
Lecture 10: Edge Detection

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )



Menu for Today (September 26, 2018)
Topics: 

— Estimating Derivatives 
— Edge Detection

Redings: 

— Today’s Lecture:  Forsyth & Ponce (2nd ed.) 5.1 - 5.2 
— Next Lecture:       Forsyth & Ponce (2nd ed.) 5.3.0 - 5.3.1 

Reminders: 

— Assignment 2: Face Detection in a Scaled Representation is out

— iClicker Quiz 
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Today’s “fun” Example: Rainbow Illusion
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Today’s “fun” Example: Lilac Chaser (a.k.a. Pac-Man) Illusion



Template matching as (normalized) correlation  

Template matching is not robust to changes in  
— 2D spatial scale and 2D orientation 
— 3D pose and viewing direction 
— illumination  

Scaled representations facilitate: 
— template matching at multiple scales 
— efficient search for image-to-image correspondences  
— image analysis at multiple levels of detail  

A Gaussian pyramid reduces artifacts introduced when sub-sampling to 
coarser scales 
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Lecture 9: Re-cap
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Lecture 9: Re-cap

A (discrete) approximation is  

— “First forward difference” 
— Can be implemented as a convolution 
— Sensitive to noise: typically smooth the image prior to derivative estimation.

@f

@x

= lim
✏!0

f(x+ ✏, y)� f(x, y)

✏

@f

@x

⇡ F (X + 1, y)� F (x, y)

�x

�1 1
�1

1



7

Lecture 9: Re-cap
Derivative in Y (i.e., vertical) direction

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top middle) 
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Derivative in X (i.e., horizontal) direction

Forsyth & Ponce (1st ed.) Figure 7.4 (top left & top right) 

Lecture 9: Re-cap



A Sort Exercise

Use the “first forward difference" to compute the image derivatives in X and Y 
directions.  

(Compute two arrays, one of        values and one of        values.)  
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A Sort Exercise: Derivative in X Direction

Use the “first forward difference" to compute the image derivatives in X and Y 
directions.  

(Compute two arrays, one of        values and one of        values.)  
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directions.  

(Compute two arrays, one of        values and one of        values.)  
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A Sort Exercise: Derivative in X Direction
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A Sort Exercise: Derivative in X Direction



Use the “first forward difference" to compute the image derivatives in X and Y 
directions.  

(Compute two arrays, one of        values and one of        values.)  
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A Sort Exercise: Derivative in X Direction



Use the “first forward difference" to compute the image derivatives in X and Y 
directions.  

(Compute two arrays, one of        values and one of        values.)  
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A Sort Exercise: Derivative in X Direction



Use the “first forward difference" to compute the image derivatives in X and Y 
directions.  

(Compute two arrays, one of        values and one of        values.)  
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A Sort Exercise: Derivative in X Direction



Use the “first forward difference" to compute the image derivatives in X and Y 
directions.  
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A Sort Exercise: Derivative in X Direction



Use the “first forward difference" to compute the image derivatives in X and Y 
directions.  

(Compute two arrays, one of        values and one of        values.)  
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A Sort Exercise: Derivative in Y Direction



Use the “first forward difference" to compute the image derivatives in X and Y 
directions.  

(Compute two arrays, one of        values and one of        values.)  
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A Sort Exercise: Derivative in Y Direction



Use the “first forward difference" to compute the image derivatives in X and Y 
directions.  

(Compute two arrays, one of        values and one of        values.)  
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directions.  
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A Sort Exercise: Derivative in Y Direction



Use the “first forward difference" to compute the image derivatives in X and Y 
directions.  

(Compute two arrays, one of        values and one of        values.)  
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A Sort Exercise: Derivative in Y Direction



Estimating Derivatives 

Question: Why, in general, should the weights of a filter used for differentiation 
sum to 0?  
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Estimating Derivatives 

Question: Why, in general, should the weights of a filter used for differentiation 
sum to 0?  

Answer: Think of a constant image,                   . The derivative is 0. Therefore, 
the weights of any filter used for differentiation need to sum to 0. 
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I(X,Y ) = k
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Edge Detection

Goal: Identify sudden changes in image 
intensity  

This is where most shape information is 
encoded  

Example: artist’s line drawing (but artist 
also is using object-level knowledge)  
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What Causes Edges?
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What causes an edge?

• Depth discontinuity
• Surface orientation 

discontinuity
• Reflectance 

discontinuity (i.e., 
change in surface 
material properties)

• Illumination 
discontinuity (e.g., 
shadow)

Slide credit: Christopher Rasmussen

Slide Credit: Christopher Rasmussen



Smoothing and Differentiation 

Edge: a location with high gradient (derivative) 

Need smoothing to reduce noise prior to taking derivative  

Need two derivatives, in x and y direction  

We can use derivative of Gaussian filters 
— because differentiation is convolution, and  
— convolution is associative  

Let     denote convolution  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D ⌦ (G⌦ I(X,Y )) = (D ⌦G)⌦ I(X,Y )

⌦



1D Example
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I(X, 245)

Lets consider a row of pixels in an image:

Where is the edge?



1D Example: Derivative
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I(X, 245)

@I(X, 245)
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Lets consider a row of pixels in an image:

Where is the edge?
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1D Example: Smoothing + Derivative

G

G⌦ I(X,Y )

I(X, 245)

Lets consider a row of pixels in an image:
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1D Example: Smoothing + Derivative

G

G⌦ I(X,Y )

@G⌦ I(X,Y )

@x

I(X, 245)

Lets consider a row of pixels in an image:
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1D Example: Smoothing + Derivative (efficient)
Lets consider a row of pixels in an image:

I(X, 245)



Partial Derivatives of Gaussian
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Derivative of Gaussian

Slide credit: Christopher Rasmussen
Slide Credit: Christopher Rasmussen



Gradient Magnitude

Let              be a (digital) image 

Let               and                be estimates of the partial derivatives in the    and    
directions, respectively. 

Call these estimates     and      (for short) The vector            is the gradient  

The scalar                 is the gradient magnitude  
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Image Gradient
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The gradient of an image: 



Image Gradient
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The gradient of an image: 

The gradient points in the direction of most rapid increase of intensity: 



The gradient direction is given by: 

Image Gradient
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The gradient of an image: 

The gradient points in the direction of most rapid increase of intensity: 

(how is this related to the direction of the edge?)



The edge strength is given by the gradient magnitude: 

The gradient direction is given by: 

Image Gradient
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The gradient of an image: 

The gradient points in the direction of most rapid increase of intensity: 

(how is this related to the direction of the edge?)



Increased smoothing: 
— eliminates noise edges 
— makes edges smoother and thicker  
— removes fine detail 
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Gradient Magnitude

Scale
Increased smoothing:
• Eliminates noise edges.
• Makes edges smoother and thicker.
• Removes fine detail.

� = 1 � = 2

Forsyth & Ponce (2nd ed.) Figure 5.4



Sobel Edge Detector
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1. Use central differencing to compute gradient image (instead of first 
forward differencing). This is more accurate. 

2. Threshold to obtain edges 

Sobel Gradient Sobel EdgesOriginal Image

Thresholds are brittle, we can do better! 



Please get your iClickers — Quiz
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