lambda - 1) = 0$ $\lambda_1 = 1, \lambda_2 = 3$ | 0 |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---|
| nt of<br>nomial)                                                       | $C - \lambda I$                                                                                                                      |   |
| mial<br>values)                                                        | $\det(C - \lambda I) = 0$                                                                                                            |   |
| lve<br>ctors)                                                          | $(C - \lambda I)e = 0$                                                                                                               |   |
|                                                                        |                                                                                                                                      |   |

**Slide Credit**: Ioannis (Yannis) Gkioulekas (CMU)

0

### Visualization as **Quadratic**

can be written in matrix form like this...

 $f(x,y) = \left[ \begin{array}{c} x \end{array} \right]$ 

 $f(x,y) = x^2 + y^2$ 

$$\left[ egin{array}{ccc} 1 & 0 \ 0 & 1 \end{array} 
ight] \left[ egin{array}{ccc} x \ y \end{array} 
ight]$$

# Visualization as **Quadratic**

can be written in matrix form like this...

 $f(x,y) = \left[ \begin{array}{c} x \end{array} \right]$ 

### Result of Computing **Eigenvalues** and **Eigenvectors** (using SVD)

eigenvectors

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

axis of the 'ellipse slice'

 $f(x,y) = x^2 + y^2$ 

$$\left[ egin{array}{ccc} 1 & 0 \ 0 & 1 \end{array} 
ight] \left[ egin{array}{ccc} x \ y \end{array} 
ight]$$

![](_page_63_Figure_10.jpeg)

# Visualization as **Ellipse**

We can visualize C as an ellipse with axis lengths determined by the eigenvalues and orientation determined by R

Ellipse equation:

$$f(x,y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \operatorname{con}$$

# Since *C* is symmetric, we have $C = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$

ist

![](_page_64_Picture_9.jpeg)

# Visualization as **Ellipse**

Since C is symmetric, we have C =

We can visualize C as an ellipse with axis lengths determined by the eigenvalues and orientation determined by R

Ellipse equation:

$$f(x,y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \text{const}$$

$$= R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

![](_page_65_Figure_6.jpeg)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

![](_page_65_Picture_9.jpeg)

f

| |\

![](_page_66_Picture_1.jpeg)

 $\lambda_1 \sim 0$ 

 $\lambda_2\sim 0$ 

#### What kind of image patch does each region represent?

![](_page_66_Picture_3.jpeg)

![](_page_67_Picture_1.jpeg)

![](_page_68_Figure_1.jpeg)

![](_page_69_Picture_1.jpeg)