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Abstract

This paper approaches the problem of finding correspondences between
images in which there are large changes in viewpoint, scale and illumi-
nation. Recent work has shown that scale-space ‘interest points’ may
be found with good repeatability in spite of such changes. Further-
more, the high entropy of the surrounding image regions means that
local descriptors are highly discriminative for matching. For descrip-
tors at interest points to be robustly matched between images, they
must be as far as possible invariant to the imaging process.

In this work we introduce a family of features which use groups
of interest points to form geometrically invariant descriptors of image
regions. Feature descriptors are formed by resampling the image rel-
ative to canonical frames defined by the points. In addition to robust
matching, a key advantage of this approach is that each match implies
a hypothesis of the local 2D (projective) transformation. This allows
us to immediately reject most of the false matches using a Hough trans-
form. We reject remaining outliers using RANSAC and the epipolar
constraint. Results show that dense feature matching can be achieved
in a few seconds of computation on 1GHz Pentium III machines.

1 Introduction

A widely-used approach for finding corresponding points between images is to de-
tect corners and match them using correlation, using the epipolar geometry as a
consistency constraint [3, 13]. This sort of scheme works well for small motion,
but will fail if there are large scale or viewpoint changes between the images. This
is because the corner detectors used are not scale-invariant, and the correlation
measures are not invariant to viewpoint, scale and illumination change. The first
problem is addressed by scale-space theory, which has proposed feature detec-
tors with automatic scale selection [6]. In particular, scale-space interest point
detectors have been shown to have much greater repeatability than their fixed
scale equivalents [7, 8]. The second problem (inadequacy of correlation) suggests
the need for local descriptors of image regions that are invariant to the imaging
process.



Figure 1: Matching of invariant features between images with a large change in
viewpoint. Each matched feature has been rendered in a different greyscale.

Geometrical invariance can be acheived by assuming that the regions to be
matched are locally planar, and by describing them in a manner which is invariant
under homographies. Many authors use feature descriptors which are invariant
under special cases of this group e.g. similarities or affinities. For example, Schmid
and Mohr [10] use rotationally symmetric Gaussian derivatives to characterise
image regions. Lowe’s SIFT features [7] use a characteristic scale and orientation
at interest points to form similarity invariant descriptors. Baumberg [2] uses the
second moment matrix to form affine invariant features.

Our approach is to use groups of interest points to compute local 2D trans-
formation parameters. By using different numbers of points we can form feature
descriptors which are invariant to any 2D projective transformation (similarity,
affinity or homography). Similar ideas have been proposed by [12], but they have
suffered from the lack of scale-invariant interest point detectors in their implemen-
tation. Groups of interest points which are nearest neighbours in scale-space are
used to calibrate the 2D transformation to a canonical frame [9]. The resampling
of the image region in this canonical frame is geometrically invariant. Partial il-
lumination invariance is achieved by normalising intensity in each of the R, G, B
channels [5].

In addition to enabling robust matching, a key advantage of the invariant
feature approach is that each match represents a hypothesis of the local 2D trans-
formation. This fact enables efficient rejection of outliers using geometric con-
straints. We use broad-bin Hough transform clustering [1] to select matches that
agree (within a large tolerance) upon a global similarity transform. Given a set of



feature matches with relatively few outliers, we compute the fundamental matrix
and use the epipolar constraint to reject remaining outliers.

2 Interest Points in Scale-Space

Our interest points are located at extrema of the Laplacian of the image in scale-
space. This function is chosen for its response at points with 2-dimensional struc-
ture, and for the fact that it can be implemented very efficiently using a Laplacian
Pyramid [4]. In a Laplacian Pyramid, a difference of Gaussians is used to ap-
proximate the Laplacian. Pyramid representations have the advantage that the
minimum number of samples are used to represent the image at each scale, which
greatly speeds up computation in comparison with a fixed resolution scheme.

To find the maxima and minima of the scale-space Laplacian we first select
samples which are extrema of their neighbours ±1 sample spacing in each dimen-
sion. Then, we locate the extrema to sub-pixel / sub-scale accuracy by fitting a
3D quadratic to the scale-space Laplacian
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where x = (x, y, s)T is the scale-space coordinate and L(x) is the approximation
of the Laplacian. The quadratic coefficients are computed by approximating the
derivatives using pixel differences of the already smoothed neighbouring samples.
The sub-pixel / sub-scale interest point location is taken as the extremum of this
3D quadratic
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Locating interest points to sub-pixel / sub-scale accuracy in this way is especially
important at higher levels in the pyramid. This is because the sample spacings
at high levels in the pyramid correspond to large distances relative to the base
image.

3 Invariant Features from Interest Point Groups

Once ‘interesting points’ in the image have been localised, robust matching requires
an invariant description of the image region. One approach is to use information
from the local image region itself. For example, the second moment matrix can
be used to recover affine deformation parameters [2]. Degeneracies can cause
problems for this approach. For example, if the local image region were circularly
symmetric, it would be impossible to extract a rotation parameter.

An alternative approach is to use groups of interest points to recover the 2D
transformation parameters. There are a number of reasons for adopting this ap-
proach. Firstly, improvements in the repeatability of interest points mean that
the probability of finding a group of repeated interest points is sufficiently large.
Secondly, the transformation computation is guaranteed to be non-degenerate.



←− Similarity 4 dof 2 points

←− Affine 6 dof 3 points

←− Homography 8 dof 4 points

Figure 2: 2D transformation invariant features based on interest point groups.
Groups of interest points which are nearest neighbours are formed, and used to
calibrate the 2D transformation to a canoncial frame. The feature descriptor is
the resampling of the image in the canonical frame.
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Figure 3: Extraction of affine invariant features from a pair of images. Groups
of 3 interest points are used to calibrate the affine transformation to a canonical
frame. The image region is then resampled in the canonical frame to form the
feature descriptor.



Figure 4: Finding consistent sets of feature matches. To find inliers to a homog-
raphy we use a Hough transform followed by RANSAC. In this example, the test
image was 640 × 512 pixels. The number of initial matches to consider was 5469,
which was reduced to 279 by broad-bin Hough transform clustering, and further
to 104 matches in the final solution using RANSAC.

Thirdly, and most importantly, since the interest points are very accurately lo-
calised, the 2D transformation estimate is also accurate.

We propose a family of 2D transformation invariant features based on groups
of interest points as follows:

• Find groups of 2 ≤ n ≤ 4 interest points which are nearest neighbours in
scale-space

• Compute the 2 × n parameter 2D transformation to a canonical frame

• Form the feature descriptor by resampling the region local to the interest
points in the canonical frame

This is shown in figure 2. Aliasing is avoided by sampling from an appropriate
level of the already constructed image pyramid. Partial illumination invariance is
acheived by normalising in each of the R, G, B channels.

3.1 Feature Matching

Features are efficiently matched using a k-d tree. A k-d tree is an axis-aligned
binary space partition, which recursively partitions the feature space at the mean
in the dimension with the highest variance. We use 8 × 8 pixels for the canonical
description, each with 3 components corresponding to normalised R, G, B values.
This results in 192 element feature vectors.

4 Finding Consistent Sets of Feature Matches

Our procedure for finding consistent sets of feature matches consists of three parts,
each of which refines the transformation estimate whilst rejecting outliers. First,
we use a Hough transform to find a cluster of features in 2D transformation space.
Next, we use RANSAC to improve the 2D transformation estimate. Finally we
compute the fundamental matrix and use the epipolar geometry to reject addi-
tional outliers.



4.1 Hough Transform Clustering

A useful property of our invariant-feature approach is that each match provides us
with the parameters of a 2D transformation. This can be used to efficiently reject
outliers whose 2D transform estimates are inconsistent. We do this by finding
a cluster (peak) in transformation space. This is known as a generalised Hough
transform.

For similarity transforms, we parameterise the 2D transformation space by
translations (t1, t2), log scale (log s) and rotation (θ). We discretise with bin sizes
that are 1/8 of the image size for translation, one octave for scale, and π/8 radians
for rotation.

4.2 RANSAC Transformation Estimation

We refine the 2D transformation estimate using RANSAC. RANSAC has the ad-
vantage that it is largely insensitive to outliers, but it will fail if the fraction of
outliers is too great. This is why we use Hough transform clustering as a first step.
See figure 4.

If the scene is 3-dimensional, we first select inliers which are loosely consistent
with a 2D transformation using the above methods, using a large error tolerance.
This will hopefully find a dominant plane in the image, with the error tolerance
allowing for parallax due to displacement from the plane. Then, given a set of
points with relatively few outliers, we compute the fundamental matrix. This is
used to find a final set of feature matches which is consistent with the epipolar
geometry (figure 5).

5 Results

We have applied our invariant features to various recognition and registration prob-
lems including object recognition, panorama stitching (rotation estimation) and
3D matching (fundamental matrix estimation). Figure 1 shows successful match-
ing despite a large change in viewpoint. Figure 5 shows the epipolar geometry
computed from invariant feature matches. It can be seen that this epipolar geom-
etry is consistent with the images, which are related by camera translation along
the optical axis. Figure 6 shows results for object recognition. In this example,
we have solved for a homography between the object in the two views. Note the
large scale changes between the objects in the images in this case.

5.1 Repeatibility

We have computed the repeatibility of our interest points using a test set of images
from the Annapurna region in Nepal (see figure 8). Repeatibility is defined for
two images related by a homography as the fraction of interest points which are
consistent with that homography, up to some tolerance (see [11]).

Figure 9 demonstrates the effect of sub-pixel / sub-scale accuracy of interest
point location on repeatability. This correction gives a clear improvement in the
accuracy of interest point location. It is particularly important for high levels



(a) UBC Rose Garden

(b) Correct feature matches

(c) Epipolar geometry

Figure 5: A pair of images from the UBC Rose Garden. Similarity invariant fea-
tures formed from groups of 2 interest points are extracted and matched. Outliers
are rejected by requiring (loose) consistency with a global similarity transforma-
tion. Then, the fundamental matrix is computed and the epipolar constraint used
to select a final set of consistent matches. Note that the epipolar geometry is
consistent with a camera translation along the optical axis.



Figure 6: Object recognition using invariant features from interest point groups.
The white outlines show the recognised pose of each object according to a homog-
raphy. For 3D objects, this model is appropriate if the depth variation is small
compared to the camera depth.

of the pyramid, where sample spacings correspond to large distances in the base
image. In addition to increasing the accuracy of transformation computations,
accurate interest point localisation also enables more accurate feature descriptors,
which improves matching.

6 Conclusions

In this paper we have introduced a family of features based on groups of scale-
invariant interest points. The geometrical and illumination invariance of these
features makes them particularly applicable for solving difficult correspondence
problems. We have shown the importance of sub-pixel / sub-scale localisation of
interest points, which critically improves the accuracy of descriptors. To reject
outliers we use Hough transform clustering followed by RANSAC to select a set of
feature matches that are loosely consistent with a global 2D transformation. We
then compute the fundamental matrix, and use the epipolar constraint to reject
remaining outliers. These techniques enable practical recognition and registration
tasks to be performed in a few seconds of computation using 1GHz Pentium III
machines.

Future work will look at more efficient parameterisation of feature descriptors,
and alternative methods for computing local canonical frames.



Figure 7: Cylindrical panorama of the Annapurna sequence of images. This
was computed by estimating the (3 dof) rotations between images from feature
matches.
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Figure 8: Images from the Annapurna sequence. There are 15 images in total.
The images are related by rotation about the camera centre.
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Figure 9: Repeatibility of interest points with and without sub-pixel / sub-scale
accuracy.
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