
What and Where: 3D Object Recognition

with Accurate Pose

Iryna Gordon and David G. Lowe

Computer Science Department,
University of British Columbia

Vancouver, BC, Canada
lowe@cs.ubc.ca

Abstract. Many applications of 3D object recognition, such as aug-
mented reality or robotic manipulation, require an accurate solution for
the 3D pose of the recognized objects. This is best accomplished by
building a metrically accurate 3D model of the object and all its fea-
ture locations, and then fitting this model to features detected in new
images. In this chapter, we describe a system for constructing 3D met-
ric models from multiple images taken with an uncalibrated handheld
camera, recognizing these models in new images, and precisely solving
for object pose. This is demonstrated in an augmented reality applica-
tion where objects must be recognized, tracked, and superimposed on
new images taken from arbitrary viewpoints without perceptible jitter.
This approach not only provides for accurate pose, but also allows for
integration of features from multiple training images into a single model
that provides for more reliable recognition1.

1 Introduction

Many existing approaches to object recognition match new images to a database
of individual 2D training images, and thereby determine the best matching object
without any precise notion of their 3D pose. However, some common applica-
tions, such as augmented reality or robotic manipulation, require that recognition
also include a precise 3D pose solution. In this chapter, we address the problem
of augmented reality, in which synthetic graphics must be superimposed on real
images to a high degree of accuracy. Human vision is highly sensitive to misreg-
istration errors, so the accuracy must be sub-pixel and minimize any jitter due
to sensor noise.

Our solution is based on using invariant local features to obtain point matches
between multiple 2D images of a rigid 3D object or scene. These are then used
as input to bundle adjustment to obtain a metrically accurate 3D solution for
the locations of the features and cameras. This follows a similar approach to
building 3D models from local feature matches that was previously developed

1 The research in this chapter was first presented at the International Symposium on
Mixed and Augmented Reality, 2004 [8].



2 Gordon and Lowe

Fig. 1. The coffee mug is recognized in each frame and its pose computed. The virtual
teapot is superimposed to appear on top of the coffee mug. The last two frames demon-
strate recognition of the partially occluded mug in cluttered scenes, without tracking
from previous frames.

by Schaffalitzky and Zisserman [20]. In recent work, Rothganger et al. [18] have
built 3D models from multiple affine-invariant feature correspondences and used
these models for recognition. They demonstrate that the 3D models are particu-
larly valuable for recognition as they integrate features from multiple views and
are therefore more complete and robust than any single view representation. In
this chapter we describe a number of improvements to previous methods that we
have found useful, including a simple approach to initializing bundle adjustment,
methods for filtering subsets of the most useful features, and a novel approach
to jitter reduction in augmented reality. We are able to reliably build models
of complex objects and scenes from multiple hand-held images using an uncal-
ibrated camera. The models can then be recognized and tracked in long video
sequences while maintaining minimal jitter.

1.1 System overview

Our system operates in two stages. During the first, offline stage, SIFT features
are extracted from the reference images and pair-wise correspondences are es-
tablished. The process remains linear in the number of images by using fast
approximate indexing and only linking image pairs forming a spanning tree.
These correspondences are used to build a metric model of the real world to
be augmented (which could be an individual object or a general scene). At the
same time, camera calibration parameters and camera poses corresponding to
image viewpoints are computed. Structure and motion recovery is performed
with bundle adjustment using a simple initialization procedure.

Once the real world model has been obtained, the position, orientation and
size of the virtual object must be specified relative to this model. For this purpose
we provide an interactive procedure, which allows the user to determine the pose
of the virtual object in the reference images.

The second stage of the system involves recognition and accurate solution
of the model pose for live video augmentation. Features detected in the current
video frame are matched to those of the world model, and these matches are used
to compute the current pose of the model. Jitter is minimized by regularizing the
solution using the pose computed for the previous frame. The influence of the
previous solution on the current one is weighted without imposing constraints
on the overall camera motion. The tracker is very stable in practice (Figure 1



Lecture Notes in Computer Science 3

demonstrates some of its capabilities), and it performs online scene recognition
and recovery from failure of tracking. Unlike previous systems for augmented
reality, our method performs automatic recognition of any of a library of objects
using natural features, making it suitable for a variety of mobile applications
which involve augmentation of recognized scenes, such as computerized museum
tour guides and augmentation of individual objects.

2 Related research

In most previous research on marker-free systems for augmented reality, natu-
ral features are used only for establishing correspondences between consecutive
frames in a video sequence. Some of the most common choices are the Har-
ris corner detector [9], applied in [3, 4], and the Kanade-Lucas-Tomasi (KLT)
tracker [16], used in [23, 7, 19]. To automate the initialization and failure recov-
ery of a tracker, reliable wide baseline matching is desired, which in turn imposes
a demand for a higher degree of feature invariance.

A recent approach [5] proposes tracking of parallelogram-shaped and ellip-
tical image regions, extracted in an affinely invariant way, which can be used
for scene recognition. Impressive results are presented, but the tracker relies on
the presence of planar structures in the viewed scene. In [13] viewpoint invari-
ance is achieved by applying an eigen-image approach to a set of local image
patches, which capture the appearance of a real-world point in several views.
Their method relies on the pre-built CAD model of the object to be augmented,
and requires manual matching of model points to their 2D projections in refer-
ence keyframes. In [11] edges of a CAD model are matched to detected image
edges. Their visual tracking system is combined with rate gyroscopes in order
to handle rapid movements of a head-mounted camera.

Various other techniques have been suggested in augmented reality for acquir-
ing a reference representation of the real world. In [3] two or more reference views
are used to compute current camera pose from epipolar geometry constraints on
natural feature correspondences. Markers are still used to pre-calibrate the refer-
ence frames with standard calibration tools. The initial camera pose must be very
close to one of the reference images, due to wide baseline matching limitations.
A learning-based strategy is proposed in [7], where the scene is represented by
a set of natural features, detected and calibrated during an initial marker-based
tracking phase. The system presented in [12] uses fiducial detection to represent
the environment and its virtual contents in an affine frame of reference, with
an aim to avoid metric camera calibration. This innovative approach achieves
comparable results with minimum initialization effort, however it does not allow
the modeling of perspective projection effects at close camera distances. In [21]
the coordinate frame of the real world is manually inserted into reference views,
by specifying image locations of control points. Line intersections on fiducials are
tracked to estimate the motion of the camera. Completely markerless and gen-
eral techniques are presented in [4] and [19], where virtual object registration is
achieved based on the results of a global bundle adjustment and self-calibration,



4 Gordon and Lowe

Fig. 2. SIFT keypoints extracted from a 640×480 image of a sneaker. The algorithm
found 1533 features shown as white arrows, with size and direction corresponding to
feature scale and orientation, respectively.

leading to metric camera motion and scene structure recovery. Both of these
methods perform offline batch processing of the entire video sequence, with no
support for online scene recognition or tracking.

3 Learning scene geometry

The preliminary stage of the system takes as input an unordered set of images
of the real world scene or object to modeled. The images are acquired from un-
known, spatially separated viewpoints by a handheld camera, which does not
need to be pre-calibrated. At least two snapshots are required; using more al-
lows the capture of more scene features and thus enables a wider-range and
more reliable tracking. In our experiments, we have used 5 to 20 images which
were gathered from up to a full 360◦ range of viewpoints, separated by at most
about 45◦. The scene is assumed to be mostly rigid, with no special markers or
known structures present. The system uses these input images to build a sparse
3D model of the viewed scene and to simultaneously recover camera poses and
calibration parameters. The virtual object can then be inserted into the modeled
environment. The problem is divided into the following steps:

1. Local invariant features are extracted from the input images.

2. A robust wide baseline matching technique is applied to find two-view feature
correspondences, leading to the construction of multi-view matches.

3. A subset of multi-view matches is chosen as an input to an iterative algorithm
for structure and motion recovery.

4. The remaining matches are triangulated using computed camera parameters,
and outliers are removed.

5. The position, orientation and size of the virtual object are defined relative
to the coordinate frame of the recovered model.



Lecture Notes in Computer Science 5

3.1 Feature extraction and matching

We extract SIFT features [14, 15] from each input image for matching. The main
attractions of SIFT features are their distinctiveness, invariance, and efficiency,
resulting in a high probability of correct matches across a wide range of image
variations. In addition, large numbers of these features can be found in a typical
image (see Figure 2), making them suitable for recognition and tracking in the
presence of occlusions, and generally increasing the robustness of recognition.

The best candidate match for a SIFT feature is its nearest neighbour, defined
as the feature with the minimum Euclidean distance between descriptor vectors.
The reliability of the nearest neighbour match can be tested by comparing its
Euclidean distance to that of the second nearest neighbour from that image.
If these distances are too similar, the nearest neighbour match is discarded as
unreliable. This simple method works well in practice, since incorrect matches
are much more likely to have close neighbours with similar distances than correct
ones, due in part to the high dimensionality of the feature space.

The large numbers of features generated from images, as well as the high
dimensionality of their descriptors, make an exhaustive search for closest matches
extremely inefficient. Therefore we employ an approximate Best-Bin-First (BBF)
algorithm, based on a k-d tree search [2]. A k-d tree is constructed from all
SIFT features which have been extracted from the reference images. The search
examines tree leaves, each containing a feature, in the order of their closest
distance from the current query location. Search order is determined with a
heap-based priority queue. An approximate answer is returned after examining
a predetermined number of nearest leaves. This technique finds the closest match
with a high probability, and enables feature matching to run in real time.

For each feature in a reference image, the BBF search finds its nearest and
second nearest neighbour pair in each of the remaining images. Putative two-view
matches are then selected based on the nearest-to-second-nearest distance ratio
(with the threshold value of 0.8). We improve this set of matches by applying
an epipolar geometry constraint to remove remaining outliers. For each selected
image pair, this constraint can be expressed as

xT
i Fijxj = 0 (1)

where xi = [ui vi 1]T and xj = [uj vj 1]T are homogeneous image coordinates of
the matched features in images i and j, respectively, and Fij is a fundamental

matrix of rank 2. The computation of F between each pair of N images has
(

N

2

)

complexity, thus quickly becoming prohibitively expensive with increasing N .
Therefore we apply a selective approach, similar to [20], which is linear in the
number of images. Image pairs are selected based on a greedy algorithm, which
constructs a spanning tree on the image set. Starting with the two images that
have the most putative matches, we compute F consistent with the majority of
matches using the RANSAC algorithm [6], discard outliers and join these images
with an edge. This process is repeated for the image pair with the next highest
number of matches, subject to the constraint that joining these images does not



6 Gordon and Lowe

Fig. 3. Building a model of a coffee mug placed on top of a magazine from 20 reference
images. Cameras are shown as wire cones and image features as points: (a) initializa-
tion places all cameras at the same location and all points at the same distance from
the cameras (average reprojection error = 62.5 pixels); (b) results after 10 iterations
(error = 4.2 pixels); (c) results after 20 iterations (error = 1.7 pixels); (d) final results
after 50 iterations (error = 0.2 pixels).

create a cycle. In this manner, the expensive cleanup operation is applied only
to the more promising candidates.

The entire image set is considered processed when the addition of any re-
maining candidate image pair would create a cycle in the tree. At this point
we establish multi-view 2D point correspondences by traversing the tree and
stitching together two-view feature matches. Because the tree structure is free of
cycles, the generation of multi-view matches is straightforward and unambigu-
ous.



Lecture Notes in Computer Science 7

3.2 Motion and structure recovery

Once the multi-view matches have been established, we seek to compute world
coordinates of the corresponding 3D points, calibration parameters and camera
poses for each reference view. Formally, a 2D projection xij = [uij vij 1]T of a
3D point Xj = [xj yj zj 1]T in an image i is expressed as

xij ∼ PiXj (2)

where ∼ denotes equality up to a scale factor, and Pi is a 3 × 4 camera matrix
of the form

Pi = K[Ri ti] (3)

In the above equation, matrix K contains camera calibration parameters, such
as focal length, aspect ratio and principal point coordinates; Ri and ti are the
rotation and translation of the world frame relative to the camera frame for
image i.

A classical approach to this problem begins with an algebraic initialization of
projective structure and motion, using two- or three-view epipolar constraints.
This is followed by an upgrade to a metric framework with self-calibration tech-
niques, as well as a solution refinement via an iterative bundle adjustment op-
timization [10]. We employ an alternative technique suggested by Szeliski and
Kang [22], which omits the linear initialization step and solves for all of the un-
known parameters iteratively, using a general-purpose optimization algorithm,
such as Levenberg-Marquardt [17]. The problem is formulated as the minimiza-
tion of the reprojection errors over all camera parameters and world point coor-
dinates, given image projections of the world points:

min
aij

∑

i

∑

j

‖wj(Π(aij ) − xij)‖
2 (4)

where Π is the non-linear projection function and the vector aij = [XT
j pT

i cT ]T

contains the unknown parameters: 3D coordinates Xj of a world point j, camera
pose parameters pi for an image i, and global calibration parameters c (or ci, in
case of varying calibration parameters). After 15 iterations to establish an initial
solution estimate, the confidence weight wj associated with Xj is lowered for
world points with high reprojection errors using the Huber norm, thus reducing
the contribution of outliers to the final solution.

To initialize the algorithm, we back-project the 2D points from an arbitrary
view to an xy-plane of the world frame, place all cameras at the same default
distance along the z-axis directly facing the plane, and use default values for the
calibration parameters. It is possible that bundle adjustment will converge to
a false local minimum due to depth reversal (as illustrated in the Necker cube
illusion). As suggested by [22], this can be avoided by reflecting the depth of
the first model solution about the xy-plane, restarting the bundle adjustment,
and selecting the solution with the best final reprojection error. This simple
initialization allows us to achieve proper convergence with the cameras as far as



8 Gordon and Lowe

Fig. 4. The placement of the virtual frame origin V in 3D is achieved by anchoring its
projection vi in image i and adjusting its projection vj in image j along the epipolar
line Li.

90◦ apart, in a few dozen iterations. Figure 3 shows the sequence of convergence
for even a large set of 20 images of a typical scene, although in practice, for
efficiency, we only start with 5 images and then add others incrementally.

To reduce problem size, as an input to the Levenberg-Marquardt algorithm
we select a limited number (at most 100) of the points with the most corre-
spondences. Coordinates of the remaining points can be easily computed using
standard triangulation techniques [10], once the camera parameters have been
recovered. Lastly, we remove any model point outliers with large reprojection
errors. The latter are usually a result of infrequent feature mismatches which
have survived the epipolar constraint test.

3.3 Virtual object placement

For augmented reality, the insertion of the virtual object into the real world
is achieved by adjusting its projection in the reference images until it appears
correctly rendered. First, the 3D coordinates of the virtual frame origin V are
established via triangulation, as follows. The projection of V is specified in one
of the reference images with a click of a mouse button (the virtual frame is “an-
chored” in 2D). Afterwards, the relative depth of V is adjusted by switching to
a different view and moving the corresponding projection of V along an epipolar
line imposed by the anchoring view. This is equivalent to moving V along a line
connecting the camera centre and the projection of V in the anchoring image
(see Figure 4).

Next, the user is able to fine-tune the position, orientation and size of the
virtual object in variable-size increments. Figure 5 shows an example of the
virtual frame insertion and pose adjustment. The virtual object is rendered onto
the reference images using previously recovered camera parameters. At any time
the user can switch between the images to view the corresponding projection



Lecture Notes in Computer Science 9

Fig. 5. Insertion of the virtual frame into a desk scene: a) initial placement into one
of the reference images by specifying the desired location of the frame’s origin; b) the
frame’s trajectory along the epipolar line in another image; c) subsequent orientation
adjustment.

of the virtual contents. Note that the geometric relationships between the real
world, its virtual contents and the cameras are defined in the same generic units,
so that there is no need to recover the absolute scale of the real world model. If
a metric object scale is required, this parameter can be provided by user input
of a single known dimension or by presence of a calibrated object in one of the
views.

4 Model recognition and camera tracking

The online computations of the system are summarized in the following steps:

1. SIFT features are extracted from the current frame of the video sequence.

2. The new features are matched to the image features of the world model using
the BBF algorithm, resulting in a set of 2D-to-3D correspondences.

3. The correspondences are used to compute the current camera pose, via a
robust approach which combines RANSAC and Levenberg-Marquardt algo-
rithms.

To initialize the tracker, a k-d tree is constructed from the image features
of the world model. Each image feature is a 2D projection with links to its 3D
world coordinates, a reference image in which it was found and the corresponding
recovered camera pose. During tracking, this structure is used to efficiently detect
model point projections in each new frame. A nearest and a second nearest
neighbour pair is found for each feature from the current frame via a BBF search,
with the two neighbours belonging to different model points. As in Section 3.1,
the reliability of the best match is tested by comparing its Euclidean distance
to that of the second best match.

Tracking failure is assumed if the number of reliable best matches falls below
a predefined threshold (set to 15 in our experiments, although a much lower
threshold could be used with more careful verification). This occurs when all
or most of the model disappears out of sight, or the frame contains too much



10 Gordon and Lowe

motion blur. In such cases the rendering of virtual contents is postponed until
enough model points are detected.

Given a set of putative 2D-to-3D matches (xtj ,Xj) for the frame t, we can
compute the corresponding camera pose parameters by minimizing the residual
sum:

min
pt

∑

j

‖wtj(Π(atj) − xtj)‖
2 (5)

where the weight wtj describes the confidence in the measurement xtj and is set
to the reciprocal of its estimated standard deviation in the image. Since SIFT
features with larger scales are computed from more blurred versions of the image,
they have lower location accuracy. Therefore, we set wtj inversely proportional
to the scale of each feature. This time the camera pose parameters pt are the
only unknowns in the vector atj (assuming unchanging calibration parameters).
We initialize pt to pt−1, computed for the previous frame. For the first frame
of the video sequence or the one immediately after tracking failure, as an initial
guess we use the camera pose of the reference image contributing the most 2D
feature matches from the BBF search.

We apply RANSAC to compute the camera pose consistent with the most
matches. The minimization given by (5) is performed for each RANSAC sam-
ple, and the final solution is computed using all of the inliers as input. Despite
its iterative nature, this approach has proven to be sufficiently fast for online
use. The small number of unknown parameters results in a rapid execution of
Levenberg-Marquardt iterations. Very few RANSAC samples are needed, since
the non-linear computation of 6 elements of pt, corresponding to the 6 degrees-
of-freedom of the camera pose, requires the minimum of only 3 matches. Fur-
thermore, the input set of matches usually contains a very small fraction of
outliers due to the fact that ambiguous matches have already been removed by
the distance ratio check.

4.1 Jitter reduction

The solution to (5) provides a reasonable estimate of the camera pose, yet typ-
ically leads to a “jitter” of the virtual projection in the video sequence, partic-
ularly noticeable when the camera is fully or nearly stationary. This inaccuracy
can be a result of image noise, as well as too few or unevenly distributed feature
matches. In addition, the surface of the error function may be flat near its mini-
mum, as it may be difficult to distinguish between slight changes in rotation and
translation parameters for near-planar objects.

To stabilize the solution, we modify (5) by adding a regularization term which
favours minimum camera motion between consecutive video frames:

min
pt

∑

j

‖wtj(Π(atj) − xtj)‖
2 + α2‖W (pt − pt−1)‖

2 (6)

where W is a 6 × 6 diagonal matrix of prior weights on the camera pose pa-
rameters, and α is a scalar which controls the tradeoff between the current



Lecture Notes in Computer Science 11

feature extraction (SIFT algorithm) 150 ms

feature matching (BBF algorithm) 40 ms

camera pose computation 25 ms

frames per second 4

Fig. 6. Average computation times for a video sequence with 640 × 480 frame size.
The real world model contains about 5000 3D points.

Fig. 7. Examples of tracking within a complex scene: a) a virtual teapot is placed in
the modeled desk scene; b) the scene does not have to be fully static; c,d) recognition
is robust to changes in lighting and viewpoint; e) moderate amounts of motion blur
are acceptable; f) a partial view of the scene is correctly recognized.

measurements and the stable solution. Each diagonal entry of W is set to the
inverse of the standard deviation of the corresponding parameter, reflecting the
relative range of expected frame-to-frame change in the camera pose (e.g., a few
degrees for a change in rotation).

Instead of adopting the usual approach of setting α to a constant value, we
adjust it separately for each video frame. We would like high levels of smoothing
for slow motions while avoiding over-smoothing of large camera motions which
would result in a virtual object “drifting” behind a faster moving scene. The
amount of smoothing is determined by controlling its contribution to the total
reprojection error: the contribution is required to be no higher than that of the
image feature noise. This can be expressed by the inequality

α2‖W (pt − pt−1)‖
2 ≤ σ2N (7)

where N is the number of matching image points, pt is the final new camera
solution, and σ is the estimated uncertainty of an image measurement (e.g., 0.5



12 Gordon and Lowe

Fig. 8. The augmentation of the entrance to the university library with a new sign.

Fig. 9. A virtual robotic dog in the modeled corner of the lab room. Successful results
were achieved with people freely moving around the room.

pixels). It follows that the maximum allowable amount of smoothing is

α2 =
σ2N

‖W (pt − pt−1)‖2
(8)

Because pt is unknown, α cannot be computed in advance; instead, it is gradually
adjusted during LM iterations, as follows.

At first, pt is computed using α = 0. Once a local minimum has been reached,
the search explores its immediate neighbourhood, looking for a regularized solu-
tion. This is done by executing a few additional LM iterations, this time solving
(6) with α recomputed at each iteration as per (8), using the most recent esti-
mate of pt to approximate pt. The search for a regularized solution terminates
when pt−pt−1 becomes very small (which would occur for a camera that appears
stationary within measurement noise) or no longer changes significantly.

Intuitively, as much smoothing as possible is applied while still trying to agree
with the measured data, within the bounds of its uncertainty. As a result, larger
values of α are used for slower frame-to-frame motions, significantly reducing
jitter, while fast and abrupt camera motions are handled without drift. This
method has worked very well in practice to almost eliminate perceived jitter, and
experiments described below show that it leads to a large reduction in measured
jitter (Figure 11).



Lecture Notes in Computer Science 13

Fig. 10. ARToolkit marker in the scene (left). Virtual square, superimposed onto the
marker during tracking (right).

Fig. 11. Stationary camera results for 300 frames. Jitter of the virtual square is signif-
icantly reduced by camera pose regularization.

5 Experiments

The system prototype has been implemented in C using OpenGL and GLUT
libraries, on an IBM ThinkPad with a Pentium 4-M processor (1.8 GHz) and a
Logitech QuickCam Pro 4000 video camera. An example of current computation
times for the tracker is given in Figure 6. Current speed of recognition and
tracking is about 4 frames/sec.

To demonstrate the capabilities of the system, we have tested its performance
on a variety of scenes and tracking scenarios. Some of the augmented video frames
are shown in Figures 7 through 9. Video examples are available on the authors’
web pages.

In order to test the accuracy of registration, we aligned a virtual square with
an ARToolKit marker [1], which was present in a modeled scene (Figure 10).

While tracking the scene, the corners of the marker were detected using the
ARToolKit library, and their image coordinates were used as the ground truth
for the registration of the virtual square. Figures 11 and 12 compare the results
for one of the corners.



14 Gordon and Lowe

Fig. 12. Moving camera results for 300 frames (top) and the first 30 frames (bottom).
The trajectories of the real and virtual corners are in close correspondence, with varying
camera motion handled without noticeable drift.

6 Conclusions and future work

In this chapter we presented an approach to augmented reality that performs
registration of virtual objects into a live video sequence using local image fea-
tures. The system consists of two parts. The offline part involves recovery of
metric scene structure and camera parameters from a set of reference images.
The online part performs camera pose tracking and virtual object registration
using models resulting from the offline processing. Some of the novel aspects of
this work include a simple approach to initializing bundle adjustment, an effi-
cient incremental method for 3D structure recovery that starts with subsets of
images and features, and a successful method for jitter reduction.

Our system has been able to achieve successful modeling and recognition
of scenes of varying size and complexity, from handheld objects to buildings
(Figures 7 through 9). The next step in performance testing will focus on the
system scalability for operation in large environments, such as a campus or a
museum. A potential enhancement involves modeling many buildings, rooms or
objects, and providing database management to switch between models as the
user travels around his or her surroundings.



Lecture Notes in Computer Science 15

Acknowledgements

We would like to gratefully acknowledge the financial support of the Natural Sci-
ences and Engineering Research Council of Canada (NSERC) and the Institute
for Robotics and Intelligent Systems (IRIS).

References

1. ARToolKit: http://www.hitl.washington.edu/artoolkit/.
2. Jeffrey S. Beis and David G. Lowe. Shape indexing using approximate nearest-

neighbour search in high-dimensional spaces. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 1000–1006, 1997.

3. Kar Wee Chia, Adrian David Cheok, and Simon J.D. Prince. Online 6 DOF aug-
mented reality registration from natural features. In Proceedings of the Interna-
tional Symposium on Mixed and Augmented Reality, pages 305–313, 2002.

4. Kurt Cornelis, Marc Pollefeys, Maarten Vergauwen, and Luc Van Gool. Augmented
reality using uncalibrated video sequences. Lecture Notes in Computer Science,
2018:144–160, 2001.

5. V. Ferrari, T. Tuytelaars, and L. Van Gool. Markerless augmented reality with a
real-time affine region tracker. In Proceedings of the IEEE and ACM International
Symposium on Augmented Reality, pages 87–96, 2001.

6. M. Fischler and R. Bolles. RANdom SAmple Consensus: a paradigm for model
fitting with application to image analysis and automated cartography. Communi-
cations of the Association for Computing Machinery, 24(6):381–395, 1981.

7. Y. Genc, S. Riedel, F. Souvannavong, C. Akinlar, and N. Navab. Marker-less track-
ing for AR: A learning-based approach. In Proceedings of the International Sym-
posium on Mixed and Augmented Reality, pages 295–304, 2002.

8. Iryna Gordon and David G. Lowe, Scene modeling, recognition and tracking with
invariant image features. International Symposium on Mixed and Augmented Re-
ality (ISMAR), Arlington, VA, pages 110–119, 2004.

9. C.J. Harris and M. Stephens. A combined corner and edge detector. In Proceedings
of the 4th Alvey Vision Conference, pages 147–151, 1988.

10. R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cam-
bridge University Press, 2000.

11. Georg Klein and Tom Drummond. Robust visual tracking for non-instrumented
augmented reality. In Proceedings of the 2nd IEEE and ACM International Sym-
posium on Mixed and Augmented Reality, pages 113–122, 2003.

12. Kiriakos N. Kutulakos and James R. Vallino. Calibration-free augmented reality.
IEEE Transactions on Visualization and Computer Graphics, 4(1):1–20, 1998.

13. Vincent Lepetit, Luca Vacchetti, Daniel Thalmann, and Pascal Fua. Fully auto-
mated and stable registration for augmented reality applications. In Proceedings
of the 2nd IEEE and ACM International Symposium on Mixed and Augmented
Reality, pages 93–102, 2003.

14. David G. Lowe. Object recognition from local scale-invariant features. International
Conference on Computer Vision, pages 1150–1157, 1999.

15. David G. Lowe. Distinctive image features from scale-invariant keypoints. Inter-
national Journal of Computer Vision, 60(2): 91-110, 2004.

16. B.D. Lucas and T. Kanade. An iterative image registration technique with an
application to stereo vision. In Proceedings of the International Joint Conference
on Artificial Intelligence, pages 674–679, 1981.



16 Gordon and Lowe

17. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical
Recipes in C: The Art of Scientific Computing. Cambridge University Press, 1992.

18. Fred Rothganger, Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. 3D Object
Modeling and Recognition Using Affine-Invariant Patches and Multi-View Spa-
tial Constraints. IEEE Conference on Computer Vision and Pattern Recognition,
Madison, WI, pages 272-277, 2003.

19. Harpreet S. Sawhney, Y. Guo, J. Asmuth, and Rakesh Kumar. Multi-view 3D
estimation and applications to match move. In Proceedings of the IEEE Workshop
on Multi-View Modeling and Analysis of Visual Scenes, pages 21–28, 1999.

20. F. Schaffalitzky and A. Zisserman. Multi-view matching for unordered image sets,
or ”How do I organize my holiday snaps?”. In Proceedings of the 7th European
Conference on Computer Vision, pages 414–431, 2002.

21. Yongduek Seo and Ki Sang Hong. Calibration-free augmented reality in perspec-
tive. IEEE Transactions on Visualization and Computer Graphics, 6(4), pages 346–
359, 2000.

22. Richard Szeliski and Sing Bing Kang. Recovering 3D shape and motion from image
streams using nonlinear least squares. Journal of Visual Communication and Image
Representation, 5(1), pages 10–28, 1994

23. Annie Yao and Andrew Calway. Robust estimation of 3-D camera motion for uncal-
ibrated augmented reality. Technical Report CSTR-02-001, Department of Com-
puter Science, University of Bristol, March 2002.


