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Abstract
A key component of a mobile robot system is the

ability to localize itself accurately and build a map
of the environment simultaneously. In this paper, a
vision-based mobile robot localization and mapping al-
gorithm is described which uses scale-invariant image
features as landmarks in unmodified dynamic environ-
ments. These 3D landmarks are localized and robot
ego-motion is estimated by matching them, taking into
account the feature viewpoint variation. With our Tri-
clops stereo vision system, experiments show that these
features are robustly matched between views, 3D land-
marks are tracked, robot pose is estimated and a 3D
map is built.

1 Introduction
Mobile robot localization and mapping, the process

of simultaneously tracking the position of a mobile
robot relative to its environment and building a map of
the environment, has been a central research topic for
the past few years. Accurate localization is a prerequi-
site for building a good map, and having an accurate
map is essential for good localization. Therefore, Si-
multaneous Localization And Map Building (SLAMB)
is a critical underlying factor for successful mobile
robot navigation in a large environment, irrespective
of the higher-level goals or applications.

To achieve SLAMB, there are different types of
sensor modalities such as sonar, laser range finders
and vision. Many early successful approaches [2] uti-
lize artificial landmarks, such as bar-code reflectors,
ultrasonic beacons, visual patterns, etc., and there-
fore do not function properly in beacon-free environ-
ments. Vision-based approaches using stable natural
landmarks in unmodified environments are highly de-
sirable for a wide range of applications.

Harris’s 3D vision system DROID [8] uses the vi-
sual motion of image corner features for 3D recon-
struction. Kalman filters are used for tracking features

from which it determines both the camera motion and
the 3D positions of the features. It is accurate in the
short to medium term, but long-term drifts can oc-
cur. The ego-motion and the perceived 3D structure
can be self-consistently in error. It is an incremental
algorithm and it runs at near real-time.

A stereo vision algorithm for mobile robot mapping
and navigation is proposed in [13], where a 2D occu-
pancy grid map is built from the stereo data. However,
since the robot does not localize itself using the map,
odometry error is not corrected and hence the map
may drift over time. [10] proposed combining this 2D
occupancy map with sparse 3D landmarks for robot
localization, and corners on planar objects are used
as stable landmarks. However, landmarks are used
for matching only in the next frame but not kept for
matching subsequent frames.

Markov localization was employed by various teams
with success [15, 17]. For example, the Deutsches
Museum Bonn tour-guide robot RHINO [3, 6] utilizes
a metric version of this approach with laser sensors.
However, it needs to be supplied with a manually de-
rived map, and cannot learn maps from scratch.

Thrun et al. [19] proposed a probabilistic approach
for map building using the Expectation-Maximization
(EM) algorithm. The E-step estimates robot locations
at various points based on the currently best available
map and the M-step estimates a maximum likelihood
map based on the locations computed in the E-step.
It searches for the most likely map by simultaneously
considering the locations of all past sonar scans. After
traversing a cyclic environment, the algorithm revises
estimates backward in time. It is a batch algorithm
and cannot be run in real-time.

Unlike RHINO, the latest museum tour-guide robot
MINERVA [18] learns its map and uses camera mosaics
of the ceiling for localization in addition to the laser
scan occupancy map. It uses the EM algorithm in [19]



to learn the occupancy map and the novelty filter in
[6] for localization.

The Monte Carlo Localization method was pro-
posed in [5] based on the CONDENSATION algo-
rithm [9]. This vision-based Bayesian filtering method
uses a sampling-based density representation. Unlike
the Kalman filter based approaches, it can represent
multi-modal probability distributions. Given a visual
map of the ceiling obtained by mosaicing, it localizes
the robot using a scalar brightness measurement.

Sim and Dudek [16] proposed learning natural vi-
sual features for pose estimation. Landmark matching
is achieved using principal components analysis and
a tracked landmark is a set of image thumbnails de-
tected in the learning phase, for each grid position in
pose space.

Using global registration and correlation tech-
niques, [7] proposed a method to reconstruct consis-
tent global maps from laser range data reliably.

Recently, Thrun et al. [20] proposed a novel real-
time algorithm combining the strengths of EM algo-
rithms and incremental algorithms. Their approach
computes the full posterior over robot poses to de-
termine the most likely pose, instead of just using
the most recent laser scan as in incremental map-
ping. When closing cycles, backwards correction can
be computed from the difference between the incre-
mental guess and the full posterior guess.

Most existing mobile robot localization and map-
ping algorithms are based on laser or sonar sensors,
as vision is more processor intensive and stable visual
features are more difficult to extract. In this paper, we
propose a vision-based SLAMB algorithm by tracking
SIFT features. As our robot is equipped with Tri-
clops [14], a trinocular stereo system, the estimated
3D position of the landmarks can be obtained and
hence a 3D map can be built and the robot can be
localized simultaneously. The 3D map, represented as
a SIFT landmark database, is incrementally updated
over time and adaptive to dynamic environments.

Section 2 explains the SIFT features and the stereo
matching process. Ego-motion estimation by match-
ing features across frames is described in Section 3 and
SIFT database landmark tracking is presented in Sec-
tion 4. Experimental results are shown in Section 5,
where our 10m by 10m lab environment is mapped
with more than 3000 SIFT landmarks. Section 6 de-
scribes some enhancements to the SIFT database. Fi-
nally, we conclude and discuss some future work in
Section 7.

2 SIFT Stereo
SIFT (Scale Invariant Feature Transform) was de-

veloped by Lowe [12] for image feature generation in
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Figure 1: SIFT features found, with scale and ori-
entation indicated by the size and orientation of the
squares. (a) Top image. (b) Left image. (c) Right
image.

object recognition applications. The features are in-
variant to image translation, scaling, rotation, and
partially invariant to illumination changes and affine or
3D projection. These characteristics make them suit-
able landmarks for robust SLAMB, since when mobile
robots are moving around in an environment, land-
marks are observed over time, but from different an-
gles, distances or under different illumination.

At each frame, we extract SIFT features in each of
the three images, and stereo match them among the
images. Matched SIFT features are stable and will
serve as landmarks for the environment.

2.1 Generating SIFT Features
Key locations are selected at maxima and minima

of a difference of Gaussian function applied in scale
space. They can be computed by building an image
pyramid with resampling between each level. Further-
more, SIFT locates key points at regions and scales
of high variation, making these locations particularly
stable for characterizing the image. [12] demonstrated
the stability of SIFT keys to image transformations.

Figure 1 shows the SIFT features found on the top,
left and right images. The resolution is 320x240 and
8 levels of scales are used. A subpixel image location,



scale and orientation are associated with each SIFT
feature. The size of the square surrounding each fea-
ture in the images is proportional to the scale at which
the feature is found, and the orientation of the squares
corresponds to the orientation of the SIFT features.

Image Number of SIFT features found
Top 193
Left 166

Right 189

2.2 Stereo Matching
The right camera in the Triclops serves as the refer-

ence camera, as the left camera is at 10cm right beside
it and the top camera is at 10cm directly above it.

In addition to the epipolar constraint and dispar-
ity constraint, we also employ the SIFT scale and ori-
entation constraints for matching the right and left
images. Subpixel horizontal disparity is obtained for
each match. These resulting matches are then matched
with the top image similarly, with an extra constraint
for agreement between the horizontal and vertical dis-
parities. If a feature has more than one match sat-
isfying these criteria, it is ambiguous and discarded
so that the resulting matches are more consistent and
reliable.

From the positions of the matches and knowing the
camera intrinsic parameters, we can compute the 3D
world coordinates (X,Y, Z) relative to the robot for
each feature in this final set. They can subsequently
serve as landmarks for map building and tracking. The
disparity is taken as the average of the horizontal dis-
parity and the vertical disparity.

The orientation and scale of each matched SIFT
feature are taken as the average of the orientation and
scale among the corresponding SIFT feature in the left,
right and top images.
2.3 Results

There are 106 matches between the right and left
images shown in Figure 1. After matching with the
top image, the final number of matches is 59. The
result is shown in Figure 2(a), where each matched
SIFT feature is marked; the length of the horizontal
line indicates the horizontal disparity and the vertical
line indicates the vertical disparity for each feature.
Figures 2(b) and (c) show more SIFT stereo results
for slightly different views when the robot makes some
small motion.

Figure Number of final matches
Figure 2(a) 59
Figure 2(b) 66
Figure 2(c) 60

Relaxing some of the constraints above does not
necessarily increase the number of final matches be-

(a)
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Figure 2: Stereo matching results for slightly different
views. Horizontal line indicates its horizontal disparity
and vertical line indicates its vertical disparity. Line
lengths are proportional to the corresponding dispari-
ties. Closer objects will have larger disparities.

cause some SIFT features will then have multiple po-
tential matches and therefore be discarded.

3 Ego-motion Estimation

We obtain [r, c, s, o, d,X, Y, Z] for each stereo
matched SIFT feature, where (r, c) is the measured
image coordinates in the reference camera, (s, o, d) are
the scale, orientation and disparity associated with
each feature, (X,Y, Z) are its 3D coordinates relative
to the camera.

To build a map, we need to know how the robot
has moved between frames in order to put the land-
marks together coherently. The robot odometry data
can only give a rough estimate and it is prone to er-
ror such as drifting, slipping, etc. To find matches in
the second view, the odometry allows us to predict the
region to search for each match more efficiently.

Once the SIFT features are matched, we can use
the matches in a least-squares procedure to compute
a more accurate camera ego-motion and hence better
localization. This will also help adjust the 3D coordi-
nates of the SIFT landmarks for map building.



3.1 Predicting Feature Characteristics
From the 3D coordinates of a SIFT landmark and

the odometry data, we can compute the expected 3D
relative position and hence the expected image coor-
dinates and disparity in the new view. The expected
scale is computed accordingly as it is inversely related
to the distance.

We can search for the appropriate SIFT feature
match within a region (currently 5 by 5 pixels) in
the next frame, using the disparity constraint together
with the SIFT scale and orientation constraints.
3.2 Matching Results

For the images shown in Figure 2, the rough camera
movement from the odometry is:

Figure Movement
Figure 2(a) Initial position
Figure 2(b) Forward 10cm
Figure 2(c) Rotate clockwise 5◦

The frames are then matched:
Figures to match No. of matches % of matches

Figure 2(a) and (b) 43 73%
Figure 2(b) and (c) 41 68%

Figure 3 shows the match results visually where the
shift in image coordinates of each feature is marked.
The white dot indicates the current position and the
white cross indicates the new position; the line shows
how each matched SIFT feature moves from one frame
to the next, analogous to sparse optic flow. Fig-
ures 3(a) is for a forward motion of 10cm and Fig-
ures 3(b) is for a clockwise rotation of 5◦. It can be
seen that the matches found are very consistent.
3.3 Least-Squares Minimization

Once the matches are obtained, the ego-motion
is determined by finding the camera movement that
would bring each projected SIFT landmark into the
best alignment with its matching observed feature. To
minimize the errors between the projected image co-
ordinates and the observed image coordinates, we em-
ploy a least-squares minimization [11] to compute this
camera ego-motion. Although our robot can only move
forward and rotate, we use a full 6 degrees of freedom
for the general motion.

Newton’s method computes a correction term to be
subtracted from the initial estimate, using the error
measurements between the expected projection of the
SIFT landmarks and the image position observed for
the matching feature.

The Jacobian matrix is estimated numerically and
Gaussian elimination with pivoting is employed to
solve the linear system. The good feature matching
quality implies very high percentage of inliers, and
therefore, outliers are simply eliminated by discarding

(a)

(b)
Figure 3: The SIFT feature matches between consec-
utive frames: (a) Between Figure 2(a) and (b) for a
10cm forward movement. (b) Between Figure 2(b) and
(c) for a 5◦ clockwise rotation.

features with significant residual errors E (currently 3
pixels). Minimization is repeated with the remainder
matches to obtain the new correction term.

3.4 Results
We pass the SIFT feature matches in Figure 3 to the

least-squares procedure with the odometry as the ini-
tial estimate of ego-motion. For between-frame move-
ment over a smooth floor, odometry is quite accurate
and can be used to judge the accuracy of the solu-
tion. The following results are obtained, where the
least-squares estimate [X,Y, Z, θ, α, β] corresponds to
the translations in X, Y, Z directions, yaw, pitch and
roll respectively:

Fig Odometry Mean E Least-Squares Estimate
3(a) Z=10cm 1.328 [1.353cm,-0.534cm,11.136cm,

(pixels) 0.059◦,−0.055◦,−0.029◦]
3(b) θ=5◦ 1.693 [0.711cm,0.008cm,-0.9890cm,

(pixels) 4.706◦,0.059◦,−0.132◦]



4 Landmark Tracking
After matching SIFT features between frames, we

would like to maintain a database containing the SIFT
landmarks observed and use it to match features found
in subsequent views.

Each SIFT feature has been stereo matched and
localized in 3D coordinates. Its entry in the database:

[X,Y, Z, s, o, l]
where (X,Y, Z) is the current 3D position of the SIFT
landmark relative to the camera, (s, o) are its scale
and orientation, and l is a count to indicate how many
consecutive frames this landmark has been missed.
Over subsequent frames, we would like to maintain
this database, add new entries to it, track features and
prune entries when appropriate, to cater for dynamic
environments and occlusions.
4.1 Track Maintenance

Between frames, we obtain a rough estimate of cam-
era ego-motion from robot odometry to predict the
feature characteristics for each database landmark in
the next frame. There are the following types of land-
marks to consider:
Type I. This landmark is not expected to be within

view in the next frame. Therefore, it is not being
matched and its miss count remains unchanged.

Type II. This landmark is expected to be within
view, but no matches can be found in the next
frame. Its miss count is incremented by 1.

Type III. This landmark is within view and a match
is found according to the position, scale, orienta-
tion and disparity criteria described before. Its
miss count is reset to 0.

Type IV. This is a new landmark corresponding to
a SIFT feature in the new view which does not
match any existing landmarks in the database.

All the Type III landmarks matched are then used
in the least-squares minimization to obtain a better
estimate for the camera ego-motion. The landmarks in
the database are currently updated by averaging. This
update can be replaced by some data fusion methods
such as the Kalman filter [1] (Section 6.4).

If there are insufficient Type III matches due to
occlusion for instance, the odometry will be used as
the ego-motion for the current frame.
4.2 Track Initiation

Initially the database is empty. When SIFT fea-
tures from the first frame arrive, we start a new track
for each of the features initializing their miss count l
to 0. In subsequent frames, a new track is initiated for
each of the Type IV landmarks.
4.3 Track Termination

If the miss count l of any landmark in the database
reaches a predefined limit N (20 was used in experi-

ments), i.e., it has not been observed at its predicted
position for N consecutive frames, this landmark track
is terminated and pruned from the database. This re-
moves features belonging to objects that moved in a
dynamic environment.
4.4 Field of View

Firstly, we compute the expected 3D coordinates
(X ′, Y ′, Z ′) from the current coordinates and the
odometry. For a database landmark to be within the
field of view in the next frame, we check Z ′ > 0
(not behind the camera), tan−1(|X ′|/Z ′) < 30◦ and
tan−1(|Y ′|/Z ′) < 30◦, as the Triclops camera lens field
of view is around 60◦ wide.
4.5 Reference Coordinate Frame

We use the initial camera coordinate frame as the
reference and make all the landmarks relative to this
fixed frame. Therefore, Type I and Type II landmarks
do not need to be transformed using the camera ego-
motion estimate at each frame. Matching the SIFT
landmarks referenced to the initial frame with features
observed in the current frame helps avoid error accu-
mulation.

5 Experimental Results
SIFT feature detection, stereo matching, ego-

motion estimation and tracking algorithms have been
implemented in our robot system. A SIFT database is
kept to track the features over frames.

As the robot camera Y location does not change
much over flat ground, we reduce the estimation from
6 d.o.f. to 5, forcing the height change parameter to
0. Depending on the distribution of features in the
scene, there is ambiguity between a yaw rotation and
a sideways movement, which is a well-known problem.

Moreover, we set a limit to the correction terms al-
lowed for the least-squares minimization as the odom-
etry for between-frame movement should be quite
good. This will safeguard frames which have erro-
neous matches that may lead to excessive correction
terms and mess up the subsequent estimation.

As our ego-motion estimation determines the move-
ment of the camera which is not placed in the centre of
the robot, we need to adjust the odometry information
to get the camera motion.

The following experiment was carried out on the fly
while the robot is moving around. We manually drive
the robot to go around a chair in the lab for one loop
and come back. At each frame, it keeps track of the
SIFT landmarks in the database, adds new ones and
updates existing ones if matched.

Figure 4 shows some frames of the 320x240 im-
age sequence (249 frames in total) captured while the
robot is moving around. The white markers indicate
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Figure 4: Frames of an image sequence with SIFT fea-
tures marked. (a) 1st frame. (b) 60th frame. (c) 120th
frame. (d) 180th frame.
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Figure 5: Bird’s eye view of the SIFT landmarks
(including ceiling features) in the database after 249
frames. The cross at (0,0) indicates the initial robot
position and the dashed line indicates the robot path.

the SIFT features found. At the end, a total of 3590
SIFT landmarks, with 3D positions relative to the ini-
tial robot position, are gathered in the SIFT database.

Figure 5 shows the bird’s eye view of these fea-
tures. Consistent clusters are observed correspond-
ing to chairs, shelves, posters, computers etc. in the
scene. The robot has traversed forward more than

4 metres and then has come back with its trajectory
shown in Figure 5. The maximum robot translation
and rotation speeds are set to around 40cm/sec and
10◦/sec respectively such that there are sufficiently
many matches between consecutive frames.

The accuracy of the ego-motion estimation depends
on the SIFT landmarks and their distribution, the
number of matches, etc. In this experiment, there
are sufficiently many matches at each frame, ranging
mostly between 40 and 60, depending on the particular
part of the lab and the viewing direction.

At the end when the robot comes back to the orig-
inal position (0,0,0) judged visually:

SIFT estimate: X:-2.09cm Y:0cm Z:-3.91cm
θ:0.30◦ α:2.10◦ β:−2.02◦

6 SIFT Database
Our basic approach has been described above, but

there are various enhancements dealing with the SIFT
database that can help our tracking to be more robust
and our map-building to be more stable.
6.1 Database Entry

In order to assess the reliability of a certain SIFT
feature in the database, we need some information re-
garding how many times this feature has been matched
and has not been matched so far. The new database
entry is [X,Y, Z, s, o,m, n, l] where l is still the count
for the number of times being missed consecutively,
which is used to decide whether or not the feature
should be pruned from tracking. m is a count for the
number of times it has been missed so far and n is a
count for the number of times it has been seen so far.

Each feature has to appear at least 3 times (n ≥ 3)
to be considered as a valid feature. This is to eliminate
false alarms and noise, as it is highly unlikely that some
noise will cause a feature to match in the right, left &
top images for 3 times (a total of 9 camera views).

In this experiment, we move the robot around the
lab environment without the chair in the middle. In
order to demonstrate visually that the SIFT database
map is three-dimensional, we use a visualization pack-
age Geomview. Figure 6 shows several views of the
3D SIFT map from different angles in Geomview. We
can see that the centre region is clear, as false alarms
and noise features are discarded. Visual judgement
indicates that the SIFT landmarks correspond well to
actual objects in the lab.
6.2 Permanent Landmarks

In a scene where there could be many volatile fea-
tures, e.g., when someone blocks the camera view for a
while, stable features observed earlier are not matched
for a number of consecutive frames, and will be dis-
carded.
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Figure 6: 3D SIFT database map viewed from different
angles in Geomview. Each feature has appeared con-
sistently in at least 9 camera views. (a) From top. (b)
From left. (c) From right.

Therefore, when the environment is clear, we can
build a SIFT database beforehand and mark them as
permanent landmarks, if they are valid (having ap-
peared in at least 3 frames) and if the percentage of
their occurrence, given by n/(n+m), is above a certain
threshold. Afterwards, this set of reliable landmarks
will not be wiped out even if they are being missed
for many consecutive frames. They are important for
subsequent localization after the view is unblocked.
6.3 Viewpoint Variation

Although SIFT features are invariant in image ori-
entation and scale, they are image projections of 3D
landmarks and hence vary with large changes of view-
points and as different parts of the object are observed
or part of the object is occluded.

For example, when the front of an object is seen
first, after the robot moves around and views the ob-
ject from the back, the image feature is in general com-
pletely different. As the original feature may not be
observable from this viewpoint, or observable but ap-
pear different, its miss count will increase gradually
and it will be pruned even though it is still there.

Therefore, we allow each SIFT landmark to have
more than one SIFT characteristics, where each SIFT
characteristic (scale and orientation) is associated with
a view vector keeping track of the viewpoint from

which the feature is observed. Subsequently, if the
new view direction differs from the original view direc-
tion by more than a threshold (currently set to 20◦),
its miss count will not be incremented even if it does
not match. This way we can avoid corrupting the fea-
ture information gathered earlier by the current partial
view of the world.

If a feature matches from a direction larger than
the threshold, we add a new view vector with the
associated SIFT characteristic to the existing land-
mark. Therefore, a database landmark can have mul-
tiple SIFT characteristics (si, oi,vi) where si and oi
are the scale and orientation for the view direction vi.
Over time, if a landmark is observed from various di-
rections, much richer SIFT information is gathered.
The matching procedure is as follows:
• compute view vector v between the database

landmark and the current robot position
• find the existing view direction vi associated with

the database landmark which is closest to v, i.e.,
with minimal angle φ between the two vectors

• check whether φ is less than 20◦:

– if so, update the existing s and o if feature
matching succeeds, or increment miss count
if feature matching fails

– else, add a new entry of SIFT characteristics
(s, o,v) to the existing landmark if feature
matching succeeds

The 3D positions of the landmarks are updated ac-
cordingly if matched.
6.4 Error Modeling

There are various errors such as noise and quan-
tization associated with the images and the features
found. They introduce inaccuracy in both the land-
marks’ position as well as the least-squares estimation
of the robot position. In stochastic mapping, a single
filter is used to maintain estimates of landmark posi-
tions, the robot position and the covariances between
them [4], with high computational complexity.

In more recent work, we have employed a Kalman
Filter [1] for each database SIFT landmark which now
has a 3x3 covariance matrix for its position, assum-
ing the independence of landmarks. When a match is
found in the current frame, the covariance matrix in
the current frame will be combined with the covariance
matrix in the database so far, and its 3D position will
be updated accordingly.

An ellipsoidal uncertainty based on its covariance
is associated with each landmark position. The el-
lipses shrink when the landmarks are matched over
frames, indicating they are localized better. On the
other hand, the ellipses expand when the landmarks
are missed, indicating higher positional uncertainty.



7 Conclusion
In this paper, we proposed a vision-based SLAMB

algorithm based on the SIFT features. Being scale
and orientation invariant, SIFT features are good nat-
ural visual landmarks for tracking over long periods of
time from different views. These tracked landmarks
are used for concurrent robot pose estimation and 3D
map building, with promising results shown.

The algorithm currently runs at 2Hz for 320x240
images on our mobile robot with a Pentium III
700MHz processor. As the majority of the process-
ing time is spent on SIFT feature extraction, MMX
optimization is being investigated.

At present, the map is re-used only if the robot
starts up again at the last stop position or if the robot
starts at the position of the initial reference frame.
Preliminary work on the ‘kidnapped robot’ problem,
i.e., initializing localization, has been positive. This
will allow the robot to re-use the map at any arbitrary
robot position by matching the rich SIFT database.

We are currently looking into recognizing the re-
turn to a previously mapped area and detecting the
occurrences of drift and to correct for it.
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