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1 IntroductionClassi�cation methods based on nearest-neighbour interpolation have attractedgrowing interest in the neural network community. In part, this is becausethey support rapid incremental learning from new instances without degrada-tion in performance on previous training data. Since the interpolation functionis determined from a set of nearest neighbours at run time, it is easy to incre-mentally incorporate new training data and, if desired, to discount old data ina controlled manner (Atkeson, 1989; Omohundro, 1992). These capabilities aremissing from the most popular neural network learning methods, yet they arenecessary for models of biological learning and for on-line learning applications.However, classical nearest-neighbour methods often exhibit poor general-ization performance as compared to recent neural network learning methods.It has not been clearly recognized in the classical nearest-neighbours literaturethat the performance of these methods is highly dependent on the similarity(distance) metric that is used to select neighbours. In this paper, we combine avariable interpolation kernel with cross-validation optimization of the similar-ity metric and kernel size. The resulting system is called VSM (variable-kernelsimilarity metric) learning. It has much better generalization than the classi-cal nearest-neighbour approach, and it performs as well or better than currentneural network techniques on the comparison data sets to which it has beenapplied.A particular advantage of this approach is that it solves for orders of mag-nitude fewer parameters than back propagation or radial basis function (RBF)methods, which greatly reduces the problem of overlearning. There is no needfor the user to select model minimization parameters, such as the number ofhidden units or basis function centers (in other learning methods these are usu-ally determined by performing extensive cross-validation testing with each setof possible parameter values). VSM learning can be run as a black box with-out setting problem-speci�c parameters, which is a necessary requirement forbiological models and for many on-line learning applications.In addition to the problem of poor generalization, nearest-neighbour meth-ods have been criticized for slow run-time performance and for increased mem-ory requirements. The well-known k-d tree algorithm (Friedman, Bentley &Finkel, 1977; Sproull, 1991) can be used to identify the nearest neighbours,but its computation time is known to become large for random points in highdimensional spaces (in these cases, it must sometimes measure the distance toa large proportion of the inputs to �nd the single nearest neighbour). However,following similarity metric optimization, there is an e�ective dimensionality re-duction as some dimensions are assigned higher weightings than others. Thisgreatly speeds the k-d tree algorithm. In conjunction with the fact that VSMlearning only looks at a small number (about 10) nearest neighbours, the run-time performance on many problems is actually better than competing methodssuch as back-propagation. If the k-d tree algorithm is still not e�cient enough2



in certain cases, then an approximation to the nearest-neighbour can be usedthat looks at only a limited number of leaves of the k-d tree. The problem ofincreased memory requirements has been partly addressed by an editing proce-dure that removes unnecessary training data from regions where there is littleuncertainty.2 Previous researchNearest neighbour classi�cation techniques have been the topic of hundreds ofpapers over the past 40 years in the pattern recognition and statistical classi�-cation literature. An excellent survey of this area has recently been prepared byDasarathy (1991). A surprising shortcoming of this extensive literature is thatit gives little attention to the problem of selecting the optimal distance norm fordetermining nearest neighbours. In most papers, this issue is avoided by look-ing at the asymptotic performance as the number of training cases approachesin�nity (in which case the metric is irrelevant). However, any reasonable learn-ing method will converge to the Bayes optimal solution with in�nite data, so itis the number of training cases required for a given level of performance thatdistinguishes learning methods.The importance of an appropriate distance metric can be seen by the degra-dation in performance that often accompanies the addition of new input fea-tures. Each time an unimportant feature is added to the feature set and as-signed a weight similar to an important feature, it increases the quantity oftraining data that is needed by a factor that allows for all combinations of theimportant and unimportant values. It is easy to create exponential increases intraining data requirements by adding only a few poorly weighted features. Thisis why nearest-neighbours algorithms have sometimes shown excellent perfor-mance (when appropriate features and metrics have been used), but also oftenshow poor performance in comparison with other learning methods (when poormetrics are chosen, usually on the basis of equal weighting for each feature).One reason for the strong interest in neural network learning methods, suchas back propagation, is that they are able to select useful input features fromhigh-dimensional input vectors. Therefore, they do not su�er from the \curseof dimensionality" of classical nearest neighbours, in which higher dimensionalinputs become less likely to provide accurate classi�cations with reasonableamounts of training data. This becomes even more important when it is nec-essary to take weighted combinations of noisy redundant inputs in order toproduce the best classi�cation. In these cases, it is even less likely that theinitial assigned weights will be appropriate. In this paper, we use the sameoptimization techniques developed for other neural network methods, but ap-ply them directly to determining relative feature weightings. The result is thatequivalent or better generalization can be achieved while solving for far fewerparameters and gaining the other advantages of the nearest neighbour approach.3



Research in the neural network �eld has recently been moving towards algo-rithms that interpolate between nearest neighbours. One of the most popularof these methods is radial basis function (RBF) networks (Broomhead & Lowe,1988; Moody & Darken, 1989). This is quite similar to the classical Parzenwindow method of estimating probability density distributions (Duda & Hart,1973), except that it uses somewhat fewer basis functions and adds a linear out-put layer of weights that are optimized during the learning process. However,neither the RBF nor Parzen window method provides any way to optimize thesimilarity metric. Therefore, they su�er from the same problem as standardnearest neighbours, in which performance will be good only when the appro-priate feature weighting happens to be speci�ed by the user. Poggio & Girosi(1989, 1990) have proposed extensions to the RBF method, which they callgeneralized RBFs and hyper basis functions, that optimize the centers of thebasis functions and the global similarity metric. This provides a very exibleframework, but the large number of parameters (including those in the outputlayer) means that it is necessary to select some problem-speci�c subset of pa-rameters to optimize and to determine some limited number of basis functionsthat is smaller than the number of training examples. In practice, this requiresextensive cross-validation testing to determine the model size and the appro-priate selection of free parameters, which is computationally very expensiveand prevents the use of incremental learning as needed for biological models oron-line learning.Some previous research on the problem of optimizing a similarity metricis the work of Atkeson (1991) on robot learning. He uses cross-validation tooptimize not only a similarity metric but also other stabilization and cross-correlation terms. Similarly, the work of Wettschereck & Dietterich (1992)selects a similarity metric for the Wolpert approach to the NETtalk problem.Both of these methods use a distance weighted interpolation kernel that hasthe property of giving in�nite weight to training data that exactly matches thecurrent input. This is clearly undesirable for noisy inputs, as is the case withmost real-world problems. This paper instead makes use of a variable kernelmethod that provides better interpolation and approximation in the presenceof noise. VSM learning is aimed at classi�cation problems with many inputfeatures, whereas the more extensive correlation matrix �tting of Atkeson maybe more appropriate for continuous output problems based on low-dimensionalinputs, as occurs in the problem of robot control.Cleveland and Devlin (1988) describe the LOESS method for locallyweighted regression, in which a local weighting kernel is used to smooth mul-tivariate data. However, they use a similarity metric that is proportional tothe variance of each input feature rather than being optimized according to itsvalue in determining the output. 4



3 Choice of interpolation kernelThe choice of the interpolating kernel can have a substantial e�ect on the per-formance of a nearest-neighbours classi�er. Cover & Hart (1967) showed thatthe single nearest-neighbour rule can have twice the error rate of a kernel thatobtains an accurate measure of the local Bayes probability. A doubling of theerror rate for a given set of training data would make even the best learningmethod appear to have poor performance relative to the alternatives.One widely-used kernel is to place a �xed-width Gaussian at each neighbour,as in the Parzen window method. However, a �xed-width kernel will be toosmall to achieve averaging where data points are sparse and too large to achieveoptimal locality where data points are dense. There is a trade-o� betweenaveraging points to achieve a better estimate of the local Bayes probabilityversus maintaining locality in order to capture changes in the output. As Duda& Hart (1973, p. 105) have shown, most of the bene�ts of local averagingare achieved from averaging small numbers of points. In fact, the k-nearest-neighbour method achieves a relatively good performance by maintaining aconstant number of points within the kernel.The bene�ts of the k-nearest-neighbour method can be combined with thesmooth weighting fall-o� of a Gaussian by using what is known as the variablekernel method (Silverman, 1986). In this method, the size of a Gaussian kernelcentered at the input is set proportional to the distance of the k-th nearestneighbour. In this paper, we instead use the average distance of the �rst kneighbours, because this measure is more stable under a changing similaritymetric. The constant relating neighbour distance to the Gaussian width islearned during the optimization process, which allows the method to �nd theoptimal trade-o� between localization and averaging for each particular dataset.In a classi�cation problem, the objective is to compute a probability pi foreach possible output label i given any new input vector x. In VSM learning,this is done by taking the weighted average of the known correct outputs of anumber of nearest neighbours. Let nj be the weight that is assigned to each ofthe J (e.g., J = 10) nearest neighbours, and sij be the known output probability(usually 0 or 1) for label i of each neighbour. Then,pi = PJj=1 njsijPJj=1 nj :The weight nj assigned to each neighbour is determined by a Gaussian kernelcentered at x, where dj is the distance of the neighbour from x:nj = exp(�d2j=2�2):The distance dj depends on the similarity metric weights wk that will be learnedduring the optimization process for each dimension k of the input vector. Let cj5



be the input location of each neighbour. Then, the weighted Euclidean distanceis d2j =Xk w2k(xk � cjk)2:The width of the Gaussian kernel is determined by �, which is a multipleof the average distance to the M nearest neighbours. It is better if only somefraction (e.g., M = J=2) of the neighbours is used, so that the kernel becomessmall even when only a few neighbours are close to the input. There is amultiplicative parameter r relating the average neighbour distance to � whichis learned as a part of the optimization process (a typical initial value is r = 0:6,which places the average neighbour near the steepest slope of the Gaussian):� = rM MXm=1 dm:If it is successful, the optimization will select a larger value for r for noisy butdensely-sampled data, and a smaller value for data that is sparse relative tosigni�cant variations in output.4 Optimization of the similarity metricThe similarity metric weights and the kernel width factor are optimized usingthe cross-validation procedure that has been widely adopted in neural networkresearch. This minimizes the error resulting when the output of each exemplarin the training set is predicted on the basis of the remaining data withoutthat exemplar. As Atkeson (1991) has discussed, this is simple to implementwith the nearest-neighbour method because it is trivial to ignore one data itemwhen applying the interpolation kernel. This avoids some of the problems ofovertraining that are found in many other neural network learning methodsthat can not so easily remove a single exemplar to measure the cross validationerror.The particular optimization technique that has been used is conjugate gra-dient (with the Polak-Ribiere update), because it is e�cient even with largenumbers of parameters and converges rapidly without the need to set conver-gence parameters. One important technique in applying it to this problem isthat the set of neighbours of each exemplar are stored before each line search,and the same neighbours are used throughout the line search. This avoidsintroducing discontinuities to the error measure due to changes in the set ofneighbours with a changing similarity metric, which could lead in turn to in-appropriate choices of step size in the line search. A nice side-e�ect is thatthis greatly speeds the line search, as repeatedly �nding the nearest neighbourswould otherwise be the dominant cost. For the problems we have studied, the6



conjugate gradient method converges to a minimum error in about 5 to 20iterations.In order to apply the conjugate gradient optimization in an e�cient manner,it is necessary to compute the derivative of the cross validation error withrespect to the parameters being optimized. The cross validation error E isde�ned as the sum over all training exemplars t and output labels i of thesquared di�erence between the known correct output sti and the computedprobability pti for that output label based on its nearest neighbours:E =Xt Xi (sti � pti)2:The derivative of this error can be computed with respect to each weight pa-rameter wk: @E@wk = �2Xt Xi (sti � pti)@pti@wkwhere @pti@wk = Pj(sji � pti)@nj=@wkPj njand @nj@wk = �njwk�2  (xk � cjk)2 � rd2jM� MXm=1 (xk � cmk)2dm ! :The sum in this last expression does not depend on the particular neighbour jand can therefore be precomputed for the set of neighbours.In order to optimize the parameter r determining the width of the Gaussiankernel, we can substitute the derivative with respect to r for the last equationabove: @nj@r = njd2jr�2 :As noted above, the error function has discontinuities whenever the set ofnearest neighbours changes due to changing weights. This can lead to inap-propriate selection of the conjugate gradient search direction, so the searchdirection should be restarted (i.e., switched to pure gradient descent for thecurrent iteration) whenever the error or the gradient increases. In fact, simplegradient descent with line search seems to work well for this problem, with onlya small increase in the number of iterations required as compared to conjugategradient.One �nal improvement to the optimization process is to add a stabilizingterm to the error measure E that can be used to prevent large weight changes7



when there is only a small amount of training data. This is less importantthan for most other neural network methods because of the smaller number ofparameters, but it can still be useful for preventing over�tting to small samplesof noisy training data. The following stabilizing term S is added to the cross-validation error E: S = �2Xk log2 � wkwk0�which has a derivative of @S@wk = 2�2wk log� wkwk0� :This tends to keep the value of each weight wk as close as possible to the initialweight value wk0 assigned by the user prior to optimization. We have used thestabilization constant � = 1, which means that a one log-unit change in theweight carries a penalty equivalent to a complete misclassi�cation of a singleitem of training data. This has virtually no e�ect when there is a large amountof training data|as in the NETtalk problem below|but will prevent largeweight changes based on a statistically invalid sample for small data sets.5 Minimizing memory requirementsOne frequent criticism of nearest-neighbour methods is that they require muchgreater use of memory than neural network algorithms. However, this expec-tation of high memory requirements seems to be based on an invalid numericalcomparison between the number of hidden units typically used in the back-propagation approach and the much larger number of exemplars in the trainingdatabase. These are not directly comparable because each hidden unit normallymaintains a weight for every possible discrete feature value or for each valuerange in a distributed representation, whereas each training exemplar requiresonly memory for a speci�c set of feature values. An example is provided by theNETtalk problem to be described below, in which an 80-hidden-unit back prop-agation network contains 18,629 weights, which actually requires more memoryto store than the 1000 word training set. For other data sets with a less dis-tributed representation, the nearest-neighbour approach will often require morememory, but the di�erence may not be as signi�cant as is commonly implied.On the other hand, it is clear that it is often unnecessary to retain alltraining data in regions of the input space that have unambiguous classi�ca-tions. Nearest-neighbour learning algorithms can reduce their memory usageby only retaining the full density of training exemplars where they are needednear to classi�cation boundaries and thinning them in other regions. There hasbeen a considerable amount of research on this problem in the classical nearest-neighbours literature, as is summarized in the survey by Dasarathy (1991).8



Most of this work is only relevant to a single-nearest-neighbour classi�er, butthe papers by Chang (1974) and Tomek (1976) give approaches that are relevantto a k-nearest-neighbour method.For VSM learning, we have developed a simple editing procedure that re-moves data from regions that have unambiguous classi�cations. The methoddeletes an exemplar if its J nearest neighbours all agree on the same classi�ca-tion using the VSM classi�er, and all of the neighbours assign this classi�cationa probability above 0.6. For our experiments, we have used J = 10. There isno requirement that the removed exemplar have the same classi�cation as itsneighbours, so this can remove \noise" exemplars. The procedure is repeateduntil less than 5% of the remaining exemplars are deleted on any iteration.This is a very conservative method that deletes exemplars only within regionsthat have consistent classi�cations. The surprising result is that this actuallyimproves generalization performance by a small but consistent amount in ourexperiments. This is clearly a topic on which further research would be useful.6 Test resultsThe VSM learning method was �rst applied to synthetic data to test its abil-ity to select features of interest and assign them appropriate relative weights.The task was to solve a noisy XOR problem, in which the �rst two real-valuedinputs were randomly assigned values of 0 or 1 and the binary output classwas determined by the exclusive-OR function of these inputs. Noise was addedto these 2 inputs drawn from a normal distribution with a standard deviationof 0.3 (meaning that there was some overlap between the two classes). Thenext two inputs were assigned the same initial 0 or 1 values as the �rst two,but had noise with a standard deviation of 0.5. Finally another 4 inputs wereadded that had random zero-mean values with a standard deviation of 2.0. Thepresence of extra random inputs and varying noise levels results in poor perfor-mance of nearest-neighbours algorithms. Indeed, the performance of the basicnearest-neighbours algorithm on this data with 100 training and 100 test exam-ples was only 54.3% correct (hardly better than the 50% achieved by randomguessing). However, VSM learning achieved 94.6% correct, after 14 iterationsof the conjugate gradient convergence, by assigning high weights to the �rst 2input features, slightly smaller weights to the next 2, and much smaller weightsto the random inputs. Note that because of the XOR determination of theoutput class, there would be no linear correlation between any individual inputand the output, so any linear classi�er or feature selection method would failon this problem.The next test was performed on the well-known NETtalk task (Sejnowski &Rosenberg, 1987) in which the input is a 7-letter window of an English word andthe output is the pronunciation of the central letter. Recently, Wettschereck& Dietterich (1992) have tested many learning methods on this data, using a9



Algorithm Letter Phoneme StressNearest neighbour 53.1 61.1 74.0RBF 57.0 65.6 80.3Back propagation 70.6 80.8 81.3Wolpert 72.2 82.6 80.2GRBF 73.8 84.1 82.4VSM 73.4 83.7 81.2Table 1: This table gives the percent correct generalization on the NETtalk taskfor di�erent learning methods. All rows except the last are from (Wettschereck& Dietterich, 1992).standardized test method that selects 1000 words of training data at randomand a disjoint set of 1000 words of test data. Table 1 presents their resultsfor many well-known learning algorithms, along with the results of running theVSM algorithm on the same data. As the table shows, VSM learning performssigni�cantly better than back propagation or radial basis function (RBF) learn-ing on this data. The one method that is slightly better is a generalized radialbasis function (GRBF) method in which the center of each basis function isoptimized. However, this required extensive cross-validation testing to selectmany parameters, such as number of centers and type of parameter adjustments,and the optimization failed to converge from some starting values. In contrast,VSM learning achieves almost the same generalization with only 10 minutes oftraining time on a SparcStation 2 and with no need for experimentation. Thee�ciency of the k-d tree access method is such that the distance to only 43exemplars on average must be checked to determine the 10 nearest neighboursfor classi�cation. VSM learning optimizes only 8 parameters (the weights forthe 7 inputs and the kernel size), whereas back propagation optimizes 18,629parameters and GRBF optimizes 40,600 parameters for this problem.The method by Wolpert listed in Table 1 is similar to VSM, in that it opti-mizes a distance metric for nearest neighbour interpolation. Wolpert (1990)originally selected the weights by hand, and he applied the method to anedited test set so that his comparison to previous NETtalk data was invalid.Wettschereck & Dietterich (1992) used a mutual information approach to com-pute the feature weights, and applied it to NETtalk using their standardized testprocedure to get the results shown in Table 1. Wolpert's kernel is a distance-weighted kernel that gives in�nite weight to an exemplar with zero distance,and these results show that the variable kernel method used in VSM learn-ing has better generalization. Another approach to the NETtalk problem wastaken by Stan�ll & Waltz (1986), who computed a type of similarity metricfrom the nearest neighbours of each input. Although they do not perform sys-tematic testing, they report that the results are at about the same level asback-propagation. 10



Algorithm Percent correctBack propagation 51RBF 53Gaussian node network 55Nearest neighbour 56VSM 61Table 2: Percent correct generalization on vowel classi�cation task for di�erentlearning methods. All rows except the last are from (Robinson, 1989).VSM learning was also tested on Robinson's (1989) speaker-independentspeech recognition data. Each item of training data corresponds to one of 11vowel sounds, with the input features consisting of 10 real-valued numbers thatwere extracted from the speech signal using linear predictive analysis and otherpreprocessing. The training data is produced by 8 speakers saying each of the11 vowels six times, while the test data is produced by 7 other speakers in thesame format. In applying VSM learning, it is important that only neighboursproduced by di�erent speakers from the center input are accessed during train-ing, as otherwise the weights will be optimized to recognize each vowel basedon data from the same speaker. This is easy to accomplish by adding a �eld toeach exemplar indicating the speaker. The result of VSM learning on this taskwas better than the other methods tested by Robinson, as shown in Table 2.In fact, the nearest neighbour algorithm performed very well for this task, andthe reason for this is shown by the fact that the feature weights changed onlya little from their initial value of 1.0 during VSM learning. Presumably, thisis because of the careful preprocessing of the speech signal to extract a usefulfeature set. The further improvement of VSM learning over nearest neighboursis due to the use of the variable kernel.Another data set on which VSM learning has been tested is Gorman &Sejnowski's (1988) sonar data set. Each exemplar in this data set consists of60 real-valued inputs extracted from a sonar signal. The task is to classify theobject from which the sonar is reected as either a rock or a metal cylinder.Only their \aspect-angle dependent" test case was used, as the precise trainingand test data cannot be determined for their other series. In this case, VSMlearning achieved 95.2% correct classi�cation as compared to the best result of90.4% obtained by Gorman and Sejnowski using back propagation. Given thatonly 104 training cases were available, the large number of input dimensions,and the inability to perform randomized trials, it is not clear whether this resultis statistically signi�cant. 11



7 Relevance to models of biological learningA major long-term goal of learning research is to develop a model for the power-ful learning mechanisms incorporated in the cerebral cortex of the brain. Whilemany aspects of learning in the brain remain to be discovered, certain broadproperties of its performance are well known. These include the capability ofthe brain to incrementally update its learned model with each new trainingstimulus and its ability to perform some tasks with as little as a single train-ing exemplar (as when recognizing a new stimulus following a single exposureand then improving recognition performance with further exposures). Learn-ing in one part of the input space does not produce any major degradation ofperformance in other parts. Of the currently proposed neural network learningmethods, only those that perform some type of local interpolation seem capableof satisfying these constraints.A biologically-plausible model of learning would need to develop a completeincremental learning method. It would be possible to start performing classi-�cation with very small numbers of inputs if the initial set of feature weightscould be assigned by using weights from some similar previous task (for exam-ple, the recognition of a new person would initially be based on feature weightsthat have proved useful for recognizing other people). These weights would thenneed to be optimized incrementally rather than through a batch process suchas conjugate gradient. One hypothetical model for implementing a variablekernel approach with neurons would be to initially assign a neuron to each newtraining experience. Each neuron would �re in proportion to its distance froma new input due to a Gaussian-shaped receptive �eld. The implementation of avariable kernel with a constant sum of neuron activations would require lateralinhibition between neurons at the same level, which is known to be a commonaspect of cortical processing. To limit memory requirements, new inputs thatare very similar to previous inputs would not be assigned to a new neuron,but instead would modify the output weights of the closest existing neuronsto reect the new output. This is similar to the role of the output layer ofweights in RBF learning, so the learning would tend to switch from VSM toRBF approaches as the density of neighbours rose beyond what was needed torepresent output variations. An open research problem is to derive a statisti-cal test to determine when output variations are small enough to perform thiscombination of exemplars. One prediction that arises from VSM learning isthat relative feature weights should be set on a more global basis than a singleneuron (this di�ers from the separate feature weights of each unit in back-propagation). This could be accomplished in biological systems by determiningfeature weights from, for example, the activation level of a feature-encodingneuron rather than by changing individual synapse weights.12



8 Conclusions and future directionsNearest-neighbour methods have often shown poor generalization in comparisonto other learning methods, and therefore have attracted little interest in theneural network community in spite of a number of attractive properties. Thispaper shows that with the choice of an appropriate kernel and optimizationof the similarity metric, the generalization can be as good or better than thealternatives. In the data sets that have been tested, VSM learning achievesbetter generalization than the back-propagation algorithm and most forms ofRBF networks. It also has a much reduced training time, and a large reductionin the number of parameters to be optimized. A particular advantage of themethod is its ability to operate as a black box without the need for the user toassign critical parameter values.One important area for further research is the ability to learn weights thatvary between regions of the input space. Clearly, there are many problems forwhich the optimal feature weights vary for di�erent regions of the input. Onthe other hand, there must be a fair quantity of training data to determinethe feature weights with statistical reliability, so their optimization must alsoavoid being too local. One approach to this problem would be to partitionthe input space into regions using a data structure such as the k-d tree, andto perform the optimization separately in each region. The local parameterscould be stabilized to also minimize their distance from the global values, whichwould reduce the problems of overlearning.Another area of potential improvement would be to incorporate the learningof local linear models such as have been explored by Atkeson (1991) and Bottou& Vapnik (1992). These approaches �t a linear model to a set of neighboursaround each input at classi�cation time. At the cost of a large increase in run-time computation, the output can be based on a more accurate interpolationbetween inputs that accounts for their particular spatial distribution in theinput space. This is likely to be particularly useful for continuous outputs.9 ReferencesAtkeson, C.G. 1989. Learning arm kinematics and dynamics. Annual Reviewof Neuroscience 12, 157{83.Atkeson, C.G. 1991. Using locally weighted regression for robot learning. IEEEConf. on Robotics and Automation, Sacramento, CA, 958{963.Bottou, L., and Vapnik, V. 1992. Local learning algorithms. Neural Computa-tion, 4, 888{900.Broomhead, D.S., and Lowe, D. 1988. Multivariable functional interpolationand adaptive networks. Complex Systems, 2, 321{355.13
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