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Abstract

This paper presents a system for fully automatic recog-
nition and reconstruction of 3D objects in image databases.
We pose the object recognition problem as one of finding
consistent matches between all images, subject to the con-
straint that the images were taken from a perspective cam-
era. We assume that the objects or scenes are rigid. For
each image we associate a camera matrix, which is param-
eterised by rotation, translation and focal length. We use
invariant local features to find matches between all images,
and the RANSAC algorithm to find those that are consis-
tent with the fundamental matrix. Objects are recognised as
subsets of matching images. We then solve for the structure
and motion of each object, using a sparse bundle adjust-
ment algorithm. Our results demonstrate that it is possible
to recognise and reconstruct 3D objects from an unordered
image database with no user input at all.

1 Introduction

Object recognition and structure and motion recovery are
two long standing problems in computer vision. The struc-
ture and motion (SAM) problem has reached a degree of
maturity, with several commercial offerings [1, 2], in addi-
tion to an extensive research literature [17, 8, 13]. Object
recognition is also well studied but remains an extremely
active research area, with recent advances in image features
and probabilistic modelling inspiring previously unexplored
areas such as object class recognition [7]. Invariant local
features have emerged as an invaluable tool in tackling the
ubiquitous image correspondence problem. By using de-
scriptors that are invariant not just to translation, but also to
rotation [16], scale [9] and affine warping [3, 12, 11], in-
variant features provide much more robust matching than
previous correlation based methods.

Until recently, the majority of object recognition algo-
rithms have depended upon some form of training phase
[9, 18]. However, algorithms have been developed recently
that operate in an unsupervised manner on an image dataset.

Such algorithms look for structure in the data, using, for
example, a probabilistic ‘constellation model’ [7] or geo-
metric constraints arising from the image formation process
[5, 15, 14]. Our work is in the spirit of the latter. We operate
in an unsupervised setting on an unordered image dataset,
and pose the object recognition problem as one of finding
matches that are consistent views of some 3D scene.

The remainder of this paper is structured as follows. In
section 2 we describe our invariant feature extraction and
matching scheme. Section 3 describes the geometric con-
straints used to find correct image matches. Section 4 de-
scribes the sparse bundle adjustment algorithm used to solve
jointly for the cameras and structure. Section 5 demon-
strates results of object recognition and reconstruction on
a test dataset, and section 6 presents conclusions and ideas
for future work.

2 Feature Matching

The features we use are SIFT (Scale Invariant Feature
Transform) features [10]. These locate interest points at
maxima/minima of a difference of Gaussian function in
scale-space. Each interest point has an associated orienta-
tion, which is the peak of a histogram of local orientations.
This gives a similarity invariant frame in which a descriptor
vector is sampled. Though a simple pixel resampling would
be similarity invariant, the descriptor vector actually con-
sists of spatially accumulated gradient measurements. This
spatial accumulation is important for shift invariance, since
the interest point locations are typically accurate in the 1-3
pixel range [6]. Illumination invariance is achieved by us-
ing gradients (which eliminates bias) and normalising the
descriptor vector (which eliminates gain).

Once features have been extracted from all n images
(linear time), they must be matched. Since multiple im-
ages may view the same point in the world, each feature is
matched to k nearest neighbours (typically k = 4). This
can be done in O(n log n) time by using a k-d tree to find
approximate nearest neighbours [4].



2.1 Feature Space Outlier Rejection

We perform feature space outlier rejection to remove in-
correct matches. It has been found that comparing the dis-
tance of a potential match to the distance of the best in-
correct match is an effective strategy for outlier rejection
[10, 6]. Suppose that the number of images that over-
lap a given point in the world is noverlap. In an ordered
list of nearest-neighbour matches, we assume that the first
noverlap − 1 elements are potentially correct, but that the
noverlap element is an incorrect match. We denote the
match distance of the noverlap element as eoutlier, as it is
the best matching outlier. In order to verify a match, we
compare the match distance of a potential correct match
ematch to the outlier distance, accepting the match if

ematch < 0.8× eoutlier

Typically we use a value noverlap = 5.

3 Image Matching

During this stage, the objective is to find all matching
images, that is, those that view a common subset of 3D
points. Connected sets of image matches will later become
3D models.

From the feature matching step, we have identified im-
ages with a large number of matches between them. Since
each image could potentially match every other one, this
problem appears at first to be quadratic in the number of im-
ages. However, we have found it necessary to match each
image only to a small number of neighbouring images in
order to get good solutions for the camera positions. We
consider a constant number m images, that have the great-
est number of (unconstrained) feature matches to the current
image, as potential image matches (we use m = 6).

We parameterize each camera using 7 parameters. These
are a rotation vector Θi =

[
θi1 θi2 θi3

]
, translation

ti =
[
ti1 ti2 ti3

]
and focal length fi. The calibration

matrix is then

Ki =

fi 0 0
0 fi 0
0 0 1


and the rotation matrix (using exponential representation)

Ri = e[θi]×, [θi]× =

 0 −θi3 θi2

θi3 0 −θi1

−θi2 θi1 0


Each pairwise image match adds four constraints on the

camera parameters whilst adding three unknown structure
parameters X =

[
X1 X2 X3

]

ũi = KiXci

ũj = KjXcj

Xci = RiX + ti

Xcj = RjX + tj

where ũi, ũj are the homogeneous image positions in cam-
era i and j respectively.

The single remaining constraint (4 equations minus 3 un-
knowns = 1 constraint) expresses the fact that the two cam-
era rays p̃i, p̃j and the translation vector between camera
centres tij are coplanar, and hence their scalar triple prod-
uct is equal to zero

p̃T
i [tij ]×p̃j = 0 (1)

Writing p̃i, p̃j and tij in terms of camera parameters

p̃i = RT
i K−1

i ũi

p̃j = RT
j K−1

j ũj

tij = RT
j tj −RT

i ti

and substituting in equation 1 gives

ũT
i Fijũj = 0 (2)

where

Fij = K−T
i Ri[RT

j tj −RT
i ti]×RT

j K−1
j

This is the well known epipolar constraint. Image matching
entails robust estimation of the fundamental matrix Fij .
Since equation 2 is non-linear in the camera parameters, it
is commonplace to relax the non-linear constraints and esti-
mate a general 3×3 matrix Fij . This enables a closed form
solution via SVD.

We use RANSAC to robustly estimate F and hence find
a set of inliers that have consistent epipolar geometry. An
image match is declared if the number of RANSAC inliers
ninliers > nmatch, where the minimum number of matches
nmatch is a constant (typically around 20). Future work will
add a more principled probabilistic model for image match
verification. 3D objects/scenes are identified as connected
components of image matches.

4 Bundle Adjustment

Given a set of geometrically consistent matches, we use
bundle adjustment to solve for the camera and structure pa-
rameters jointly. In contrast to other approaches [8, 13] that
begin with a projective reconstruction and later refine to a



(a) Image 1 (b) Image 2

(c) SIFT features 1 (d) SIFT features 2

(e) Epipolar geometry 1 (f) Epipolar geometry 2

(g) RANSAC inliers 1 (h) RANSAC inliers 2

Figure 1. Finding sets of consistent matches using SIFT and RANSAC. SIFT features are extracted
from all input images, and each feature is matched to k = 4 nearest neighbours. Outliers are first
rejected by thresholding against the distance of an incorrect match (section (2.1)), before RANSAC is
used to find a final set of inliers that are consistent with the fundamental matrix. For this pair of 1024
× 768 input images, there were 365 SIFT features in image 1 and 379 in image 2. Of the initial feature
matches, 133 matches remained after feature space outlier rejection, and there were 103 matches in
the final solution after using RANSAC.



metric reconstruction, we solve directly for the metric struc-
ture and camera parameters. The cameras are added one by
one, starting with the best matching pair. We have found
that initialising each new camera with the rotation, trans-
lation and focal length of the best matching image works
well, even if the images have different rotation and scale
(see example in figure 2). To cope with Necker reversal, we
first run bundle adjustment on the initial image pair, noting
the final value of the error function (section 4.1). We then
swap the camera positions, and flip the 3D point depths, be-
fore repeating bundle adjustment. This normally converges
to a different local minimum. We retain the solution that
minimises the error function.

4.1 Sparse Bundle Adjustment

Each connected component of feature matches defines a
3D point Xj , and our error function is the sum squared error
between the projected 3D point and the measured feature
position

e =
∑
iεI

∑
jεX (i)

f(rij)2 (3)

where I is the set of all images, X (i) is the set of 3D points
projecting to image i, and rij is the residual error in image
i for 3D point j. The residual rij is the difference between
the measured feature position and projected 3D point

rij = mij − uij

where mij is the measured feature position, and uij is the
projection of point Xj in image i

ũij = Ki(RiXj + ti)

We use a robust error function f(x) =
√

g(x) where g(x)
is the Huber robust error function

g(x) =

{
|x|2, if |x| < σ

2σ|x| − σ2, if |x| ≥ σ

The outlier distance σ is set at 3 standard deviations of the
current (un-normalised) residual error. This error function
combines the fast convergence properties of an L2 norm
optimisation scheme for inliers (distance less than σ), with
the robustness of an L1 norm scheme for outliers (distance
greater than σ).

We use the Levenberg-Marquardt algorithm to solve this
non-linear least squares problem. Each iteration step is of
the form

Φ = (JT J + σ2C−1
p )−1JT r (4)

where Φ = [Θ,X] is the vector of camera (Θ) and struc-
ture (X) parameters, r is the vector of residuals and J =

∂r/∂Φ. The jacobean J is an M × N matrix, where M
is the number of measurements (twice the number of fea-
tures), and N = nΘ + nX is the number of camera (nΘ)
and structure (nX ) parameters (7 for each camera plus 3 for
each 3D point). The prior covariance matrix Cp is set such
that the standard deviation of angles is σθ = π/16, transla-
tions σt = 0.01, focal lengths σf = f̄/100 and 3D points
σX = 0.1. Although one could in principle solve equation
4 directly, to do so would ignore the sparse structure of the
problem, and be very inefficient.

Firstly, the matrix J is mostly zeros (since the derivatives
of residuals for image i are zero except with respect to the
parameters of image i), so the elements of JT J should be
computed directly, instead of computing J first. Examining
the structure of JT J

JT J =

 ∂r
∂Θ

T ∂r
∂Θ

∂r
∂Θ

T ∂r
∂X

∂r
∂X

T ∂r
∂Θ

∂r
∂X

T ∂r
∂X

 =

 C−1
Θ C−1

ΘX

C−T
ΘX C−1

X


where the camera parameter inverse covariance matrix

C−1
Θ =


∑

j
∂r1j

∂Θ1

T∂r1j

∂Θ1
0 . . .

0
∑

j
∂r2j

∂Θ2

T∂r2j

∂Θ2
. . .

...
...

. . .


is block diagonal, consisting of 7× 7 blocks, and the struc-
ture parameter inverse covariance matrix

C−1
X =


∑

i
∂ri1
∂X1

T∂ri1
∂X1

0 . . .

0
∑

i
∂ri2
∂X2

T∂ri2
∂X2

. . .
...

...
. . .


is also block diagonal, consisting of 3×3 blocks. The cam-
era/structure cross covariance is a full matrix

C−1
ΘX =


∂r11
∂Θ1

T ∂r11
∂X1

∂r12
∂Θ1

T ∂r12
∂X2

. . .
∂r21
∂Θ2

T ∂r21
∂X1

∂r22
∂Θ2

T ∂r22
∂X2

. . .
...

...
. . .


but consists of a single multiplication for each element (the
covariance between image i and point j depends only on the
residual of point j in image i). Computing JT J by explicit
multiplication of J would take O(MN2) operations. How-
ever, JT J can in fact be computed in O(nΘnX) operations
(the cost of computing C−1

ΘX).
Secondly, the matrix inversion involving JT J need not

be computed explicitly (O(N3)) due to the sparse structure



of JT J. This sparseness reflects the loose coupling inbe-
tween cameras, and inbetween 3D points, in the error func-
tion of equation 3. The cameras are independent given the
3D structure parameters, and the 3D points are independent
given the cameras. Equation 4 may be rewritten[

A B
BT C

] [
Θ
X

]
=

[
eΘ

eX

]
(5)

where

A = C−1
Θ + σ2Cp

−1
Θ

C = C−1
X + σ2Cp

−1
X

B = C−1
ΘX

eΘ =
∂r
∂Θ

T

r

eX =
∂r
∂X

T

r

and

C−1
p =

[
Cp

−1
Θ 0

0 Cp
−1
X

]
Multiplying both sides of equation 5 by

[
I −BC−1

0 I

]
gives[

A−BC−1BT 0
BT C

] [
Θ
X

]
=

[
eΘ −BC−1eX

eX

]
which eliminates X from the solution for Θ.

This gives an nΘ × nΘ linear system to solve for the
camera parameters Θ. The resulting value of Θ can be sub-
stituted into the linear system for X, which reduces to inde-
pendent 3 × 3 linear systems for each 3D point. The most
expensive stage in this process is (potentially) in compu-
tation of the left-hand side elimination product BC−1BT .
The ijth element is given by

(BC−1BT )ij =
∑

k

BikCkkBkj

where Bij = ∂rij

∂Θi

T ∂rij

∂Xj
is a 7×3 matrix (number of param-

eters per camera× number of parameters per 3D point) and
Ckk =

∑
i

∂rik

∂Xk

T ∂rik

∂Xk
is a 3 × 3 matrix. This summation

may involve in the worst case M terms (if every 3D point is
imaged in every camera). Hence the worst case complexity
of sparse bundle adjustment is O(Mn2

Θ). Note that this is
still much cheaper than it would be were C not block di-
agonal. If C were a general nX × nX matrix the cost of
this elimination step would be O(n3

X). However, the cost
of bundle adjustment is usually much less than O(Mn2

Θ).
This is because the terms Bij are zero unless point j is
viewed in camera i. This means that each summation above

involves only a constant number of 3D points for each cam-
era. In this case, the complexity of sparse bundle adjustment
is O(mn2

Θ), where m is the number of residuals in each im-
age. The best case complexity (given small m) is O(n3

Θ),
which is the cost of solving the linear system for the camera
parameters.

Hence the total computational cost for one step of
sparse bundle adjustment is now O(mn2

Θ), reduced from
O(MN2) for naive solution of the normal equations. Note
that nΘ � N since the number of camera parameters nΘ is
very much less than the number of structure parameters nX

(N = nΘ+nX ). This is a very significant reduction in prac-
tice. For example, with 10 cameras (nΘ = 70), and 1000
3D points (nX = 3000), sparse bundle adjustment would
be about (N/nΘ)2 = (3070/70)2 ≈ 2000 times faster than
naive bundle adjustment. Furthermore, if a constant number
of 3D points are imaged by each camera, the cost would be
further reduced.

4.2 Analytical Computation of Derivatives

Derivatives are computed analytically via the chain rule,
for example

∂uij

∂θi1

=
∂uij

∂ũij

∂ũij

∂θi1

where

∂uij

∂ũij
=

∂
[
x/z y/z

]
∂

[
x y z

] =
[
1/z 0 −x/z2

0 1/z −y/z2

]
and

∂ũij

∂θi1

= Ki
∂Ri

∂θi1

Xj

∂Ri

∂θi1

=
∂

∂θi1

e[θi]× = e[θi]×

0 0 0
0 0 −1
0 1 0



5 Results

Figure 2 shows typical operation of the object recogni-
tion algorithm. A set of images containing 2 objects and
6 distractor images was input. The algorithm detected 2
connected components of image matches and 6 unmatched
images, and output the 2 reconstructed 3D models. The
complete algorithm ran in 556 seconds on a 2.8GHz PC.
About half of the computation time was spent in bundle ad-
justment. Another example of fully automatic structure and
motion estimation is given in figure 3.



(a) Input images

(b) Output 3D model 1 - Tiger

(c) Output 3D model 2 - Rosegarden

Figure 2. Fully automatic object recognition and 3D reconstruction. Note that despite the incorrect
ordering, rotation and scale changes, and distractor images in the input, the system is able to suc-
cessfully recognise the two consistent objects and perform 3D reconstruction. The Tiger sequence
consisted of 13 images and yielded a 3D model with 675 points. The Rosegarden sequence consisted
of 11 images and the 3D model contained 1351 points. The whole process of feature matching, im-
age matching and bundle adjustment took a total of 556 seconds, of which 230 seconds were spent
during bundle adjustment. The tests were run using a MATLAB implementation on a 2.8GHz Pentium
processor.



(a) Input images

(b) Output 3D model

Figure 3. Fully automatic Structure and Motion (SAM) estimation for a 3 × 3 array of cameras. In this
example the input images were 800 × 600, and a 3D model of 1684 points was computed. The total
computation time for feature extraction and matching, image matching and bundle adjustment was
293 seconds.



Algorithm: 3D Object Recognition/Reconstruction

Input: n unordered images

I. Extract SIFT features from all n images

II. Find k nearest-neighbours for each feature using a k-d
tree

III. For each image:
(i) Select m candidate matching images (with the

maximum number of feature matches to this im-
age)

(ii) Find geometrically consistent feature matches
using RANSAC to solve for the fundamental ma-
trix between pairs of images

(iii) (Future work) Verify image matches using prob-
abilistic model

IV. Find connected components of image matches

V. For each connected component:
(i) Perform sparse bundle adjustment to solve for the

rotation θ1, θ2, θ3, translation t1, t2, t3 and focal
length f of all cameras, and pointwise 3D geom-
etry

(ii) (Future Work) Compute dense depth estimates,
triangulate, texture map etc.

Output: 3D model(s)

6 Conclusions

We have presented a fully automatic 3D object recog-
nition and reconstruction system. Our system starts by
extracting SIFT features from a collection of images, and
recognises 3D scenes as geometrically consistent sets of
feature matches. We perform bundle adjustment for metric
structure directly, without the initial projective reconstruc-
tion common to other approaches. We have found that ini-
tialising each new camera with the same parameters as the
best matching camera gives no problems with convergence.

Future work will develop a principled model for veri-
fying correct image matches, and enhance the output 3D
models by using dense depth estimation, triangulation and
texture mapping.
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