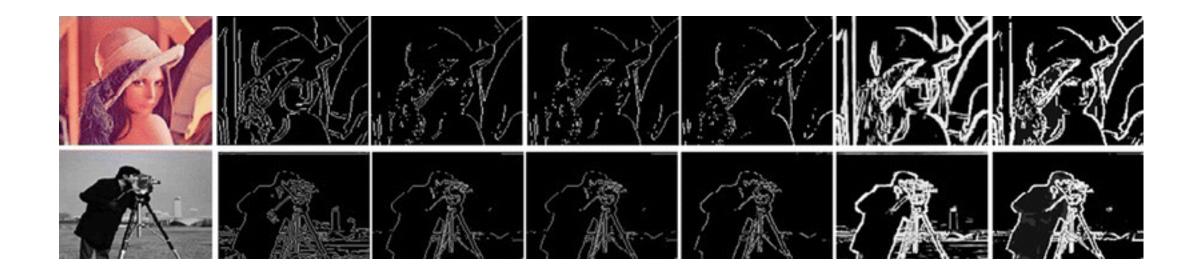


THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision



Lecture 10: Edge Detection

(unless otherwise stated slides are taken or adopted from **Bob Woodham, Jim Little** and **Fred Tung**)

Menu for Today (September 26, 2018)

Topics:

- Estimating Derivatives
- Edge Detection

Redings:

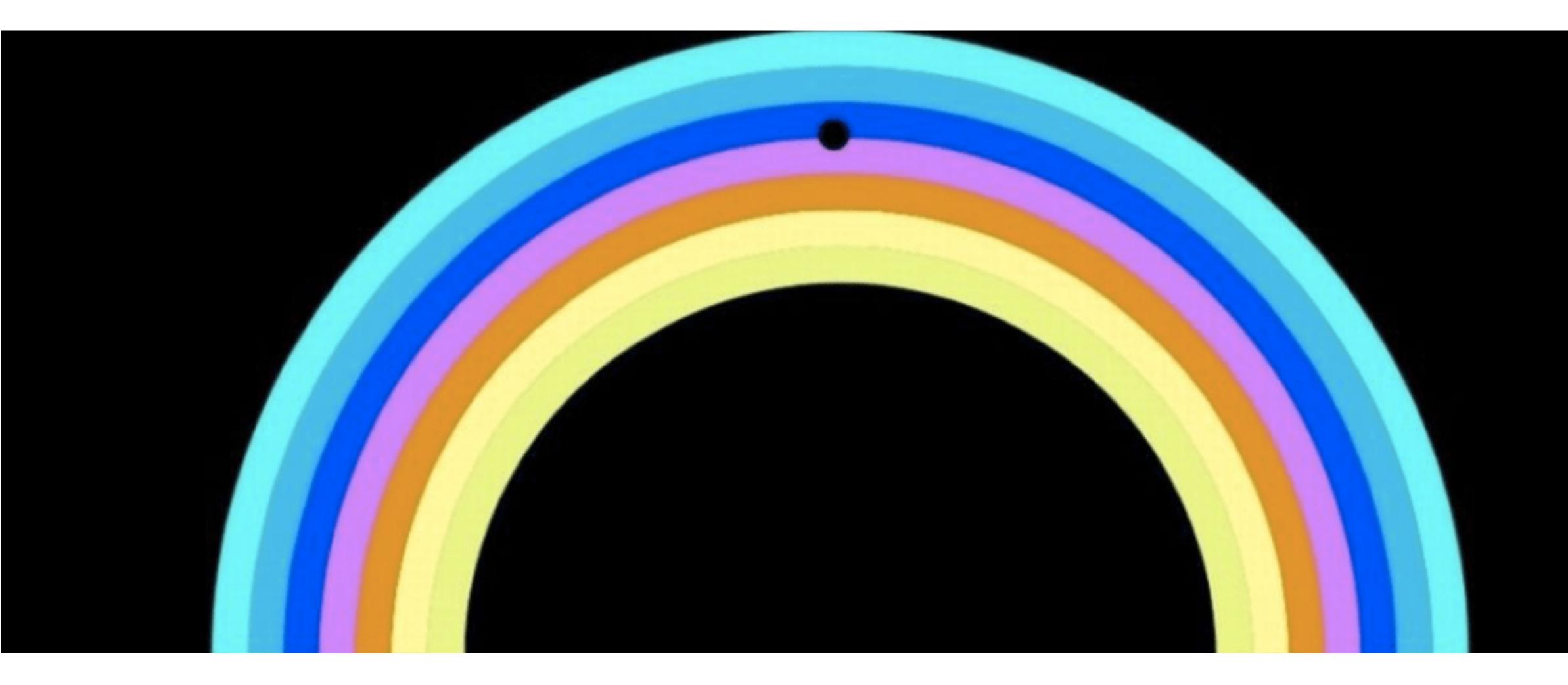
- Today's Lecture: Forsyth & Ponce (2nd ed.) 5.1 5.2
- Next Lecture: Forsyth & Ponce (2nd ed.) 5.3.0 5.3.1

Reminders:

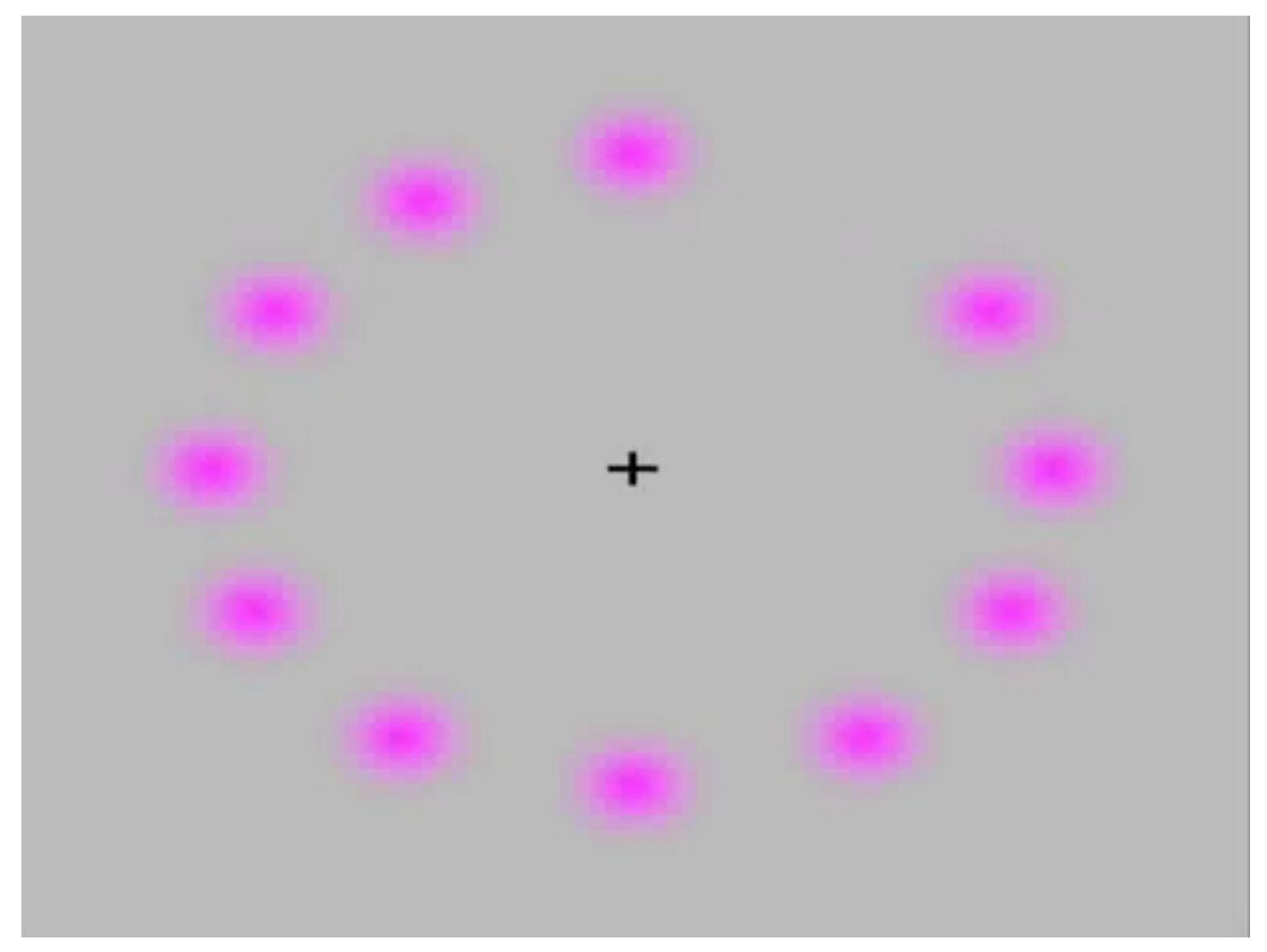
— Assignment 2: Face Detection in a Scaled Representation is out

iClicker Quiz

Today's "fun" Example: Rainbow Illusion



Today's "fun" Example: Lilac Chaser (a.k.a. Pac-Man) Illusion



Template matching as (normalized) correlation

Template matching is **not robust** to changes in

- 2D spatial scale and 2D orientation
- 3D pose and viewing direction
- illumination

Scaled representations facilitate:

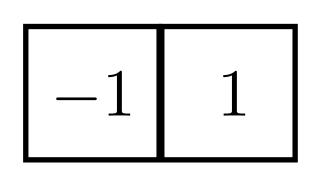
- template matching at multiple scales
- efficient search for image-to-image correspondences
- image analysis at multiple levels of detail

A Gaussian pyramid reduces artifacts introduced when sub-sampling to coarser scales

A (discrete) approximation is

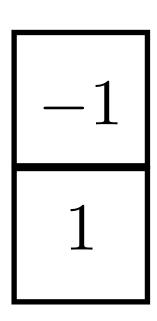
- "First forward difference"

- Can be implemented as a convolution

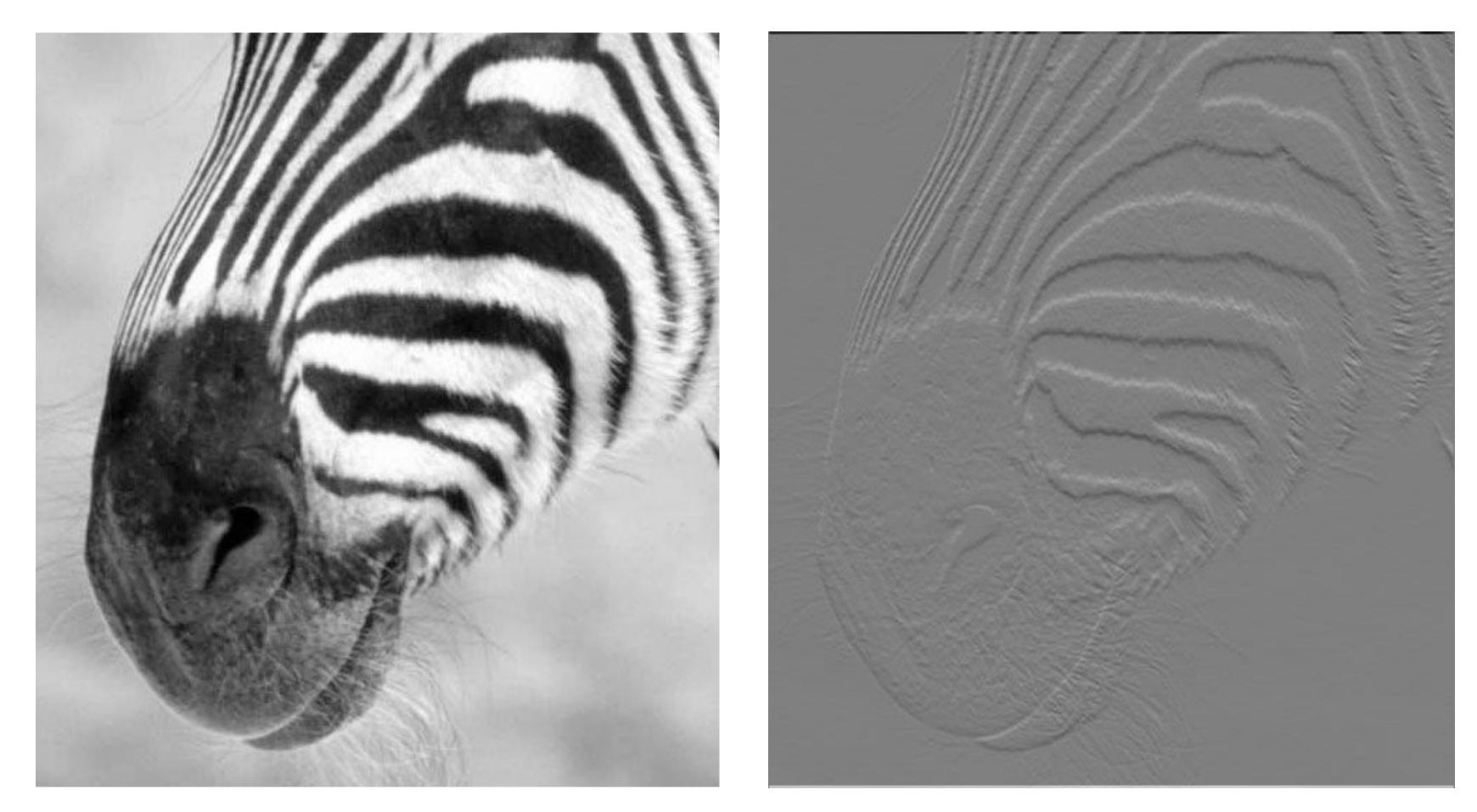


$\frac{\partial f}{\partial x} \approx \frac{F(X+1,y) - F(x,y)}{\Lambda x}$

- Sensitive to **noise**: typically smooth the image prior to derivative estimation.

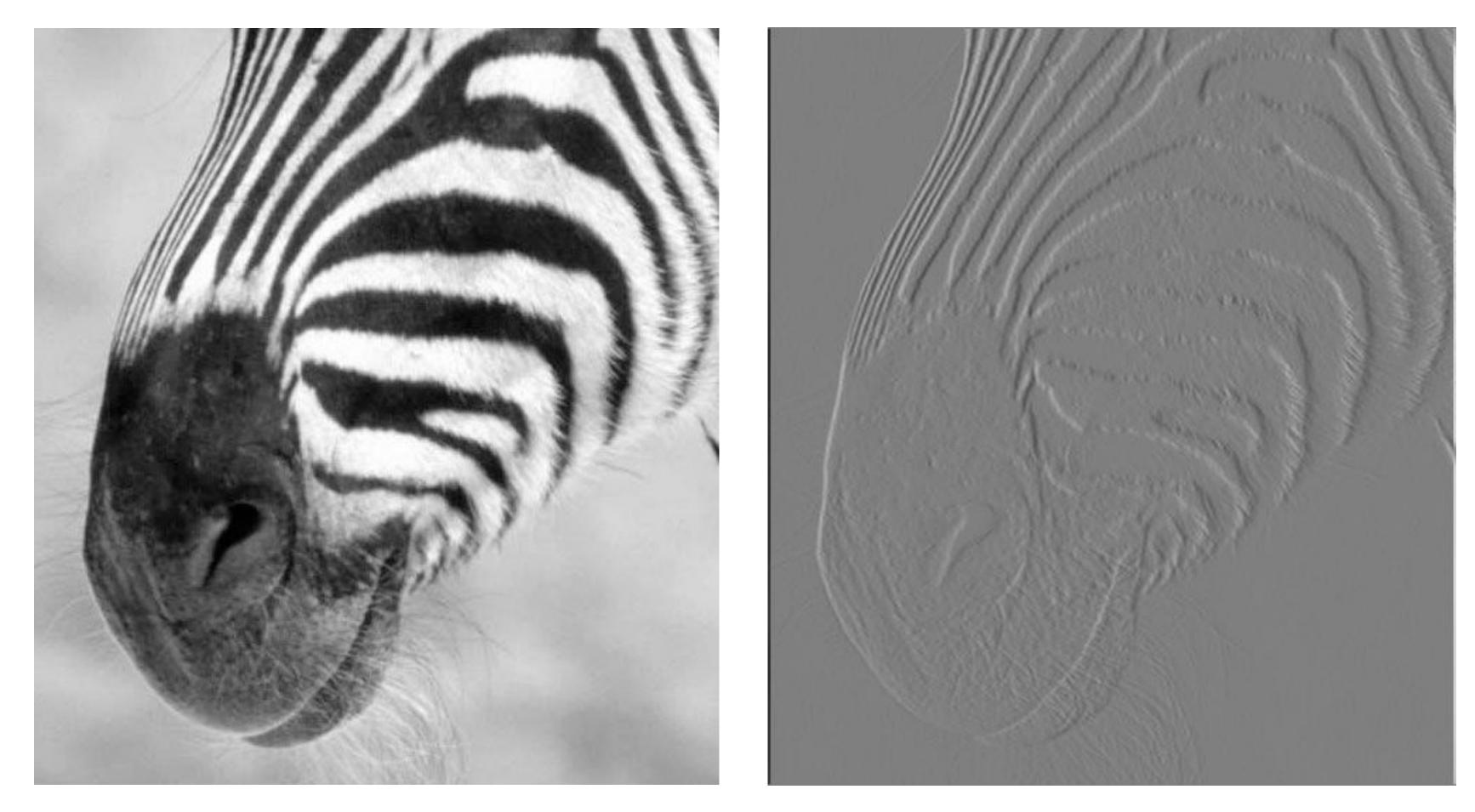


Derivative in Y (i.e., vertical) direction



Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top middle)

Derivative in X (i.e., horizontal) direction

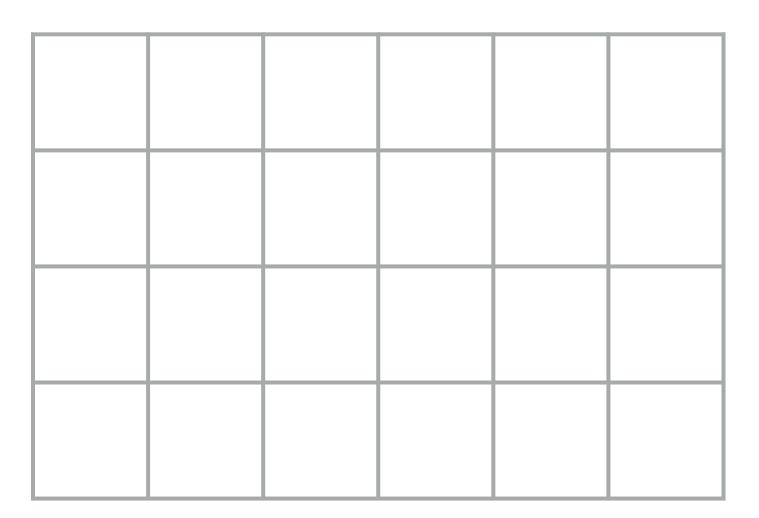


Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top right)

A Sort **Exercise**

Use the "first forward difference" to compute the image derivatives in X and Y directions.

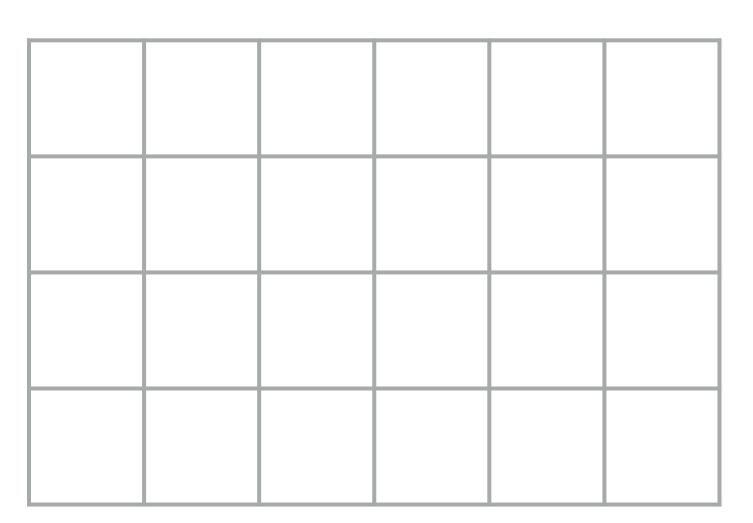
1	1	0.6	0.3	0	0
1	1	0.6	0.3	0	0
0	0	0	0	0	0
0	0	0	0	0	0



A Sort **Exercise**

Use the "first forward difference" to compute the image derivatives in X and Y directions.

	1	1	0.6	0.3	0	0
	1	1	0.6	0.3	0	0
	0	0	0	0	0	0
↑	0	0	0	0	0	0



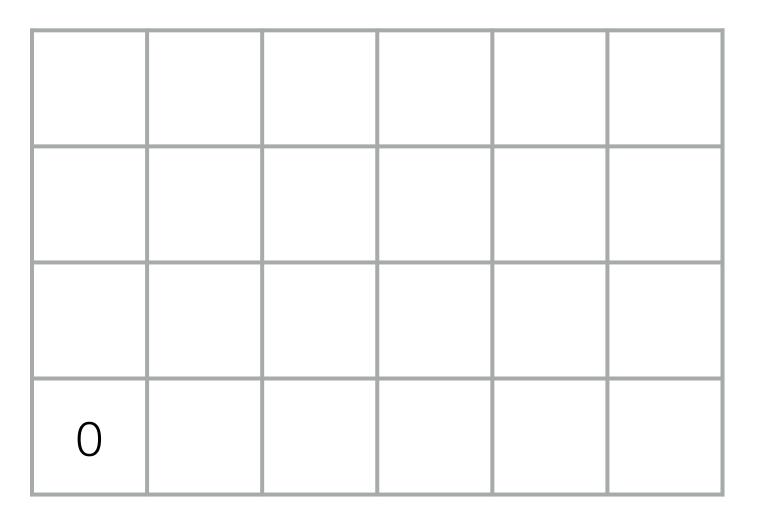
Use the "first forward difference" to compute the image derivatives in X and Y directions.

	1	1	0.6	0.3	0	0
	1	1	0.6	0.3	0	0
	0	0	0	0	0	0
↑	0	0	0	0	0	0

Use the "first forward difference" to compute the image derivatives in X and Y directions.

	1	1	0.6	0.3	0	0
	1	1	0.6	0.3	0	0
	0	0	0	0	0	0
↑	0	0	0	0	0	0

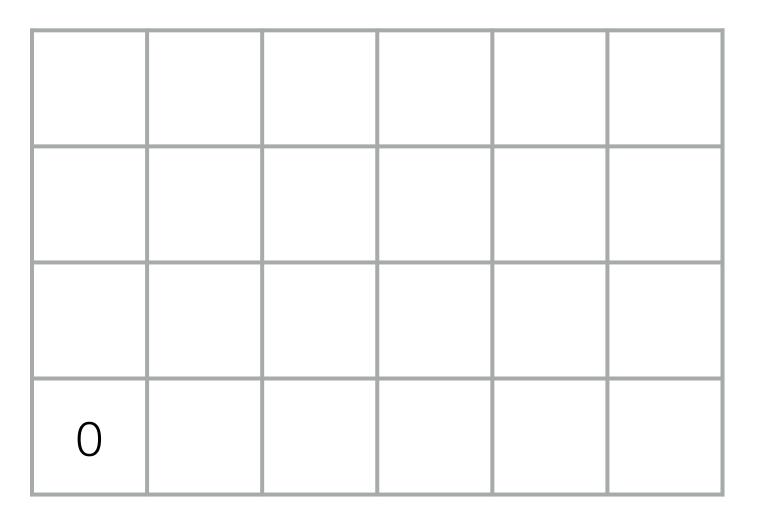
$$\frac{\partial f}{\partial y}$$
 values.)



Use the "first forward difference" to compute the image derivatives in X and Y directions.

	1	1	0.6	0.3	0	0
	1	1	0.6	0.3	0	0
	0	0	0	0	0	0
↑	0	0	0	0	0	0

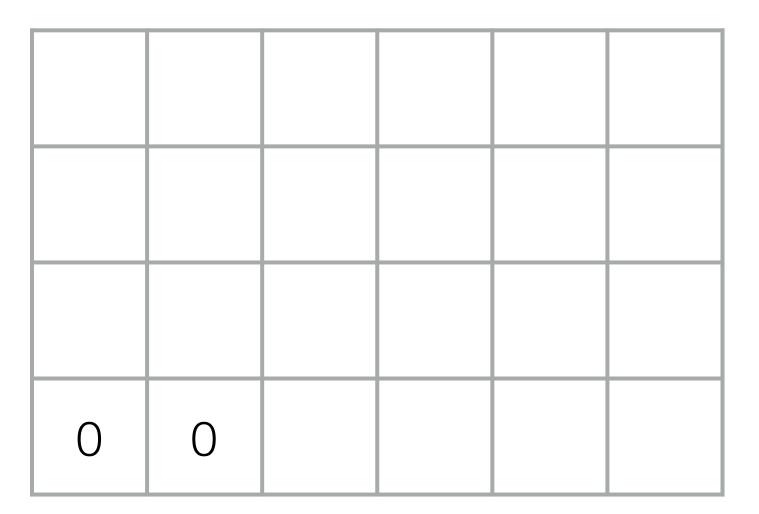
$$\frac{\partial f}{\partial y}$$
 values.)



Use the "first forward difference" to compute the image derivatives in X and Y directions.

	1	1	0.6	0.3	0	0
	1	1	0.6	0.3	0	0
	0	0	0	0	0	0
↑	0	0	0	0	0	0

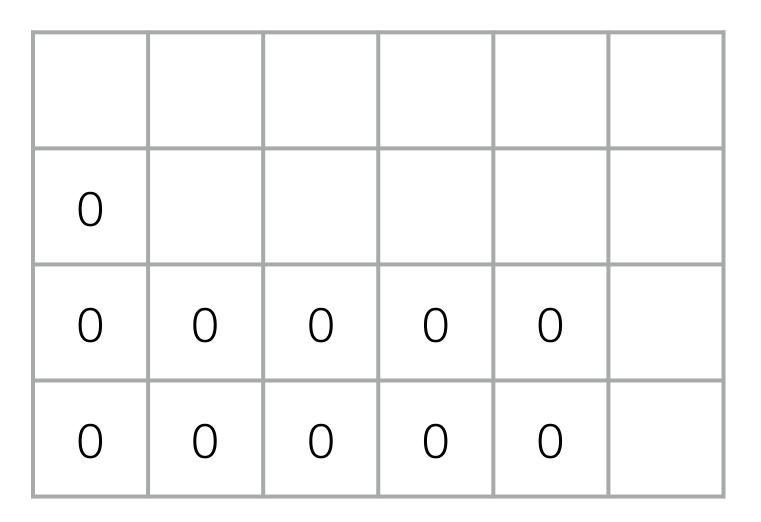
$$\frac{\partial f}{\partial y}$$
 values.)



Use the "first forward difference" to compute the image derivatives in X and Y directions.

1	1	0.6	0.3	0	0
1	1	0.6	0.3	0	0
0	0	0	0	0	0
0	0	0	0	0	0

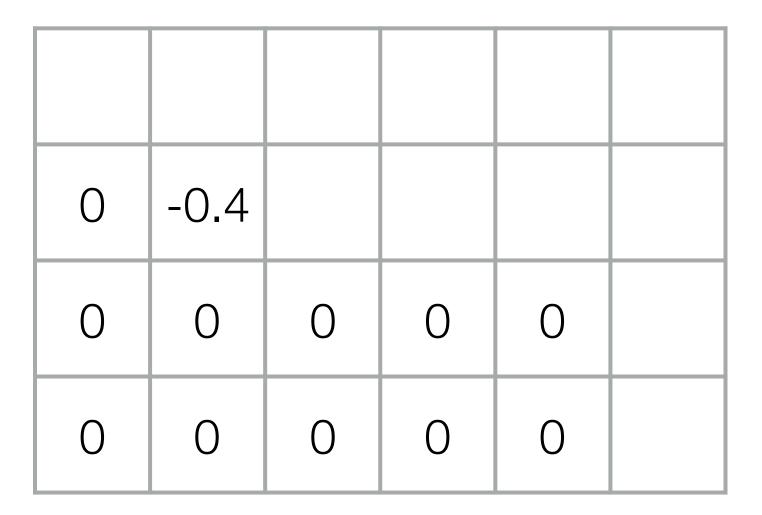
$$\frac{\partial f}{\partial y}$$
 values.)



Use the "first forward difference" to compute the image derivatives in X and Y directions.

1	1	0.6	0.3	0	0
1	1	0.6	0.3	0	0
0	0	0	0	0	0
0	0	0	0	0	0

$$\frac{\partial f}{\partial y}$$
 values.)



Use the "first forward difference" to compute the image derivatives in X and Y directions.

	1	1	0.6	0.3	0	0
	1	1	0.6	0.3	0	0
	0	0	0	0	0	0
↑	0	0	0	0	0	0

(Compute two arrays, one of $\frac{\partial f}{\partial x}$ values and one of

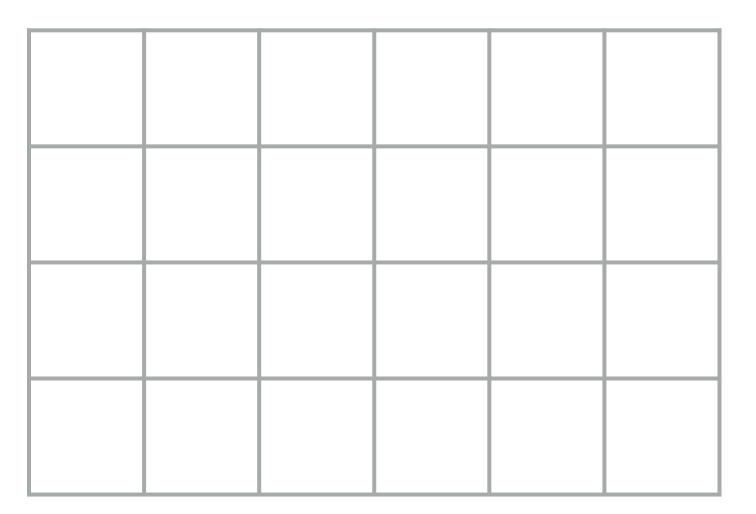
$$\frac{\partial f}{\partial y}$$
 values.)

0	-0.4	-0.3	-0.3	0	
0	-0.4	-0.3	-0.3	0	
0	0	0	0	0	
0	0	0	0	0	

Use the "first forward difference" to compute the image derivatives in X and Y directions.

	1	1	0.6	0.3	0	0
	1	1	0.6	0.3	0	0
	0	0	0	0	0	0
↑	0	0	0	0	0	0

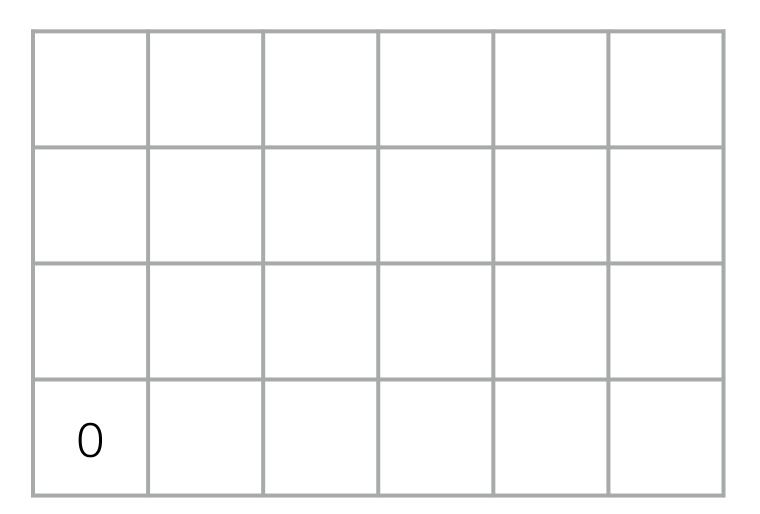
$$\frac{\partial f}{\partial y}$$
 values.)



Use the "first forward difference" to compute the image derivatives in X and Y directions.

	1	1	0.6	0.3	0	0
	1	1	0.6	0.3	0	0
	0	0	0	0	0	0
↑	0	0	0	0	0	0

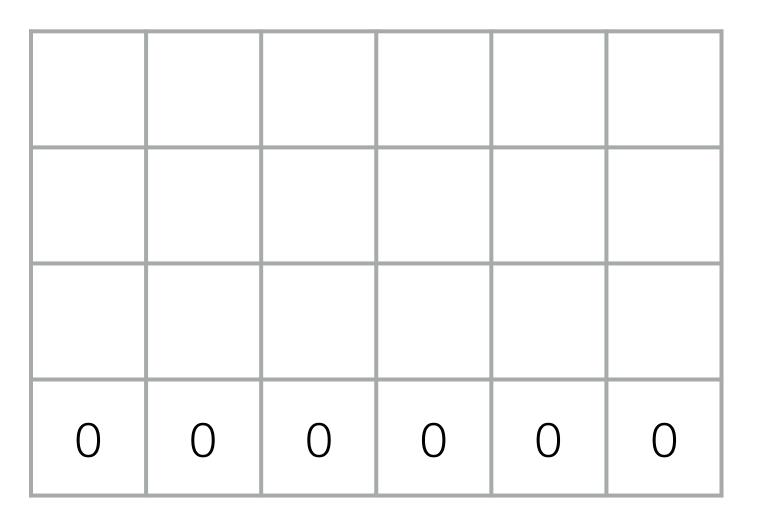
$$\frac{\partial f}{\partial y}$$
 values.)



Use the "first forward difference" to compute the image derivatives in X and Y directions.

	1	1	0.6	0.3	0	0
	1	1	0.6	0.3	0	0
	0	0	0	0	0	0
↑	0	0	0	0	0	0

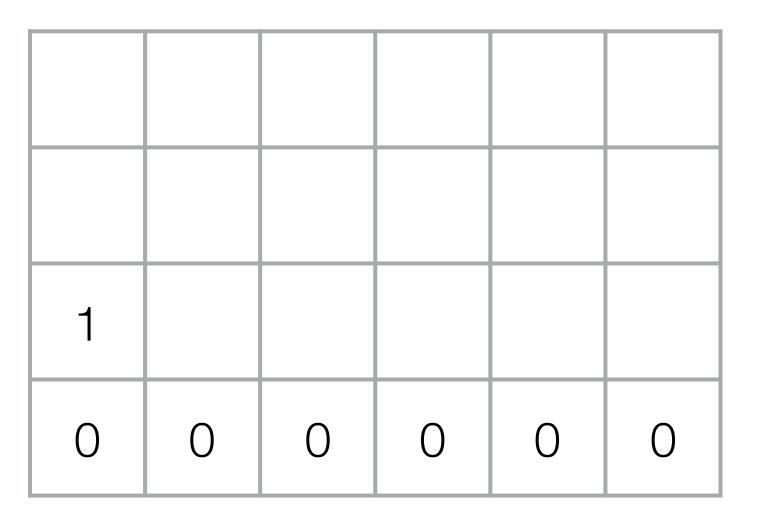
$$\frac{\partial f}{\partial y}$$
 values.)



Use the "first forward difference" to compute the image derivatives in X and Y directions.

	1	1	0.6	0.3	0	0
	1	1	0.6	0.3	0	0
	0	0	0	0	0	0
↑	0	0	0	0	0	0

$$\frac{\partial f}{\partial y}$$
 values.)



Use the "first forward difference" to compute the image derivatives in X and Y directions.

	1	1	0.6	0.3	0	0
	1	1	0.6	0.3	0	0
	0	0	0	0	0	0
↑	0	0	0	0	0	0

$$\frac{\partial f}{\partial y}$$
 values.)

0	0	0	0	0	0
1	1	0.6	0.3	0	0
0	0	0	0	0	0

Estimating **Derivatives**

Question: Why, in general, should th sum to 0?

Question: Why, in general, should the weights of a filter used for differentiation

Estimating **Derivatives**

Question: Why, in general, should th sum to 0?

Answer: Think of a constant image, I(X, Y) = k. The derivative is 0. Therefore, the weights of any filter used for differentiation need to sum to 0.

Question: Why, in general, should the weights of a filter used for differentiation

Estimating **Derivatives**

Question: Why, in general, should th sum to 0?

Answer: Think of a constant image, I(X, Y) = k. The derivative is 0. Therefore, the weights of any filter used for differentiation need to sum to 0.

$$\sum_{i=1}^{N} f_i \cdot k = k \sum_{i=1}^{N} f_i = 0 \implies \sum_{i=1}^{N} f_i = 0$$

Question: Why, in general, should the weights of a filter used for differentiation

Edge Detection

Goal: Identify sudden changes in image intensity

This is where most shape information is encoded

Example: artist's line drawing (but artist also is using object-level knowledge)

What Causes Edges?

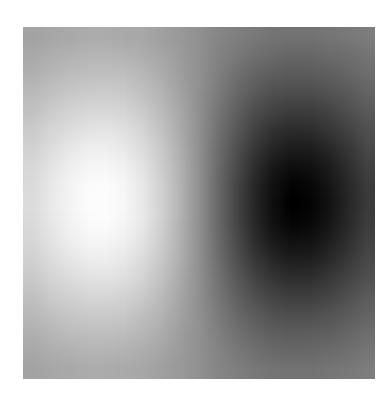
- Depth discontinuity
- Surface orientation discontinuity
- Reflectance discontinuity (i.e., change in surface material properties)
- Illumination discontinuity (e.g., shadow)

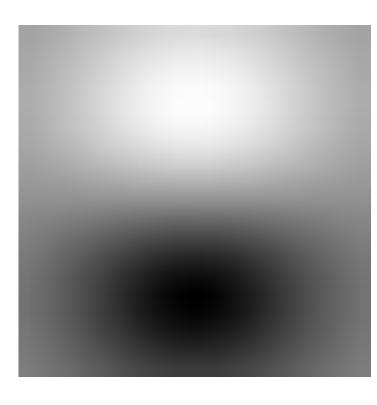


Slide Credit: Christopher Rasmussen

Smoothing and Differentiation

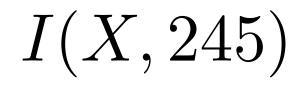
- **Edge:** a location with high gradient (derivative) Need smoothing to reduce noise prior to taking derivative Need two derivatives, in x and y direction We can use **derivative of Gaussian** filters because differentiation is convolution, and – convolution is associative
- Let \otimes denote convolution
 - $D \otimes (G \otimes I(X,Y)) = (D \otimes G) \otimes I(X,Y)$

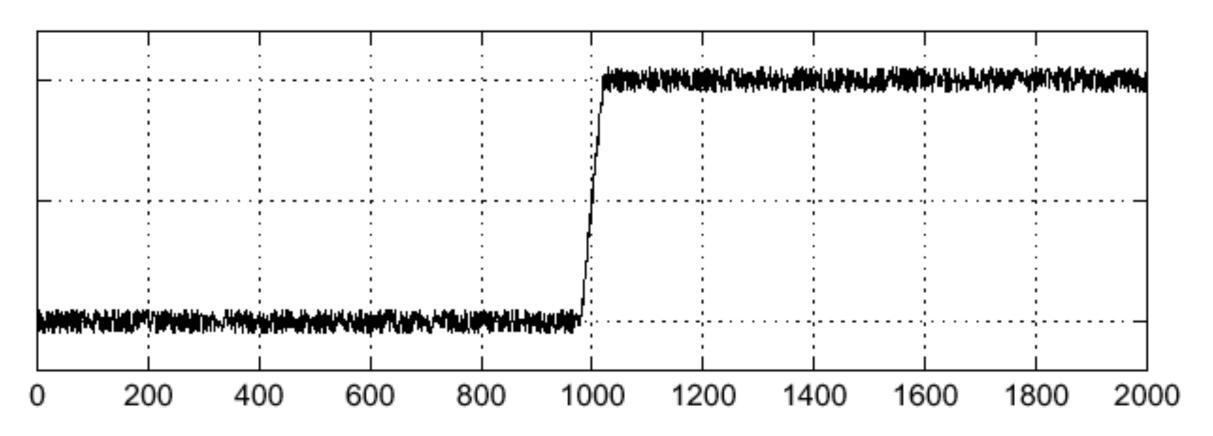




1D Example

Lets consider a row of pixels in an image:

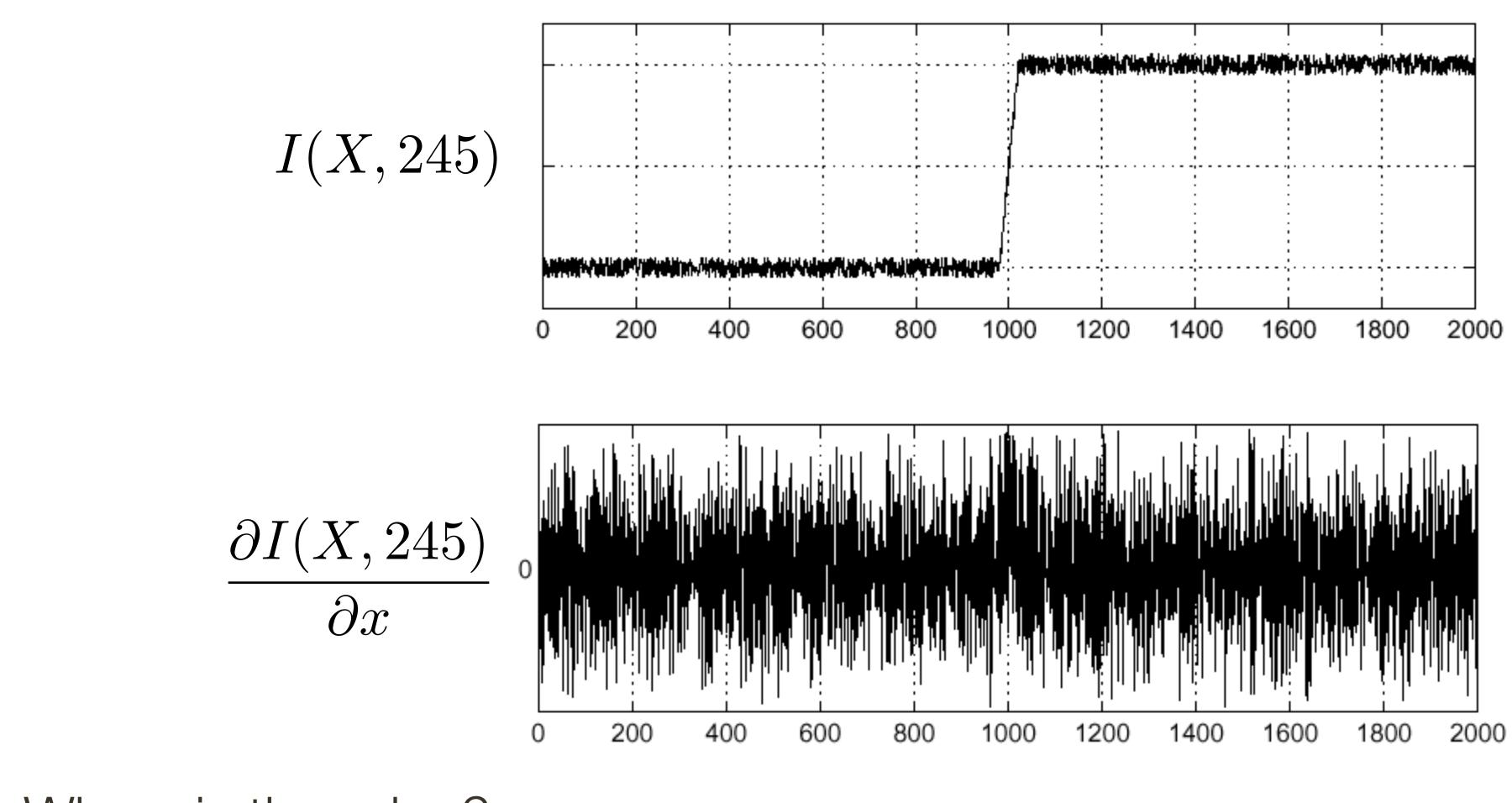




Where is the edge?

1D Example: Derivative

Lets consider a row of pixels in an image:

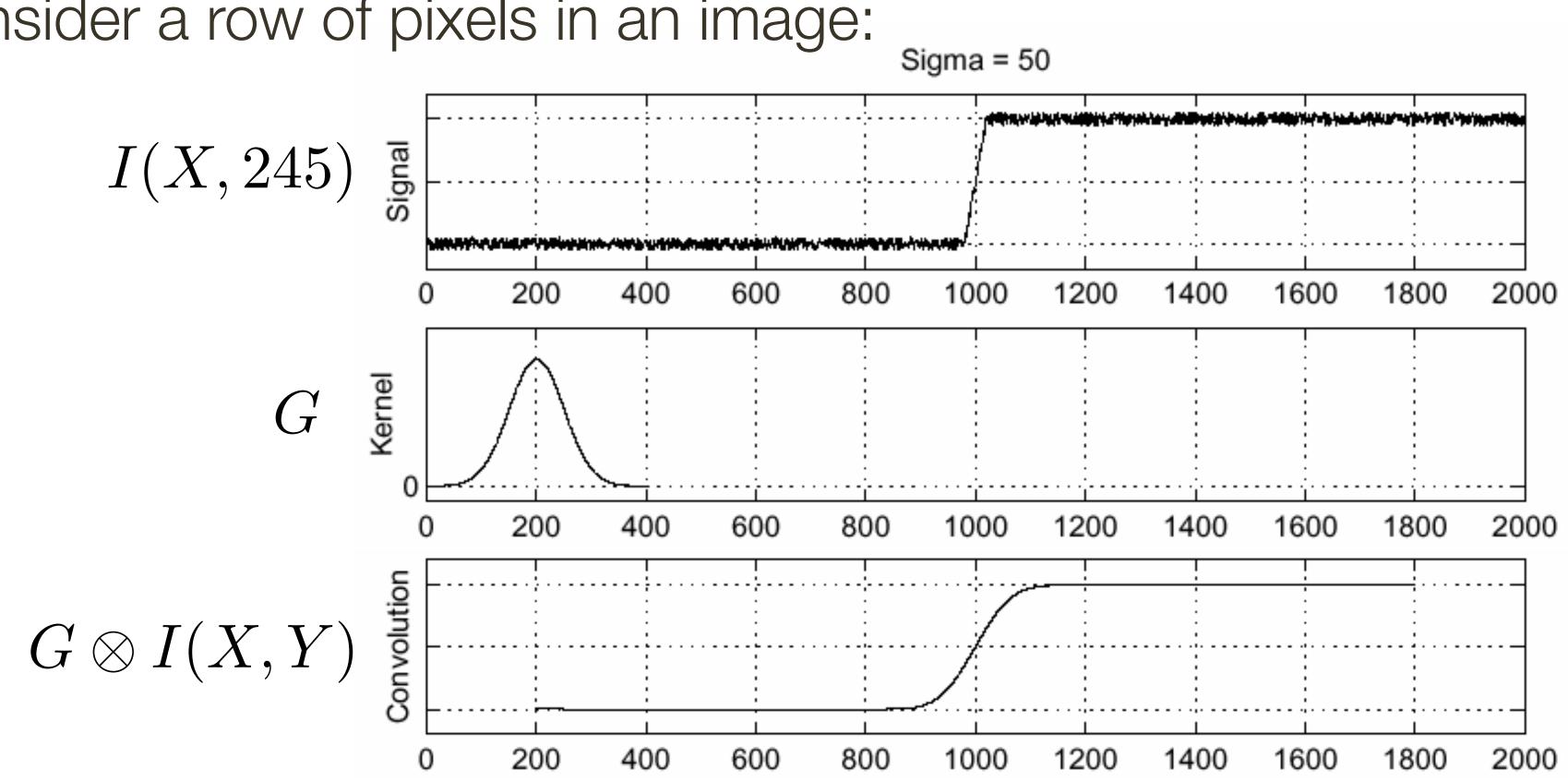


Where is the edge?

30

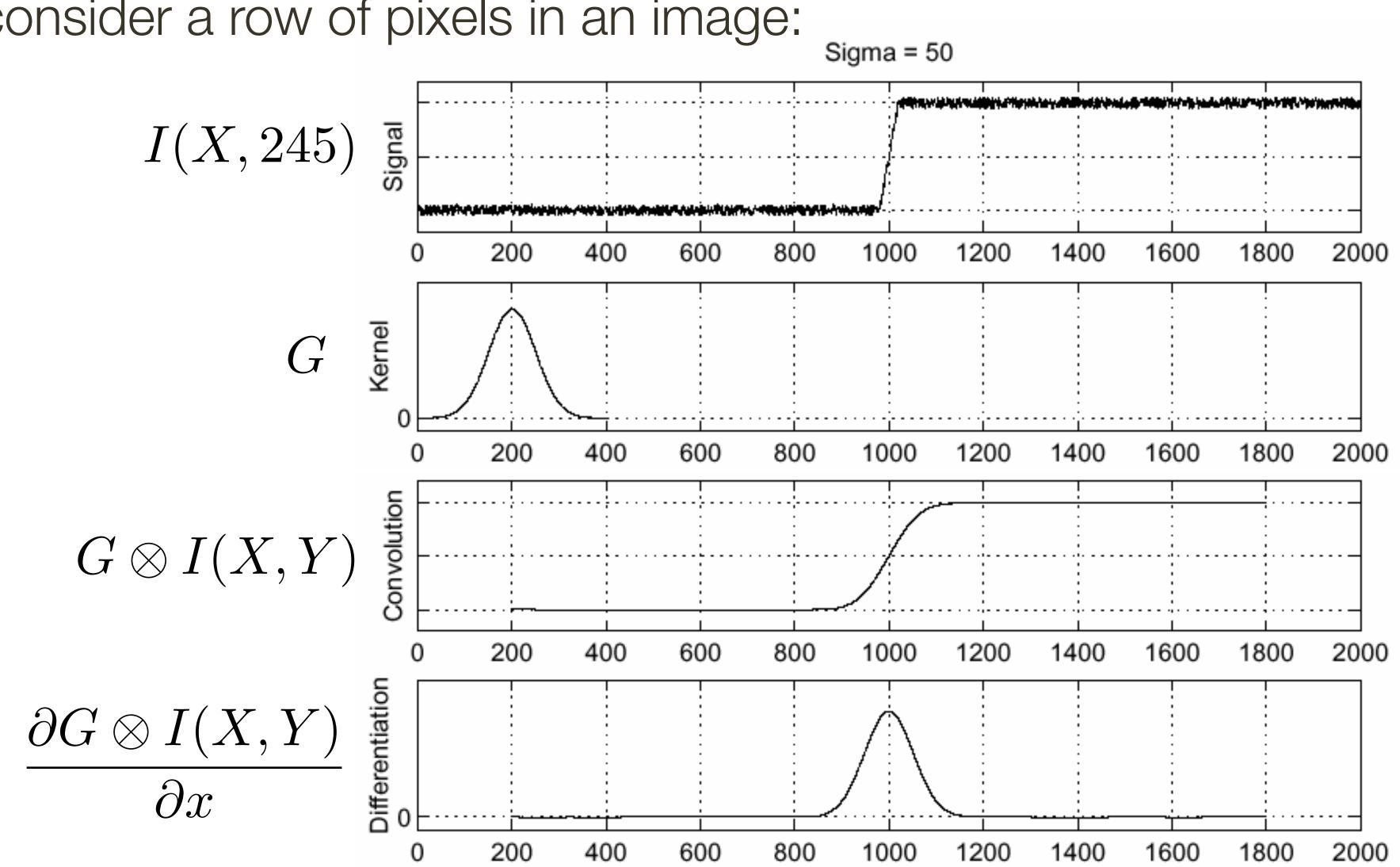
1D Example: Smoothing + Derivative

Lets consider a row of pixels in an image:



1D Example: Smoothing + Derivative

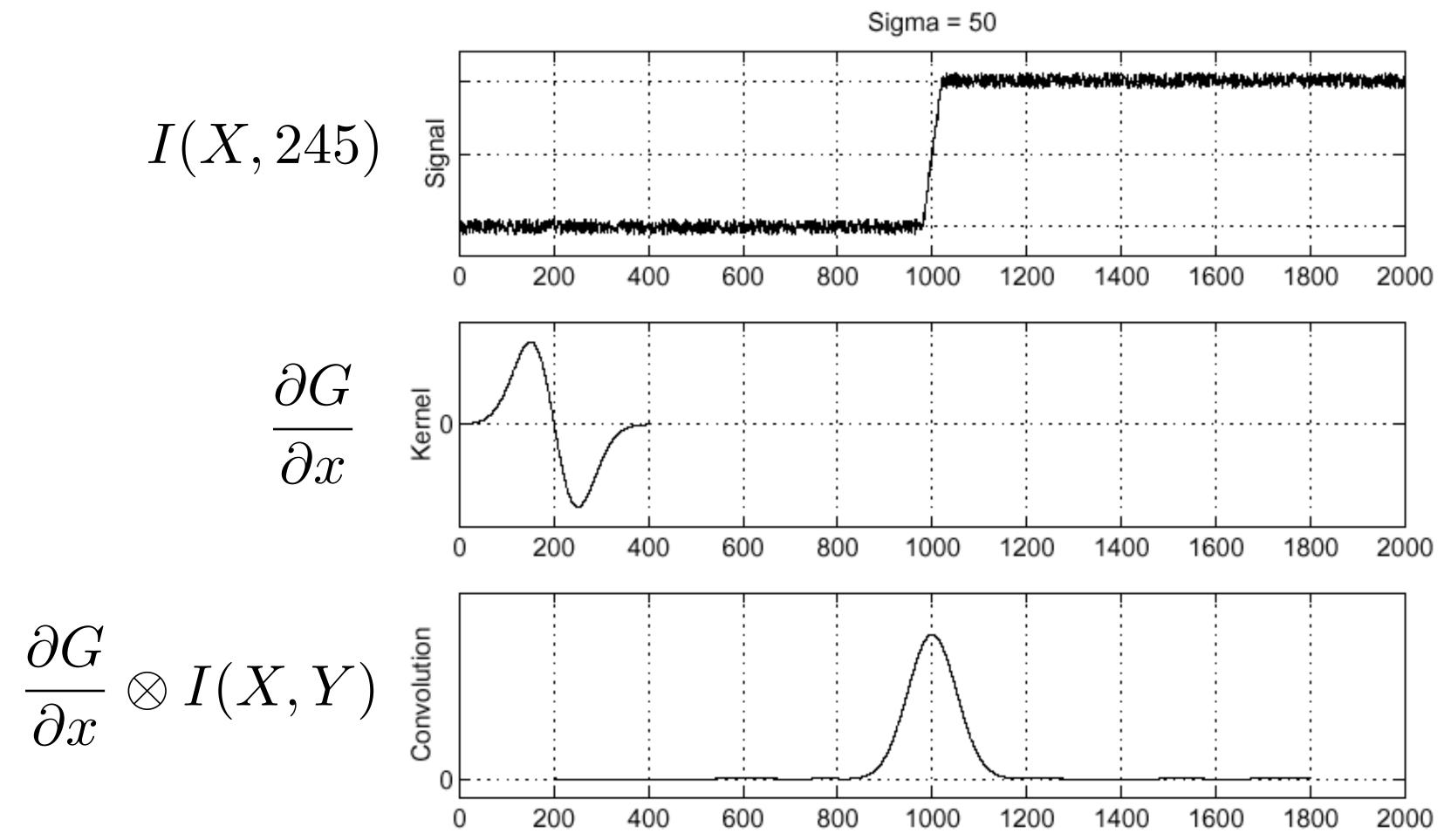
Lets consider a row of pixels in an image:



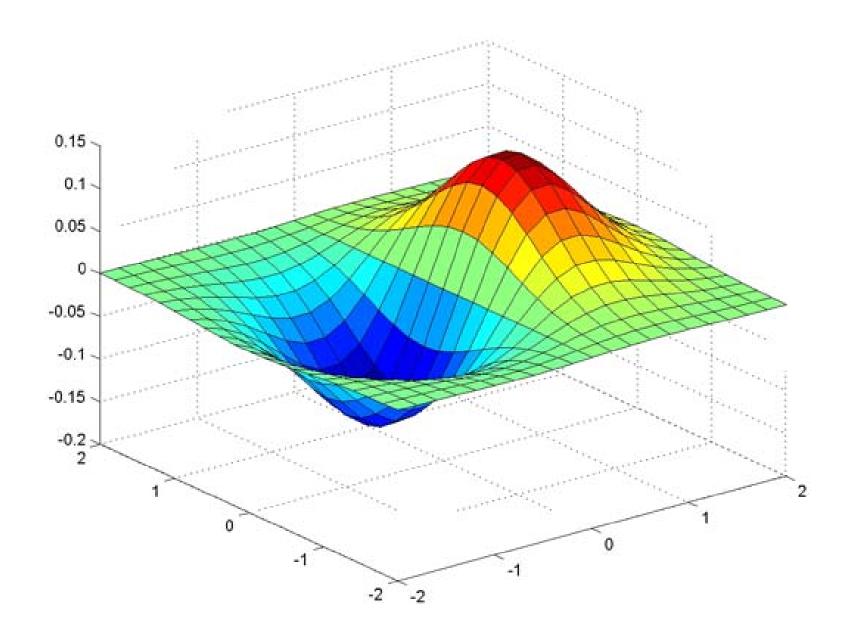
32

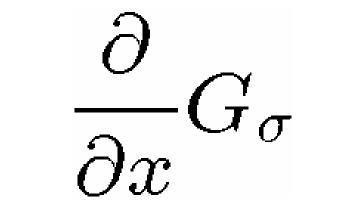
1D **Example**: Smoothing + Derivative (efficient)

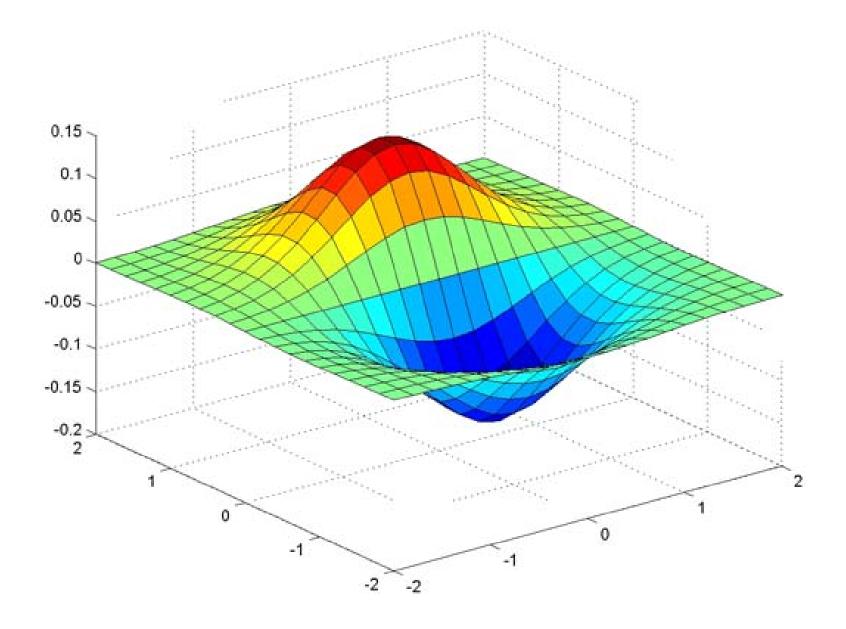
Lets consider a row of pixels in an image:

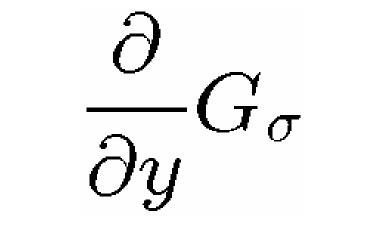


Partial Derivatives of Gaussian









Slide Credit: Christopher Rasmussen

Gradient Magnitude

Let I(X, Y) be a (digital) image

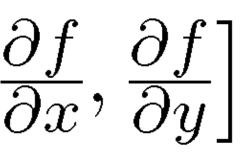
Let $I_x(X,Y)$ and $I_y(X,Y)$ be estimates of the partial derivatives in the x and y directions, respectively.

Call these estimates I_x and I_y (for short) The vector $[I_x, I_y]$ is the gradient

The scalar $\sqrt{I_x^2 + I_y^2}$ is the **gradient magnitude**

The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \mathbf{0} \end{bmatrix}$$



$\nabla f = \left[0, \frac{\partial f}{\partial y}\right]$

The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \nabla f$$

The gradient points in the direction of most rapid **increase of intensity**:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$= \left[\mathbf{0}, \frac{\partial f}{\partial y}\right]$$

The gradient of an image: $\nabla f = \left| \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right|$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \nabla f = \nabla f = \nabla f$$

The gradient points in the direction of most rapid **increase of intensity**:

The gradient direction is given by: $\theta = \tan^{-1}\left(\frac{\partial f}{\partial u}/\frac{\partial f}{\partial x}\right)$

(how is this related to the direction of the edge?)

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$= \left[\mathbf{0}, \frac{\partial f}{\partial y}\right]$$

The gradient of an image: $\nabla f = \left| \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right|$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \nabla f = \nabla f = \nabla f$$

The gradient points in the direction of most rapid **increase of intensity**:

The gradient direction is given by: $\theta = \tan^{-1}\left(\frac{\partial f}{\partial u}/\frac{\partial f}{\partial x}\right)$

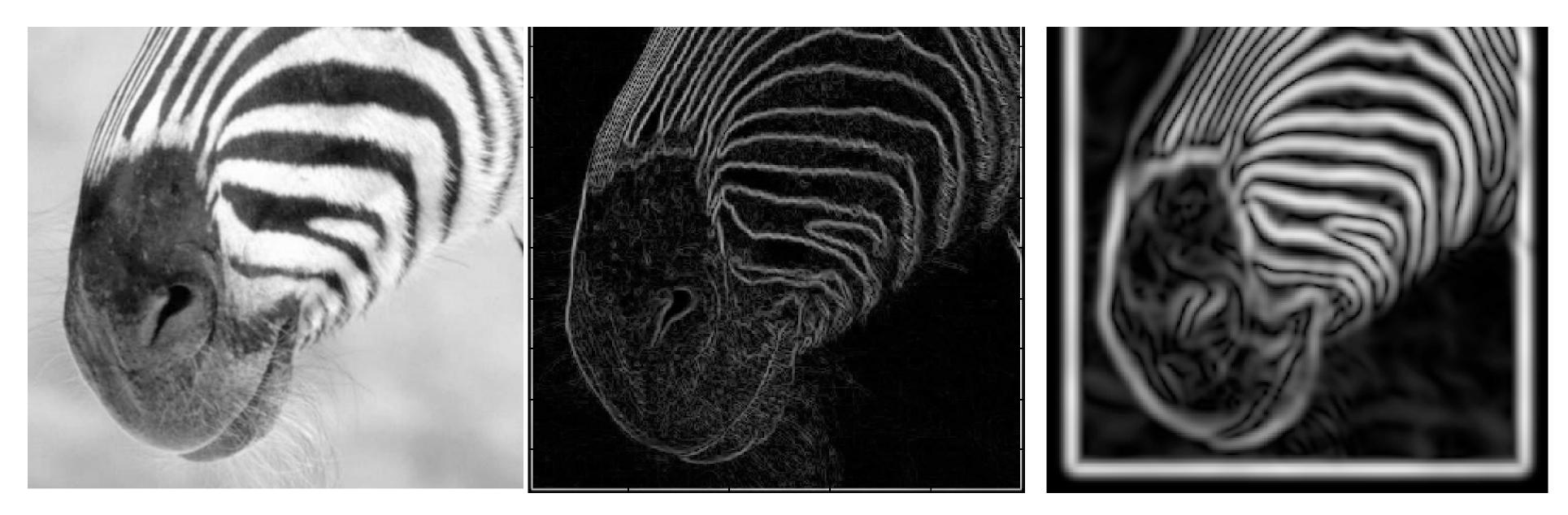
(how is this related to the direction of the edge?)

The edge strength is given by the **gradient magnitude**: $\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial u}\right)^2}$

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$= \left[\mathbf{0}, \frac{\partial f}{\partial y}\right]$$

Gradient Magnitude



$\sigma = 2$ $\sigma = 1$ Forsyth & Ponce (2nd ed.) Figure 5.4

Increased **smoothing**:

- eliminates noise edges
- makes edges smoother and thicker
- removes fine detail

Sobel Edge Detector

1. Use **central differencing** to compute gradient image (instead of first forward differencing). This is more accurate.

2. Threshold to obtain edges

Original Image

Sobel Gradient

Thresholds are brittle, we can do better!

Sobel Edges

Please get your iClickers — Quiz