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1 Learning Object RecognitionModels from ImagesArthur R. Pope and David G. LoweUniversity of British ColumbiaAbstractTo recognize an object in an image one must have an internal model ofhow that object may appear. We describe a method for learning such mod-els from training images. An object is modeled by a probability distributiondescribing the range of possible variation in the object's appearance. Thisdistribution is organized on two levels. Large variations are handled bypartitioning the training images into clusters that correspond to distinctlydi�erent views of the object. Within each cluster, smaller variations arerepresented by distributions that characterize the presence, position, andmeasurements of various discrete features of appearance. The learning pro-cess combines an incremental conceptual clustering algorithm for formingthe clusters with a generalization algorithm for consolidating each cluster'straining images into a single description. Recognition employs informationabout feature positions, numeric measurements, and relations in order toconstrain and speed the search. Preliminary experiments have been con-ducted with a system that implements some aspects of the method; thesystem can learn to recognize a single characteristic view of an object inthe presence of occlusion and clutter.1 IntroductionTo recognize an object in an image one must have some expectation of how theobject may appear. That expectation is based on an internal model of the object'sform or appearance. We are investigating how a system might acquire such modelsdirectly from intensity images, and then use those models to recognize the objectsin other images.The following scenario illustrates how this recognition learning system wouldoperate. One presents to the system a series of example images that depict aparticular object from various viewpoints. From those examples the system de-velops a model of the object's appearance. This training is repeated for each ofthe objects the system is to recognize. When given a test image, the system canthen identify and rank apparent instances of the known objects in the image.1



2 POPE AND LOWEFew object recognition systems have been designed to acquire their modelsdirectly from intensity images. Instead, most systems are simply given modelsin the form of manually-produced shape descriptions. During recognition, theobject's shape description must be combined with a model of the image forma-tion process in order to determine whether the object might have a particularappearance. Successful recognition depends on having good models not only ofthe objects, but also of the scene illumination, surface reectance, optical pro-jection, and the sensor. Because modeling image formation has proven di�cult,most object recognition systems that follow this approach have been restricted toobject models that are relatively simple and coarse.A system that can learn its models directly from images, on the other hand,may enjoy important advantages:� The learning system will avoid the problem of having to estimate the actualappearance of an object from some idealized model of its shape. Instead,all of the properties of the object's appearance needed for recognition willbe learned directly by observation. Eliminating inaccuracies in appearanceestimation should allow recognition to be accomplished more robustly.� The learning system will acquire new models more conveniently. A newmodel will be de�ned not by measuring and encoding its shape, as withtraditional object recognition systems, but by merely displaying the objectto the system in various poses.� The learning system could endow a robot with the ability to learn objects asthey are encountered for later recognition. This ability would be importantin a dynamic, unknown environment.The di�culty of the recognition learning problem is largely due to the fact thatan object's appearance has a large range of variation. It varies with changes incamera position and lighting and, if the object is exible, with changes in shape.Further variation is due to noise and to di�erences among individual instances ofthe same type of object. Accommodating this variation is a central problem inthe design of a recognition learning system. The scheme used to describe imagecontent must be stable so that small changes in an appearance induce only smallchanges in its description. The scheme used to model an object's appearance mustdescribe just what variations are possible. The learning procedure must gener-alize enough to overcome insigni�cant variation, but not so much as to confusedissimilar objects. And the procedure used to identify modeled objects in imagesmust tolerate the likely range of mismatch between model and image.In investigating the recognition learning problem we have concentrated on oneparticular version of it: learning to recognize 3-D objects in 2-D intensity images.Objects are recognized solely by the intensity edges they exhibit (although nothingabout the approach precludes an extension to other properties, such as color andtexture). As for the objects themselves, they may be entirely rigid, possess a small



1. LEARNING OBJECT RECOGNITION MODELS 3number of articulations, or be somewhat exible. The system is able to learn torecognize a class of similar objects, accommodating the variation among objectsjust as it accommodates the variation among images of a single object.Our method models an object by a probability distribution that describes therange of possible variation in the object's appearance. This probability distribu-tion is organized on two levels. Large variations are handled by partitioning thetraining images into clusters that correspond to distinctly di�erent views or con-�gurations of the object. Within each cluster, smaller variations are representedby probability distributions characterizing various appearance features. For eachfeature we represent the probability of detecting that feature in various positionswith respect to the overall object, and the probability of the feature having vari-ous values of feature-speci�c, numeric measurements. A rich, partially-redundant,and extensible repertoire of features is used to describe appearance.The learning method combines an incremental conceptual clustering algorithmfor forming the clusters with a generalization algorithm for consolidating eachcluster's training images into a single description. Recognition, which involvesmatching the features of a training image with those of a cluster's description, canemploy information about feature positions, numeric measurements, and relationsin order to constrain and speed the search for a match. Preliminary experimentshave been conducted with a system that implements some aspects of the method;that system can learn to recognize a single view of an object among other occludingand distracting objects.We have just described the problem being considered, its signi�cance, thesource of its di�culty, and the outline of a solution method. The next section be-gins a detailed description of the method by discussing the representations usedfor images and models. The process of �nding a match between a model and animage is guided by a match quality measure, which is the subject of section 3.This measure supports both the matching procedure described in section 4, andthe procedure for learning models described in section 5. Section 6 presents ex-perimental results from a system implemented to test the approach. Section 7discusses relevant work by others on this and similar problems, and section 8summarizes the chapter's main ideas. Sections agged by y contain technical de-tails that can be safely skipped on a �rst reading. More information may be foundin other recent publications [18, 19, 20].2 Representation Schemes2.1 Image representationWe represent an image in terms of discrete properties called features. Each fea-ture has a particular type, a location within the image, and a vector of numericattributes that further characterize it. A feature may, for example, be a segmentof intensity edge, a particular arrangement of such segments, or a region of uni-form texture or color. Low-level features may be found as responses to feature



4 POPE AND LOWEdetectors, such as edge or corner detectors; other, higher-level features may befound by grouping or abstracting the low-level ones. Numerous features of varioustypes describe a typical image.What attributes a feature has depends on its type. A junction of two circulararcs, for example, may have one attribute for the junction's angle, and another forthe ratio of the two arcs' radii. Attributes are expressed so that they are invariantwith respect to translation, rotation, and scaling of the feature within the image(using, for example, scale-normalized measures [23]).The repertoire of feature types must be su�cient to provide a rich descriptionof any relevant image. A degree of redundancy is desirable, for it helps to ensurethe completeness of the representation and it contributes stability. Good featuresare those that can be detected reliably, and are relatively invariant with respect tomodest changes in viewpoint or lighting. For e�ciency in recognition, it is usefulto have some highly-selective features that usually occur only in the presenceof certain objects. In recognizing manufactured objects, for example, featuresdenoting various geometric arrangements of intensity edges may serve this rolewell. Some more commonplace features, such as simple line and curve segments,should supplement the highly-selective ones so that the overall repertoire can stilldescribe a wide variety of objects, at least at a basic level. Of course, distinctionsamong objects can only be made if the repertoire includes features that expressthose distinctions.Apart from these requirements, the recognition learning method is not partic-ular about what features are used or what their attributes are. As any featureis bound to be unreliable in certain situations, the method attempts to compen-sate for feature shortcomings by learning how reliable various features are forrecognizing each object.The collection of features found in an image is represented by an image graph.Graph nodes represent features; directed arcs represent grouping and abstractionrelations among them. Formally, an image graph G is denoted by a tuple hF;Ri,where F is a set of image features and R is a relation over elements of F . Animage feature fk 2 F is a tuple htk;ak;bk;Cki, where tk is the feature's type, akis a vector of attributes describing the feature, bk is its measured position, andCk is a covariance matrix describing the uncertainty in that position. The domainof a feature's attribute vector depends on the feature's type. Section 2.3, below,describes how positions such as bk are represented. Finally, an element of R isa tuple hk; l1; : : : ; lmi, indicating that image feature k was found by grouping orabstracting image features l1 through lm.2.2 Model representationA model is organized on two levels in order to fully and accurately describe therange of possible variation in its object's appearance. Signi�cant variations inappearance are handled by subdividing the model into a set of characteristicviews, each independent of the others. Smaller variations are handled within each



1. LEARNING OBJECT RECOGNITION MODELS 5characteristic view by allowing the view to represent a probability distributionover a range of similar image graphs.Because this explicitly represents how an object appears from various, discreteviewpoints, it is called a viewer-centered , or multi-view, representation. To learna viewer-centered model, it is not necessary to recover the object's 3-D structure.Another common approach is the object-centered representation, which insteadexplicitly represents the 3-D geometry of the object. To learn an object-centeredmodel, however, one has to recover the 3-D location of each feature. Recoveryis di�cult because the viewpoint of each training image is unknown, there isuncertainty in the measurement of each feature's image location, and there maybe errors in matching features among images.In our method, each characteristic view describes a range of possible appear-ances by de�ning a joint probability distribution over image graphs. Because thespace of image graphs is enormous, however, it is not practical to represent orlearn this distribution in its most general form. Instead, the joint distribution isapproximated by treating its component features as though they were indepen-dent. This approximation allows the joint distribution to be decomposed intoa product of marginal distributions, thus greatly simplifying the representation,matching, and learning of models.One consequence of the simpli�cation is that statistical dependence (associa-tion or covariance) among model features cannot be accurately represented withina single characteristic view. An extreme example of such dependence is an objectwith two subsets of features such that only one subset appears in any one im-age. Because of the simpli�cation, this object with its strongly covariant featureswould be poorly represented by a single characteristic view. However, where onecharacteristic view cannot capture an important statistical dependence, multipleviews can. In this example, two characteristic views, each containing one of thetwo subsets of features, could represent perfectly the statistical dependence amongfeatures.By using a large enough set of characteristic views we can model any objectas accurately as we might wish. For the sake of e�ciency, however, we wouldprefer to use relatively few views and let each represent a moderate range ofpossible appearances. One challenge for our model learning method is to strikean appropriate balance between the number of characteristic views used and theaccuracy of those views over their respective ranges. This issue will be revisitedwhen we discuss the model learning procedure in section 5.A single characteristic view is described by a model graph. Like an imagegraph, a model graph has nodes that represent features and arcs that representcomposition and abstraction relations among features. Each node records theinformation needed to estimate three probabilities:� The probability of observing this feature in an image depicting the charac-teristic view of the object. The node records the number of times the featurehas been identi�ed in training images. A count is also kept of the training



6 POPE AND LOWEimages used to learn the overall model graph. The probability is estimatedfrom these two numbers as described in section 3.1.� Given that this feature is observed, the probability of it having particularattribute values. This is characterized by a probability distribution overvectors of attribute values. Little can be assumed about the form of thisdistribution because it may depend on many factors: the type of feature,how its attributes are measured, possible deformations of the object, andvarious sources of measurement uncertainty. Thus we use a non-parametricdensity estimator that makes relatively few assumptions. To support thisestimator, which is described in section 3.3, the model graph node recordssample attribute vectors acquired from training images.� Given that this feature is observed, the probability of it having a particularposition. This is characterized by a probability distribution over featurepositions. We approximate this distribution as Gaussian to allow use ofan e�cient matching procedure based on least-squares estimation. The pa-rameters of the distribution are estimated from sample feature positionsacquired from training images.Formally, a model graph �G is denoted by a tuple h �F ; �R; �mi, where �F is a set ofmodel features, �R is a relation over elements of �F , and �m is the number of trainingimages used to produce �G. A model feature �fj 2 �F is a tuple h�tj; �mj ; �Aj ; �Bji,where �tj is the feature's type, �mj is the number of training images in whichthe feature was observed, and �Aj and �Bj are sequences of attribute vectors andpositions drawn from those training images. Finally, an element of �R is a tuplehj; l1; : : : ; lmi, indicating that model feature j is a grouping or abstraction of modelfeatures l1 through lm.2.3 Coordinate systemsA feature's position is expressed in terms of a 2-D, Cartesian coordinate systemby a location, orientation, and scale. Image features are located in an imagecoordinate system identi�ed with pixel rows and columns. Model features arelocated in a model coordinate system shared by all features within a model graph.The absolute positions of these coordinate systems are not important as they areused only to measure features' relative positions.Two di�erent schemes are used to describe a feature's position in either coor-dinate system:xy�s The feature's location is speci�ed by [x y], its orientation by �, and itsscale by s.xyuv The feature's location is speci�ed by [x y], and its orientation and scaleare represented by the orientation and length of the 2-D vector [u v].



1. LEARNING OBJECT RECOGNITION MODELS 7We will prefer the xy�s scheme for measuring feature positions, and the xyuvscheme for estimating viewpoint in the course of matching a model with an image.They are related by � = tan�1(v=u) and s = pu2 + v2. Where it is not otherwiseclear we will indicate schemes using the superscripts xy�s and xyuv.Part of the task of matching a model with an image is to determine a viewpointtransformation that brings the image and model features into close correspon-dence. In our case, this viewpoint transformation is a 2-D similarity transforma-tion. The xyuv scheme allows such a transformation to be expressed as a linearoperation with the advantage that it can then be estimated from a set of featurepairings by solving a system of linear equations.1We take the viewpoint transformation, T , to be from image to model coordi-nates, and use it to transform the position of an image feature before comparingit with that of a model feature. The result of applying T to the position bk isdenoted T (bk).A transformation consisting of a rotation by �t, a scaling by st, and a transla-tion by [xt yt], in that order, can be expressed in two ways as a matrix operation.We will have occasion to use both. In one case, a matrix Ak represents theposition bk = [xk yk uk vk] being transformed:b0k = 26664 x0ky0ku0kv0k 37775 = 26664 1 0 xk �yk0 1 yk xk0 0 uk �vk0 0 vk uk 3777526664 xtytutvt 37775 = Akbt: (1)In the other case, a matrix At represents the rotation and scaling componentsof the transformation:b0k = 26664 x0ky0ku0kv0k 37775 = 26664 ut �vt 0 0vt ut 0 00 0 ut �vt0 0 vt ut 3777526664 xkykukvk 37775+ 26664 xtyt00 37775 = Atbk + xt: (2)These linear formulations allow a transformation to be estimated easily froma set of feature pairings. Given a model feature at bj and an image feature atbk, the transformation aligning the two features can be obtained as the solutionto the system of linear equations bj = T (bk). With additional feature pairings,the problem of estimating the transformation becomes over-constrained; then thesolution that is optimal in the least-squares sense can be found by least-squaresestimation, as described in section 4.2.3 Match Quality MeasureRecognition requires �nding a consistent set of pairings between some model fea-tures and some image features, plus a viewpoint transformation that brings the1Ayache and Faugeras [1], among others, have also used this formulation to express thetransformation as a linear operation.



8 POPE AND LOWEpaired features into close correspondence. Together, the pairings and transfor-mation are called a match. The pairings will often be incomplete, with someimage features not explained by the model (perhaps there are other objects in thescene) and some model features not found in the image (perhaps due to shadowsor occlusion). Nevertheless, the desired match should be a good one that jointlymaximizes both the number of features paired and the resemblance between pairedfeatures. We use a match quality measure to evaluate these qualities.The match quality measure considers what features are paired, how signi�cantthose features are, how similar their attribute values are, and how well their posi-tions correspond. Each factor is evaluated according to past matching experienceas recorded by the model. The factors are combined using Bayesian theory toestimate the probability that a particular match represents a true occurrence ofthe object in the image.A set of pairings is represented by the tuple E = he1; e2; : : :i, where ej = kif model feature j is paired with image feature k, and ej =? if it is not paired.The hypothesis that the object is present in the image is denoted by H. Matchquality is associated with the probability that this hypothesis is correct given aset of pairings and a viewpoint transformation. Bayes theorem allows us to writethis probability as:P(H j E; T ) = P(E j T;H) P(T j H)P(E ^ T ) P(H): (3)There is no practical way to represent the high-dimensional, joint probabilitydistributions P(E j T;H) and P(E ^ T ) in their most general form. Instead, weapproximate them using the feature independence simpli�cation discussed previ-ously in section 2.2. This reduces equation 3 to a product of marginal probabilitydistributions. P(H j E; T ) �Yj P(ej j T;H)P(ej) P(T j H)P(T ) P(H): (4)The approximation is a perfect one when two independence properties hold:(a) feig is collectively independent given knowledge of T and H, and(b) fei; Tg is collectively independent in the absence of any knowledge of H.In practice we can expect these properties to hold at least somewhat. Giventhat an object is present at a particular pose, features detected at widely separatelocations on the object will be independently a�ected by occlusion and noise; thesefeatures satisfy property (a). And in a random scene cluttered with unknownobjects, even nearby features may be largely independent because they couldcome from any of numerous objects; these features satisfy property (b).On the other hand, the independence properties fail to the extent that there isredundancy among features. For example, a feature representing a perceptually-signi�cant grouping is not independent of the features it groups; in this case,



1. LEARNING OBJECT RECOGNITION MODELS 9equation 4 may overstate the signi�cance of pairing these features because it sep-arately counts both the individual features and the feature that groups them.With redundancy uniformly present among all model graphs, however, the re-sulting bias should have little e�ect on the outcome of any particular matchingproblem. Having adopted the hypothesis that this is so, we use equation 4 as thebasis for our match quality measure.The measure is de�ned using log-probabilities to simplify calculations. More-over, it is assumed that all positions of a modeled object within an image areequally likely, and thus P(T j H) = P(T ). With these simpli�cations the matchquality measure becomesg(E; T ) = log P(H) +Xj log P(ej j T;H)�Xj log P(ej): (5)P(H) is the prior probability that the object, as modeled, is present in animage; it can be estimated from the proportion of training images that matchedthe model and were used to create it. Estimates of the conditional and prior prob-abilities of individual feature pairings, P(ej j T;H) and P(ej), will be describedin the next two sections. We will use the following notation for speci�c randomevents within the universe of matching outcomes:~ej = k model feature j is paired with image feature k~ej =? model feature j is paired with nothing~aj = a model feature j is paired with a feature whose attributes are a~bj = b model feature j is paired with a feature at position b3.1 Conditional probability of a feature pairingThere are two cases to consider in estimating P(ej j T;H), the conditional prob-ability of a pairing involving model feature j.1. When j is not paired, this probability is estimated by considering how often jfailed to be paired with an image feature during training. We use a Bayesianestimator with a uniform prior, and the �m and �mj statistics recorded by themodel: P(~ej =?j T;H) = 1� P(~ej 6=?j T;H) � 1� �mj + 1�m+ 2 : (6)2. When j is paired with image feature k, this probability is estimated byconsidering how often j was paired with image features during training, andhow the attributes and position of k compare with those of the trainingfeatures:P(~ej = k j T;H) = P(~ej 6=? ^ ~aj = ak ^ ~bj = T (bk) j T;H)� P(~ej 6=?j T;H) P(~aj = ak j ~ej 6=?;H)P(~bj = T (bk) j ~ej 6=?; T;H): (7)



10 POPE AND LOWEP(~ej 6=?j : : :) is estimated as shown in equation 6. P(~aj = ak j : : :) isestimated using the series of attribute vectors �Aj recorded with model fea-ture j, and a non-parametric density estimator described in section 3.3.P(~bj = T (bk) j : : :), the probability that model feature j is paired with animage feature at position bk under viewpoint transformation T , is estimatedas described in section 3.4, below.23.2 Prior probability of a feature pairingEstimates of the prior probabilities, P(ej), are based on measurements of a largecollection of images typical of those in which the object will be sought. Thismilieucollection is used to estimate \background" probability distributions that charac-terize features found independently of whether any particular object is present.In other words, these distributions describe what can be expected in the absenceof any knowledge of H or T . By an analysis similar to that underlying estimatesof the conditional probabilities, we obtain estimates for two cases of ej .1. The probability of j remaining unpaired regardless of H and T isP(~ej =?) = 1� P(~ej 6=?):The latter term is estimated from the frequency with which features of j'stype, ~tj, occur in the milieu collection.2. The probability of j being paired with k regardless of H and T isP(~ej = k) = P(~ej 6=? ^ ~aj = ak ^ ~bj = T (bk))� P(~ej 6=?) P(~aj = ak j ~ej 6=?)P(~bj = T (bk) j ~ej 6=?): (8)P(~aj = ak j : : :) is estimated using samples of attribute vectors drawn fromthe milieu collection, and the density estimator described in section 3.3.P(~bj = T (bk j : : :) is a constant estimated by assuming a uniform distribu-tion of features throughout a bounded region of model coordinate space.3.3 Probability distribution over feature attributes yOne component of the match quality measure is the probability that a feature mayhave a particular attribute vector. To help us estimate this probability, we havesamples of attribute vectors that have been acquired by observing the feature intraining images. The estimation problem is therefore of the following form: given2For simplicity, our notation does not distinguish between probability mass and probabilitydensity. P(~ej) is a mass because ~ej assumes discrete values, whereas P(~aj) and P(~bj) are densitiesbecause ~aj and ~bj are continuous. But since equation 4 divides each conditional probabilitymass by a prior probability mass, and each conditional probability density by a prior probabilitydensity, here we can safely neglect the distinction.
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Figure 1: Example of a locally-adaptive probability density estimate for attributevectors. The spikes denote the samples from which the density estimate was com-puted.a sequence of d-dimensional observation vectors fxi : 1 � i � ng drawn at randomfrom an unknown distribution, estimate the probability that another vector drawnfrom that same distribution would have the value x.This could be solved by assuming that the distribution has some parameterizedform (e.g., normal), and then estimating its parameters from the observations xi.However, the attribute vector distributions could be complex as they depend notonly on sensor noise and measurement errors, but also on systematic variationsin object shape, lighting, and pose. Hence we use a non-parametric estimationmethod [28]. In its simplest, form, this method estimates probability density bysumming contributions from a series of overlapping kernels. The density at x isgiven by f̂(x) = 1nhd Xi K�x� xih � ; (9)where h is a constant smoothing factor, and K is a kernel function. We use theEpanechnikov kernel because it has �nite support and can be computed quickly.Its de�nition is K(x) = ( 12c�1d (d+ 2)(1 � xTx) if xTx < 10 otherwise (10)where cd is the volume of a d-dimensional sphere of unit radius. The smoothingfactor h appearing in equation 9 strikes a balance between the smoothness of theestimated distribution and its �delity to the observations xi.We can adjust h using a locally-adaptive method: with f̂ as a �rst density esti-mator, we create a second estimator, f̂a, whose smoothing factor varies according
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Figure 2: An image feature's position is transformed from image coordinates (left)to model coordinates (right) according to an estimate of the viewpoint transforma-tion (center). A model feature's position is estimated in model coordinates (right).Uncertainty in the positions and the transformation are characterized by Gaussiandistributions. Overlap of the two distributions in model coordinates correspondsto the probability that the two features match given the viewpoint transformationand their respective positions.to the �rst estimator's density estimate:f̂a(x) = 1nhd Xi ��di K�x� xih�i � ; (11)where �i =  f̂(xi)� !� 12 and � =  Yi f̂(xi)! 1n :The various �i incorporate the �rst density estimates at the points xi, and � is anormalizing factor. This adaptive estimator smoothes more in low-density regionsthan in high-density ones. Thus a sparse outlier is thoroughly smoothed while acentral peak is accurately represented in the estimate (see �gure 1).3.4 Probability distribution over feature positions yAnother component of the match quality measure is the probability that a modelfeature is paired with an image feature given the positions of the two featuresand a viewpoint transformation that somewhat aligns them. This position- andtransformation-dependent portion of the match quality measure is represented byP(~bj = T (bk) j ~ej 6=?; T;H) in equation 7. To estimate it, we use the view-point transformation to map the image feature's position into model coordinates,where we compare it with the model position (see �gure 2). The positions andtransformation are characterized by Gaussian probability density functions (pdfs),allowing the comparison to take into account the uncertainty in each.
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Figure 3: The Gaussian distribution of an image feature's position in xy�s coordi-nates (left) is approximated by a Gaussian distribution in xyuv coordinates (right),with the parameters of the approximating distribution determined as shown.Image feature k's position is conveniently characterized by a Gaussian pdf inxy�s image coordinates. Its mean is the feature's position, bxy�sk , as measuredin the image. However, because our system's feature detectors and groupingprocesses do not supply uncertainty estimates for individual features, we de�nethe covariance matrix for this pdf using system parameters:Cxy�sk = 26664 �2l 0 0 00 �2l 0 00 0 (��sk )2 00 0 0 �2s 37775 : (12)The parameters �l, ��, and �s are our estimates of the standard deviations inmeasurements of location, orientation, and scale. The orientation variance in-cludes a factor based on the feature scale, sk, because the orientation of a largefeature can usually be measured more accurately than that of a small one.This Gaussian pdf is then re-expressed in xyuv image coordinates so that theviewpoint transformation can be applied as a linear operation. Unfortunately,a pdf that is Gaussian in xy�s coordinates is not necessarily Gaussian in xyuvcoordinates. Nevertheless, in this case a good approximating Gaussian can beobtained in xyuv coordinates because the � and s variances are small. The ap-proximation places the xyuv mean at the same position as the xy�s mean, andaligns the Gaussian envelope radially, away from the [uv] origin (see �gure 3). Itsmean and covariance matrix arebxyuvk = [xk yk sk cos �k sk sin �k] (13)and Cxyuvk = R26664 �2l 0 0 00 �2l 0 00 0 �2s 00 0 0 �2� 37775RT; (14)



14 POPE AND LOWEwhere R = 26664 1 0 0 00 1 0 00 0 cos �k � sin �k0 0 sin �k cos �k 37775 :The viewpoint transformation is characterized by a Gaussian pdf over [xtytutvt]vectors with mean t and covariance Ct. (In the course of matching a model withan image, t and Ct are estimated as described in section 4.2, below.) We trans-form the image feature's position from xyuv image coordinates to xyuv modelcoordinates using the viewpoint transformation. If we would disregard the uncer-tainty in the transformation estimate, we would obtain a Gaussian pdf in modelcoordinates with mean Akt and covariance AtCkATt . On the other hand, dis-regarding the uncertainty in the image feature position produces a Gaussian pdfin model coordinates with mean Akt and covariance AkCtATk . With Gaussianuncertainty in both the image feature position and the transformation, however,the pdf in model coordinates cannot be characterized as Gaussian. At best wecan approximate it as Gaussian, which we do with a mean and covariance givenin xyuv coordinates by bkt = Akt (15)and Ckt � AtCkATt +AkCtATk : (16)The position of model feature j is also characterized by a Gaussian pdf inxyuv model coordinates. Its mean bj and covariance Cj are estimated from theseries of position vectors �Bj recorded by the model.3We can now estimate the probability that j is paired with k according to theirposition pdfs in xyuv model coordinates. The estimate is obtained by integratingover all positions r the probability that both the image feature is at r and themodel feature matches something at r:P(~bj = T (bk) j ~ej 6=?; T;H) � Zr P(~rj = r) P(~rkt = r) dr: (17)Here r ranges over xyuv model coordinates while ~rj and ~rkt are random variablesdrawn from the Gaussian distributions N(bj ;Cj) and N(bkt;Ckt). It would becostly to evaluate this integral by sampling at various r. Fortunately, however,the integral can be rewritten as a Gaussian in bj � bkt, as can be seen from thefact that it is essentially a convolution of two Gaussians. Thus it is equivalent toP(~bj = T (bk) j ~ej 6=?; T;H) � G(bj � bkt;Cj +Ckt) (18)where G(x;C) is a Gaussian with zero mean and covariance C. In this form, thedesired probability estimate is easily computed.3Two practical considerations enter into the estimation of Cj . First, when �Bj contains toofew samples for a reliable estimate of Cj , the estimate that �Bj yields is blended with anotherdetermined by system parameters. Second, minimum variances are imposed on Cj in case somedimension of �Bj has zero variance.



1. LEARNING OBJECT RECOGNITION MODELS 154 Matching ProcedureBoth recognition and learning require that we �nd a match between a model graphand an image graph|one that maximizes the match quality measure de�ned insection 3. It does not seem possible to �nd an optimal match through anything lessthan exhaustive search. In practice, however, good matches can be found quicklyby iterative alignment [1, 13, 15]. This process hypothesizes some initial pairingsbetween model and image features, uses those pairings to estimate the viewpointtransformation, uses the transformation estimate to evaluate and choose addi-tional pairings, re�nes the transformation estimate using the additional pairings,and so on until as many features a possible have been matched.In our version of the iterative alignment method, we explicitly represent theuncertainty in the position of each feature and the resulting uncertainty in thetransformation estimate. Thus features that are well-localized contribute mostto the transformation estimate, and those whose positions vary most are soughtover the largest image neighborhoods. This version of iterative alignment is calledprobabilistic alignment to emphasize its basis in probability theory. It uses featureuncertainty information that has been acquired from training images and recordedin the model.4.1 Probabilistic alignmentTo choose the initial pairings, possible pairings of higher-level features are ratedaccording to the contribution each would make to the match quality measure.The pairing hj; ki receives the ratinggj(k) = maxT log P(~ej = k j T;H)� log P(~ej = k): (19)This rating favors pairings in which the model feature has a high likelihood ofmatching, the two features have similar attribute values, and the resulting trans-formation estimate's variance would be small. Moreover, because the componentof P(~ej = k j T;H) that depends on T is Gaussian, its maximum over T can becomputed readily.A search is begun from each of the several highest-ranked pairings. It starts byestimating a viewpoint transformation from the initial pairing, and proceeds byrepeatedly identifying additional consistent pairings, adopting the best pairings,and using those to update the transformation estimate. (A method of computingthe viewpoint transformation is described in section 4.2, below.) During thissearch, possible pairings are rated according to the contribution each would maketo the match quality measure. Provided it is consistent with pairings adopted sofar, the pairing hj; ki receives the ratinggj(k;T ) = log P(~ej = k j T;H)� log P(~ej = k) (20)This rating considers the same criteria as the initial ratings (equation 19), whilealso favoring pairings whose feature positions correspond closely according to thetransformation estimate.



16 POPE AND LOWEFor e�ciency, a priority queue is used to manage pairing choices during asearch. Each pairing is placed on the queue as it is rated so that, once all pairingshave been evaluated, the queue contains a few dozen of the best pairings. Queuedpairings that conict are considered ambiguous; they are downrated so that theywill be postponed in favor of less ambiguous pairings. Finally, the highest-rankedpairings are adopted and used to update the transformation estimate. Backtrack-ing is performed when ambiguity forces a choice among conicting pairings, anda search branch is terminated when no additional pairings can be identi�ed toimprove the match quality measure.From several starting hypotheses and the various search branches that resultfrom backtracking, we obtain a number of consistent matches. As they are foundonly the best is retained, and its match quality measure provides a threshold forpruning subsequent search branches.Note that the match quality measure provides an estimate of the (logarithmof the) probability that the match represents a true instance of the object in theimage. One way to judge recognition, then, is to require that this probabilityexceeds some speci�ed threshold. Setting the threshold to the ratio of costs ofType II and Type I decision errors produces recognition decisions that minimizethe expected error cost.4.2 Estimating the viewpoint transformation yThe matching procedure requires that we estimate a viewpoint transformationfrom one or more feature pairings, with the desired estimate being that whichmaximizes the match quality measure for the given pairings. Fortunately, this isa linear, least-squares estimation problem for which good algorithms exist.The estimation problem is formulated as follows. Each pairing hj; ki of modeland image features is related by the transformation t and a residual error ~e:Ak t = bj + ~e: (21)Here, Ak is the matrix representation of image feature k's mean position (seeequation 1), t is the transformation estimate vector [xtytutvt], and bj is the vectorrepresentation of model feature j's mean position. The residual ~e is assumed tohave a Gaussian distribution whose covariance Cj can be estimated from theseries of position vectors, �Bj , recorded by the model. We can rewrite this relationso that the residual has unit variance by multiplying both sides by the uppertriangular square root of Cj (a process called whitening).U�1j Ak t = U�1j bj + ~e0; where Cj =UjUTj and ~e0 � N(0; I): (22)A series of feature pairings gives us a series of such relations. From them, a lin-ear, least-squares estimator determines both the transformation t that minimizesthe sum of the residual errors, and its covariance Ct.During a match search, feature pairings are adopted sequentially. We needto re�ne the transformation estimate with each new pairing or group of pairings



1. LEARNING OBJECT RECOGNITION MODELS 17adopted so that an improved estimate can then be used to identify additionalpairings. Thus a recursive estimator is used.The square root information �lter (SRIF) [3] is a recursive estimator well suitedfor this problem. Compared to the Kalman �lter it is numerically more stableand faster for batched measurements; it also has the nice property of computingthe total residual error as a side e�ect. As its name implies, the SRIF works byupdating the square root of the information matrix, which is the inverse of theestimate's covariance matrix. The initial square root R1 and state vector z1 areobtained from the �rst pairing hj; ki of model and image features:R1 = U�1j Ak and z1 = U�1j bj : (23)Then, with each subsequent pairing hj; ki, the estimate is updated by triangular-izing a matrix composed of the previous estimate and data from the new pairing:" Ri�1 zi�1U�1j Ak U�1j bj # 4! " Ri zi0 ei # : (24)When estimates of the viewpoint transformation and its covariance are needed,they can be obtained byti = R�1i zi and Cti = R�1i R�Ti : (25)This requires only back substitution since Ri is triangular. The SRIF also makesthe total residual error available as eieTi , which conveniently corresponds to thelog P(~bj = T (bk) j ~ej 6=?; T;H) component of our match quality measure. Thus,following each update of the transformation estimate, the match quality measurefor the new transformation can be computed easily; there is no need to re-evaluateequation 18 for the new transformation and each previous feature pairing.5 Learning ProcedureThe learning procedure assembles one or more model graphs from a series oftraining images showing various views of an object. Two tasks are required:clustering The learning procedure must divide the training images into clus-ters, each destined to form one characteristic view.generalizing For each cluster, it must construct a model graph summarizingthe members of that cluster. The model graph represents a gen-eralization of the cluster's contents.Since clustering decisions ought to consider how well the resulting clusters can begeneralized, the two tasks are closely related. Each will be discussed separately,however, in the following two sections.We use X to denote the series of training images for one object. Duringlearning, the object's model M consists of a series of clusters Xi � X , each withan associated model graph �Gi. Once learning is complete, only the model graphsmust be retained to support recognition.



18 POPE AND LOWE5.1 Clustering training images into characteristic views4An incremental conceptual clustering algorithm is used to create clusters amongthe training images. Clustering is incremental in that, as each training image isacquired, it is assigned to an existing cluster or used to form a new one. Like otherconceptual clustering algorithms (e.g., cobweb [11]), the algorithm uses a globalmeasure of overall clustering quality to guide clustering decisions. This measure ischosen to promote and balance two somewhat-conicting qualities. On one hand,it favors clusterings that result in simple, concise, and e�cient models, whileon the other hand, it favors clusterings whose resulting model graphs accuratelycharacterize (or match) the training images.Maximum a posterior (MAP) estimation provides a nice framework for com-bining these two qualities. It suggests that the learning procedure choose a modelM that maximizes the posterior probability P(M j X ). By Bayes's theorem, thisis equivalent to maximizing the product P(M)P(X j M). The prior distributionP(M) can be designed to favor simple models, while the conditional distributionP(X j M) can be designed to favor models that characterize the training imagesaccurately.� Prior distribution. We apply the minimum description length (MDL) prin-ciple [22] to de�ne a prior distribution favoring simple models. Briey, theMDL principle provides a method of constructing a prior probability distri-bution over a family of statistical models by relating the probability of eachto the length of its description as written in some minimal-length encod-ing scheme. To encode a model, we concisely enumerate its model graphs,nodes, arcs, attribute vectors, and position vectors, using a �xed number ofbits for each component. With L(M) denoting the length of M's encoding,the prior probability of M is given by log P(M) = �L(M).� Conditional distribution. We use the match quality measure to de�ne aconditional distribution favoring accurate models. Recall that the measureis based on an estimate of the probability that the match represents a trueoccurrence of the modeled object in the image. For this match probabilityto be high, the model must accurately depict how the object appears in theimage. Thus, to rate the accuracy of a model, we combine match probabilityestimates for each of the model's training images:P(X j M) =Yi YX2Xi maxhE;T iP(H j E; T ;X; �Gi); (26)where P(H j E; T ;X; �Gi) is de�ned by equation 4. The maximum overmatches hE; T i is found by the matching procedure described in section 4.4At the time of writing, the clustering method described here had not yet been validatedexperimentally.



1. LEARNING OBJECT RECOGNITION MODELS 19As each training image is acquired it is assigned to an existing cluster or usedto form a new one. Choices among clustering alternatives are made to maximizethe resulting P(M j X ). When evaluating an alternative, each cluster's subsetof training images Xi is �rst generalized to form a model graph Mi as describedbelow.5.2 Generalizing training images to form a model graphWithin each cluster, training images are merged to form a single model graphthat represents a generalization of those images. An initial model graph is formedfrom the �rst training image's graph. That model graph is then matched witheach subsequent training image's graph and revised after each match accordingto the match result. A model feature j that matches an image feature k receivesan additional attribute vector ak and position bk for its series �Aj and �Bj . Someunmatched image features are used to extend the model graph, while model fea-tures that remain largely unmatched are eventually pruned. After several trainingimages have been processed in this way the model graph nears an equilibrium,containing the most consistent features with representative populations of sampleattribute vectors and positions for each.6 Experimental ResultsA system that learns a single, characteristic view has been implemented usingfacilities of the Vista computer vision environment [21]; implementation of theclustering procedure needed to learn multiple views is in progress. The systemrecognizes 3-D objects in 2-D intensity images, employing a repertoire of featuresdesigned to describe the appearance of manufactured objects. Straight and circu-lar segments of intensity edges are the lowest-level features. These are augmentedby features representing various perceptually-signi�cant groupings, including junc-tions, pairs and triples of junctions, pairs of parallel segments, chains of such pairs,and convex regions. Features that are rotationally symmetric, such as straightlines, are simply represented by multiple graph nodes, one per orientation.Experiments with this system have produced encouraging results. For exam-ple, �gure 4 shows a model of a characteristic view of a stool learned from ninetraining images acquired over a 20-degree range of viewpoint. Figure 5 showsthe result of matching that model with a cluttered test image. The match searchbegins with a pairing of junctions (shown with a bold � in �gure 5) that israted highly by equation 19 primarily due to the image feature's attribute values.Matching proceeds with a pairing of parallel arcs (also shown in bold) that isfavored in part due to the model feature's low positional uncertainty (apparent in�gure 4(d)).We are studying the models produced to gain further insight. As evidentfrom the model depiction in �gure 4 and from the histogram in �gure 6, thestool model records signi�cant di�erences in the positional uncertainty of various
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(a) (b)
0 40 0 40

(c) (d)Figure 4: Nine training images spanning 20 degrees of viewing angle, from (a)to (b), yield a single characteristic view model. Among model features, thosedenoting straight and circular segments of intensity edge are shown in (c); thosedenoting pairs of parallel segments are shown in (d). Ellipses depict two standarddeviations of feature location uncertainty.
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0 100

(a) (b)Figure 5: A cluttered test image (a) in which the partially-occluded stool is rec-ognized (b). Model features representing segments of intensity edge are shownprojected into the image according to the �nal viewpoint transformation estimate.See the text for further explanation.
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Figure 6: Features of the stool model varywidely in positional uncertainty, as shown bythis histogram of feature location uncertainty.Here, location uncertainty is measured as thearea of a one-standard-deviation ellipse aboutthe model feature's expected location.
Figure 7: Bottles A and B,used to test generality andspeci�city of models.



22 POPE AND LOWEImage Model Features Paired Match QualityBottle A Bottle A 43 / 109 60.7Bottle A Bottle B 20 / 56 6.7Bottle B Bottle A 27 / 109 -2.8Bottle B Bottle B 27 / 56 20.7Table 1: Results of matching each subimage of �gure 7 with each bottle model.Features Paired is the proportion of model features paired. Match Quality is thevalue of the match quality measure, g(E; T ). Adapted from [19].features. Some di�erences are due to shifts in the relative positions of features withchanging viewpoint|the seat and post remain �xed, for example, while the legsshift in various directions. Others are due to inherent di�erences in the accuracyof localizing various types of features|for example, a right-angle junction mightbe better localized than an oblique or acute one. Di�erences would be even greaterfor a exible object.Additional experiments have sought to determine whether the method cangeneralize across objects of similar appearance while still di�erentiating them onthe basis of small distinctions. In one experiment, models were created for bottlesA and B, shown in �gure 7, using six training images of each. Each model was thenmatched with two subimages from �gure 7: one containing the identical object,the other containing its counterpart. Table 1 summarizes the results. Each modelmatches its identical object best, meaning that the two objects are successfullydistinguished; however each model also matches its counterpart to a lesser degree,meaning that each model successfully generalizes to match other objects of similarappearance.In this case the speci�city of the two models is due, in part, to di�erences inattribute value distributions. For example, each model includes a feature for itsbottle's lower left corner and one attribute of that feature records the ratio of thecorner's two sides. Since the two bottles have di�erent height-to-width ratios, thisfeature is among those that help to di�erentiate the bottles. Figure 8 shows howthe pdfs estimated for this attribute di�er between the two models.7 Related Research on Learning to Recognize ObjectsThis section surveys other e�orts to build systems that learn to recognize objects.The survey is organized according to the role that learning plays in these sys-tems. A �nal section summarizes e�orts to establish theoretical bounds on thelearnability of object recognition.
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Figure 8: Comparison of three attribute value distributions. Those labeled BottleA and Bottle B are from model features corresponding to the lower left cornersof bottles A and B. Spikes represent the two populations of sample values fromwhich these distributions are estimated. The distribution labeled Milieu averagesall corners from numerous images. From [19].7.1 Learning appearance primitivesAn object recognition system may learn new types of shape or appearance prim-itives to use in describing objects. Typically this is done by clustering existingprimitives or groups of them, and then associating new primitives with the clustersthat have been found. New primitives thus represent particular con�gurations orabstractions of existing ones. The new con�gurations may improve the represen-tation's descriptive power, and the new abstractions may allow more appropriategeneralizations.Segen [24] has demonstrated this approach with a system that learns a repre-sentation for 2-D contours. The system's lowest-level primitives are distinguishedpoints, such as curvature extrema, found on contours in training images. Nearbypoints are paired, each pair is characterized by a vector of measurements, the mea-surement vectors are clustered, and a new primitive is invented for each cluster ofsigni�cant size. Consequently, each new primitive describes a commonly observedcon�guration of two distinguished points. The induction process is repeated withthese new primitives to generate higher-level primitives describing groups of four,eight, and more distinguished points. Weng et al.'s Cresceptron system [31] isanalogous in that it induces a hierarchy of primitives within a pre-programmedframework. Since these primitives are essentially templates, invariance to transla-tion, rotation, and scaling in the image must be provided by prior segmentation orby an attentional mechanism. We would expect both these method to be sensitive



24 POPE AND LOWEto clutter in the training images and to parameters of the clustering algorithm.Delanoy, Verly, and Dudgeon [7] and Fichera et al. [10] have described ob-ject recognition systems that induce fuzzy predicates from training images. Theirsystems represent models as logical formulae, and, therefore, the systems need ap-propriate predicates. These are invented by clustering measurements of low-levelprimitives that have been recovered from training images. Turk and Pentland [29]and Murase and Nayar [17] have induced features using principle component anal-ysis. They compute the several most signi�cant eigenvectors, or principle compo-nents, of the set of training images. Since these few eigenvectors span much of thesubspace containing the training images, they can be used to concisely describethose images and others like them. However, as this is a global representation, itmay have di�culty with matching cluttered images.7.2 Learning an appearance classifierThe object recognition task can be characterized, in part, as a classi�cation prob-lem: instances represented as vectors, sets, or structures must be classi�ed intocategories corresponding to various objects. A wealth of techniques has been de-veloped for classifying, and for inducing classi�ers from training examples. For thepurposes of object recognition, the important considerations distinguishing thesetechniques include the expressiveness and complexity of the input representation(e.g., vectors are easier to classify than structures), the generality of the categorieslearned, the ability to cope with noisy features, the number of training examplesneeded, and the sensitivity to the order in which examples are presented.Jain and Ho�man [14] describe a system that learns rules for classifying ob-jects in range images. The instances classi�ed by their system are sets of shapeprimitives with associated measurements. The classi�er applies a series of rules,each contributing evidence for or against various classi�cations. Each rule appliesto a particular type of shape primitive and a particular range of measurementsfor that primitive. These rules are learned from training images by extractingprimitives from the images, clustering them according to their measurements,and associating rules with the clusters that derive primarily from a single object.Because this system does not learn constraints governing the relative positionsof the shape primitives, it appears to have a very limited ability to distinguishamong objects that have di�erent arrangements of similar features.Neural networks, including radial basis function networks, have been used astrainable classi�ers for object recognition (e.g., [4]). In this role, the network ap-proximates a function that maps a vector of feature measurements to an objectidenti�er, or to a vector of graded yes/no responses, one per object. For thisapproach to succeed the function must be smooth; furthermore, as with any clas-si�er, the object categories must be shaped appropriately in feature space (e.g.,Gaussian radial basis functions are best suited for representing hyperellipsoids).Nearest neighbor classi�ers, which make fewer assumptions, are also commonlyused. Rare are comparative evaluations of how various classi�er/feature space



1. LEARNING OBJECT RECOGNITION MODELS 25combinations perform on object recognition problems (such as [5]). The mostdi�cult aspect of this approach seems to be deriving appropriate feature vectorsfrom cluttered images.7.3 Learning a structural modelA structural model explicitly represents both shape primitives and their spatial re-lationships. Its structure is thus analogous to that of the modeled object, and it isoften represented as a graph or, equivalently, as a series of predicates. In general,a structural model is learned from training images by �rst obtaining structuraldescriptions from each image, and then inducing a generalization covering thosedescriptions. Connell and Brady [6] have described a system that learns structuralmodels for recognizing 2-D objects in intensity images. The system incorporatesmany interesting ideas. They use graphs to represent the part/whole and ad-jacency relations among object regions described by smoothed local symmetries(ribbon shapes). An attribute of a region, such as its elongation or curvature, isencoded symbolically by the presence or absence of additional graph nodes accord-ing to a Gray code. A structural learning procedure forms a model graph frommultiple example graphs, most commonly by deleting any nodes not shared by allgraphs (the well-known dropping rule for generalization). Similarity between twographs is measured by a purely syntactic measure: simply by counting the nodesthey share. Consequently, this system accords equal importance to all features,and it uses a somewhat arbitrary metric for comparing attribute values.The approaches described below involve more powerful models that representprobability distributions over graphs. A Markov or independence condition isassumed so that the high-order, joint probability distribution can be approximatedby a product of low-order distributions, one per node or arc. The probability of aparticular graph instance is then de�ned according to a partial match between thatinstance and the model. In these respects, the approaches resemble our own forlearning characteristic views. Our approach di�ers in that it uses feature positionsas well as attributes and relations to support an e�cient matching procedure basedon iterative alignment.Wong and You [32] represent a model as a random graph in which nodesrepresent shape primitives, arcs and hyperarcs represent relations among them,and both have attribute values characterized by discrete probability distributions.An attributed graph (i.e., a random graph's outcome) is treated as just a spe-cial case of random graph. An entropy measure is de�ned on random graphs,and the distance between two random graphs is de�ned as the increment in en-tropy that would result from merging the two (the minimal increment over allpossible mergings). A random graph is synthesized from examples by repeatedlymerging the two nearest graphs. This learning method seems to have been demon-strated only with 2-D recognition problems and clean, synthetic images. However,McArthur [16] has extended the random graph formalism to allow continuous at-tributes, and he has used it to learn 3-D, object-centered models from images



26 POPE AND LOWEwith known viewpoints. In comparison, our formalism incorporates continuousattributes more easily using likelihoods rather than entropies, and our learningmethod does not require knowledge of viewpoint or feature correspondences.In Segen's system [24] for recognizing 2-D shapes, a graph node represents arelation among shape primitives, which are oriented point features (see page 23).But instead of specifying a particular relation, a node in the model graph speci�esa probability distribution over possible relations. For example, relations involvingtwo features may include one that holds when the features are oriented away fromeach other, and another that holds when they are oriented in the same direction;a model node may specify that the �rst relation holds with probability 0.5, andthe second, with probability 0.3. When a graph instance is matched with themodel, the instance's probability can be computed by assessing the probabilityof each instance node according to the distribution of its corresponding modelnode. Recognition involves �nding the most probable match. A model is learnedincrementally from instances by matching it with each one successively; followingeach match the probabilities recorded in matching model nodes are adjusted andany unmatched instance nodes are added to the model. Whereas Segen's systemreduces all measurements to global categories found by clustering, our methodretains numeric measurements as attribute and position distributions that arelearned individually for each model feature. Consequently, we expect better per-formance in discrimination and generalization.7.4 Learning a set of characteristic viewsIn learning a model that is to be represented as a set of characteristic views,part of the task is to choose those views. One can cluster the training images (aform of unsupervised learning) to create one characteristic view from each clus-ter. While several researchers have done this with images rendered from CADmodels, thus avoiding the feature correspondence problem, Gros [12] and Seibertand Waxman [25] have clustered real images. Gros measures the similarity ofan image pair as the proportion of matching shape primitives, whereas Seibertand Waxman use a vector clustering algorithm with �xed-length vectors encodingglobal appearance. Our method, in comparison, uses a clustering measure basedon objective performance goals (accuracy and e�ciency), and an appearance rep-resentation less a�ected by occlusion.7.5 Learning a recognition strategyDraper [8] has considered how a system equipped with a variety of special-purposerepresentations and algorithms might learn strategies for employing those tech-niques to recognize speci�c objects. A typical recognition task would be to locatea tree by �tting a parabola to the top of its crown. For this task, an appropriatestrategy is to segment the image, extract regions that are colored and texturedlike foliage, group these into larger regions, smooth region boundaries, and �tparabolas to the boundaries. A human supplies training examples by pointing



1. LEARNING OBJECT RECOGNITION MODELS 27out the desired parabolas in a series of images. The system then evaluates vari-ous strategy choices (e.g., whether to smooth region boundaries) and parameterchoices (e.g., the degree of smoothing) for cost and e�ectiveness. From these eval-uations it constructs a strategy, including alternatives, for performing the taskon new images. By learning what order to try alternative recognition methods,Draper's system di�ers from those that just select a single set of features usefulfor recognition. Di�culty remains in limiting the search among strategies andparameters to achieve acceptable performance.7.6 Theoretical learnabilityThere have been some e�orts to identify theoretical limits on what can be learnedfrom images. These e�orts are based on the analogy that learning to recognize anobject from images is like learning a concept from examples. Valiant [30] has pro-vided a useful de�nition for characterizing the class of concepts that can be learnedby a particular algorithm: Informally, a class is probably approximately correct(PAC) learnable by an algorithm if, with high probability, the algorithm learns aconcept that correctly classi�es a high proportion of examples using polynomiallybounded resources (and, consequently, number of training examples); the boundis a polynomial of both the accuracy and some natural parameter of the conceptclass (e.g., vector length for concepts de�ned on a vector space). Signi�cantly, thealgorithm has no prior knowledge about the distribution of examples.Shvayster [27] has shown that some classes of concepts de�ned on binary im-ages are not PAC-learnable from positive examples by any algorithm. For ex-ample, suppose a template is said to match an image when every black pixel inthe template corresponds to a black pixel in the image (though not necessarilyvice versa). Then the concept consisting of all instances not matching some un-known template is not PAC-learnable. Shvayster speculates that some nonlearn-able concepts may become learnable, however, if some prior knowledge about thedistribution of examples is available.Edelman [9] has argued that Shvayster's negative result is not applicable toobject recognition because it uses an instance representation, the binary image,that is inappropriate. If instead instances are represented by vectors of pointfeature locations, Edelman shows, then recognition of an object can be learnedfrom a polynomial number of positive examples. He concludes that model learningmay be practical, provided an appropriate representation is chosen.8 SummaryWe have presented a method for recognizing objects using models acquired fromtraining images. Appearance in an image is represented by an attributed graphof discrete features and their relations, with a typical object described by manyfeatures. Since one object can vary greatly in appearance when viewed underdi�erent conditions, a model is represented by a probability distribution over



28 POPE AND LOWEsuch graphs. The range of this distribution is divided among characteristic views,allowing a simpli�ed representation for each view as a model graph of independentfeatures.A model feature is described by probability distributions for probabilities ofdetection, various internal attribute values, and various image positions. All threedistributions are estimated from samples supplied by training images.A match quality measure provides a principled means of evaluating a matchbetween a model and an image. It combines probabilities that are estimatedusing the distributions recorded by the model. The measure leads naturally toan e�cient matching procedure called probabilistic alignment. In searching fora solution, the procedure can employ constraints arising both from the topologyof the model graph and from the probability distributions describing individualfeatures.The model learning procedure has two components. A conceptual clusteringcomponent determines clusters of training images that correspond to characteristicviews by maximizing a global measure of cluster quality. That measure combinesa simplicity criterion based on the minimum description length principle with a �tcriterion based on the match quality measure. A generalizing component mergesthe images within each cluster to form a model graph representing a generalizationof that cluster. It uses the matching procedure to determine correspondencesamong the cluster's images.An important aspect of the recognition learning problem this work has notaddressed is how a database of acquired model graphs should be organized andaccessed. Possibilities include organizing the model graphs hierarchically [2, 26],or using selected high-level features and their attributes to index the collection ofmodel graphs. This issue is presently beyond the scope of our own work, however.References[1] N. Ayache and O. D. Faugeras. HYPER: A new approach for the recognitionand positioning of two-dimensional objects. IEEE Trans. Patt. Anal. Mach.Intell., PAMI-8(1):44{54, Jan. 1986.[2] R. Basri. Recognition by prototypes. In Proc. Conf. Comput. Vision andPatt. Recognit., pages 161{167, 1993.[3] G. J. Bierman. Factorization Methods for Discrete Sequential Estimation.Academic Press, New York, 1977.[4] R. Brunelli and T. Poggio. HyperBF networks for real object recognition. InProc. Int. Joint Conf. Arti�cial Intell., volume 2, pages 1278{1284, 1991.[5] R. Brunelli and T. Poggio. Face recognition: Features versus templates. IEEETrans. Patt. Anal. Mach. Intell., 15(10):1042{1052, Oct. 1993.[6] J. H. Connell and M. Brady. Generating and generalizing models of visualobjects. Arti�cial Intell., 31:159{183, 1987.
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