REIN - A Fast, Robust, Scalable REcognition INfrastructure

Marius Muja*, Radu Bogdan Rusuf, Gary Bradski, David G. Lowe*
* University of British Columbia, Canada
{mariusm, lowe}@cs.ubc.ca
T Willow Garage, 68 Willow Rd., Menlo Park, CA 94025, USA
{rusu, bradski}@willowgarage.com

Abstract— A robust robot perception system intended to
enable object manipulation needs to be able to accurately
identify objects and their pose at high speeds. Since objects vary
considerably in surface properties, rigidity and articulation, no
single detector or object estimation method has been shown
to provide reliable detection across object types to date. This
indicates the need for an architecture that is able to quickly
swap detectors, pose estimators, and filters, or to run them in
parallel or serial and combine their results, preferably without
any code modifications at all. In this paper, we present our
implementation of such an infrastructure, Reln (REcognition
INfrastructure), to answer these needs. Reln is able to combine
a multitude of 2D/3D object recognition and pose estimation
techniques in parallel as dynamically loadable plugins. It also
provides an extremely efficient data passing architecture, and
offers the possibility to change the parameters and initial
settings of these techniques during their execution. In the course
of this work we introduce two new classifiers designed for robot
perception needs: BiGGPy (Binarized Gradient Grid Pyramids)
for scalable 2D classification and VFH (Viewpoint Feature
Histograms) for 3D classification and pose. We then show how
these two classifiers can be easily combined using Reln to solve
object recognition and pose identification problems.

I. INTRODUCTION

In this paper we focus our efforts on the design of a scal-
able, efficient, and modular architecture (Reln - pronounced
“reyn”) for the problem of object recognition and pose
estimation from 2D/3D imagery. Reln is motivated by the
recent advances in object recognition such as reported in the
PASCAL VOC challenge [1]. The latest challenge achieved
classification rates of 48.6-93.0% and detection rates of
10.2-55.3%. These results, while encouraging for computer
vision algorithm research, are nowhere near acceptable for
robotics. Missing even five percent of the objects on a table is
unacceptable for a table clearing robot (one out of 20 objects
is left on the table or is perhaps broken by the robot due to
mis-detection). Where humans are involved, missing even 1
percent is unacceptable due to safety reasons. These results
indicate a need to combine various detection, recognition and
pose algorithms and to combine different sensing modalities
in order to attain robust performance. Combining different
algorithms and sensing modalities is a non-trivial task. Quite
often, recognition performance is traded for speed, and
tuning parameters can become complex. We typically might
use one or more fast 2D algorithms with low threshold
settings to over-detect objects over the whole scene in order
to avoid missed detections (“propose”) and then use one

or more slower algorithms with higher recognition perfor-
mance to filter out the correct objects from their proposed
(sparse) locations (“dispose”) followed perhaps by the use
of 3D information to get 6 degree of freedom (DOF) object
orientation ("6DOF pose”). Thus, recognition algorithms can
be used as detectors, recognizers and as filters. Parameters
for these algorithms must be adjusted over large amounts of
data in order to play these roles.

Fig. 1.
tructure.

Object recognition using BiGG and VFH within our Reln infras-

In order facilitate the above needs, we propose a new
modular software architecture, Reln!, that lightly wraps
existing detection, recognition and pose algorithms so that
they may be used in parallel and in serial without the need
to write further code. Reln runs efficiently, taking advantage
of shared memory where it is available to reduce data
copying. In addition, the architecture automatically provides
an online interface to allow changing/tuning parameters for
each algorithm as it runs. We demonstrate this architecture
showing experimental results combining two of our most
recent detectors: BiGG and VFH [2] (see Figure 1). Reln is
an open source architecture that defines common interfaces
that are shareable by a large pool of object detectors, and

'Reln — Recognition Infrastructure — is a BSD licensed, open source
project, available as part of ROS, the Robot Operating System (http:
//www.ros.org/wiki/rein).

creates an unified methodology for swapping these detectors
at run-time using data passing redirections.

Though there are many object recognition architectures
in the literature, there aren’t too many generalized (or better
said standardized) recognition infrastructures. This is mostly
due to the fact that researchers usually insist on individual
detectors in their publications, and though they compare
them with other detectors, the incentive of combining them
together is small.

While there are a some industrial object recognition sys-
tems such as Cognex’s library [3] and Evolution Robotics
ViPR [4], these tend to be domain specific to factory in-
spection and navigation respectively. There have also been
attempts at cognitive perceptual architectures for robotics
such as COG at MIT [5]. There are far fewer object
recognition architectures devoted to general purpose robotics.
Stanford has developed The STAIR Vision Library [6] which
is centered around a sliding windows approach, now mod-
ifiable by masks, and CMU has produced a system for
textured objects [7]. OpenCV [8] is a computer vision library
containing many object recognition techniques including a
feature detector-descriptor pipeline and OpenCV is in fact is
called by the BiGGPy recognition routine described below.
But, none of the above addresses run time configurable
general object recognition and object pose systems in a
generic way. And none does this in a way where we can
have the reconfigurable benefits of message passing over a
distributed system but still automatically take advantage of
shared memory when possible.

The remaining of this paper is organized as follows: a
brief description of the Reln system architecture is presented
in Section II. The two detectors used to demonstrate Reln,
namely BiGG and VFH are presented in Section III. We
validate the framework and provide experimental results in
Section IV, and conclude with hints towards our related work
in Section V.

II. ARCHITECTURE

To obtain reliable recognition for multiple types of objects
we often need to combine different object detectors, each
with its own strengths and weaknesses. These detectors
can be combined in different configurations, in parallel, in
cascade or some mixture of the two. Usually each algorithm
has a different interface and combining any two of them
involves converting between different data structures which
can be inefficient. Also the task of integrating many different
detection algorithms into a running system can be non-trivial.

We developed Reln, a Recognition Infrastructure imple-
mented on top of ROS (Robot Operating System), to address
these concerns. In Reln an algorithm is viewed as a black-
box, with a well defined interface, that consumes a set of
inputs, produces some outputs and is configured by a set of
parameters. We define a set of interfaces shareable by a large
number of object detectors (see Figure 5):

o Attention operator: Takes as input an image and/or a

3D point cloud and produces as output a mask, a region
of interest (ROI) in the image or a segmentation of the

| |

| Operator 1 | - -
! | Detector 1

| Operator 2 1 |

| 1

I \ Detector 2

Detectors

| I

Estimator 1
1 ! \
1 ! \
1 | Estimator 2 !
T ! \
I I

se estimators

Attention operators 1

]
o
o

|
|
L

Fig. 2. An overall snapshot into the Reln system architecture, together
with its tree major components: attention operators, detectors, and pose
estimators.

point cloud. An attention operator is usually placed in
front of a detector to find “interesting” regions in the
image/point cloud where to perform the detection, thus
reducing the detector’s search space. For example an
attention operator could use stereo 3D information to
produce regions of interest in an image for a vision-
only object detector. An attention operator could also
be used to find interesting regions in the environment
that the robot should examine in more detail.

o Detector: Takes as input an image, a 3D point cloud, a
list of ROIs/masks or a list of detections, and produces
as output a list of detections and potentially a list of
poses. Since different detection algorithms may only
require some of the inputs (for example some algorithms
only use images, some don’t take advantage of regions
of interest in the image), the inputs can be used in any
combination, configurable by a set of parameters.

« Pose estimator: Takes as input an image and/or a point
cloud and a set of detections and computes the poses
of the detected objects. A pose estimator is used when
a pose is required for tasks such as grasping, but the
detection algorithms used are not capable of computing
the poses of the detected objects.

Adding existing attention, detection or pose estimation
algorithms to this infrastructure is accomplished by lightly
wrapping them so they implement the above interfaces.
Once wrapped, they we can be freely combined in different
configurations by redirecting their inputs and outputs.

An additional advantage of wrapping existing algorithms
in our infrastructure is the fact that they automatically be-
come plugins (ROS nodelets?), capable of being dynamically
loaded/unloaded from a system. The plugin system allows
for great flexibility, making possible for different algorithms
to be loaded as part of the same process, part of different
processes of even on different machines (on a compute
cluster for example). When loaded as part of the same
process, the data exchange between the different algorithms

Zpodelet: a ROS plugin system that provides a way to run multiple
algorithms as part of the same process with zero copy cost between them.

happens very efficiently with zero copying, by passing shared
pointers.

Since Reln is built on a distributed message passing ar-
chitecture (that will take advantage of shared memory where
available to avoid copying data), it is simple to configure
the “roles” that classifiers will take. The configuration of
BiGGPy as classifier and VFH as filter used in this paper is
shown in Figure 3. Figure 4 shows how easy it is to reverse
the roles so that VFH plays the main classifier and BiGGPy
the filter. This is done by remapping expected message names
such as “/bigg/image” to look for the raw “/image” and so
on. In this example, the raw images and point clouds are
messages produced by another launch file responsible for
sensing (not shown).

<launch>
<node pkg="nodelet" type="nodelet" name="bigg"
args="standalone bigg detector/BiGGNodelet" output="screen">
<remap from="/bigg/image" to="/image" />
<param name="db type" value="filesystem" />
<param name="connection string" value="$(find bigq detector)/database/models" />
<rosparam>
use rois: False
template radius: 128
magnitude_threshold: 260
start level: 2
levels: 3
</rosparam>
</node>

<node pkg="nodelet" type="nodelet" name="vfh_classifier" args="standalone
vfh _classifier/VFHClassifier" output="screen">
<remap from="~point_cloud" to="/points2" />
<remap from="~input detections” to="/bigg/detections" />
<param name="dataset_location" value="$(find vfh_cluster classifier)/data" />
<rosparam>
use_point_cloud: True
use_input_detections: True
</rosparam>
</node>
</launch>

Fig. 3. Launch file for ReIn where BiGGPy classifies and VFH filters.

<launch>
<node pkg="nodelet" type="nodelet" name="bigg"
args="standalone bigg detector/BiGGNodelet" output="screen">
<remap from="/bigg/image" to="/image" />
<remap from="/detections" to="/vfh/detections" />
<param name="db type" value="filesysten" />
<param name="connection_string" value="$(find bigg detector)/database/models" />
<rosparam>
use_rois: False
template_radius: 128
magnitude threshold: 260
start_level: 2
levels: 3
</rosparam>
</node>

<node pkg="nodelet" type="nodelet" name="vfh classifier"
args="standalone vfh_classifier/VFHClassifier" output="screen">
<remap from="~point cloud" to="/points2" />
<param name="dataset_location" value="$(find vfh cluster classifier)/data" />
<rosparam>
use_point cloud: True
use_input_detections: True
</rosparam>
</node>
</launch>

Fig. 4. Launch file example reversing the roles so that VFH is the classifier
and BiGGPy the filter.

In addition to the features presented above, Reln in-
cludes a framework for training object detectors. In order to
use this framework, an object detector needs to implement
the Trainable interface in addition to the Detector
interface. The advantage of doing this is that all detectors
implementing the Trainable interface can be trained in an
uniform manner, using the same data formats (for example

image

» masks

Attention

point_cloud Operator | rois

image detections
pog»int_cloud rois/masks
detections Detector 1
rois/masks | poses
—
point_cloud
o] Pose estimator "=
detections,
poses
Fig. 5. The set of common interfaces and operators in Reln.

bag files® or sets of annotated images) and the same tools.
ReIn contains support for the saving and loading of the
trained models, with the serialization backends configurable
at launch time. The current available backends allow for
serialization on the local filesystem, as either regular files or
in a SQLite database, or on a centralized relational database
such as MySQL, PostgreSQL or Oracle.

III. BIGG AND VFH

An application example that we are currently pursuing is
table clearing with our PR2 platform?*, which involves the
recognition of plates, cups, and common household items.
Many of these items have no internal texture and many
of them are fairly confusable (different types of cups for
example). For this task, it is convenient to use fairly dense
stereo (using textured light projection) combined with 2D
imagery. The addition of 3D information will help identify
table planes as well as to verify objects and their pose.

Our object recognition and object pose strategy is to use a
fast 2D classifier set at a low recognition threshold to rapidly
over-detect objects in order to minimize mis-detections. We
call this the object "Proposal” stage where the hope is that no
object is missed and the correct object is identified in each
location even if there are several false positives. We will then
use a 3D object and pose detection algorithm to filter out the
incorrect object proposals from the correct ones which we
term the “Disposal” stage. Finally, the 3D data will also be
used to give us object pose in 6DOF, called the "6DOF Pose”
stage.

To validate ReIn we implement the above strategy using
the following two algorithms: i) BiGG (Binarized Gradient
Grids) and it’s Pyramid extension (BiGGPy) and ii) VFH
(Viewpoint Feature Histogram) which we previously intro-
duced in [2].

3«Bag file” is the common format for storing and accessing ROS messages
in an efficient way

4PR2 (Personal Robot 2) is a robotic platform developed by Willow
Garage — http://www.willowgarage.com

1l

{8 Sensor Head

Fig. 6. Pan-Tilt rotating unit used for capturing ground truth for the object
pose (both for BiGG and VFH).

A. BiGG and BiGGPy

To develop a rapid object detector for our object proposal
stage we drew on ideas from the HoG detector [9] which
is essentially a grid of gradient histograms. For speed we
adapted ideas from DOT [10] which binarized image gradi-
ents and used logical OR instead of histogram bins in each
grid cell using a Cosine matching function. We use a simpler
normalized count of matching gradients in BiGG described
below. The stages of the resulting BiGG algorithm are shown
in Figure 7 and described as follows:

1) Gradients are computed from a gray scale input image
using OpenCV’s [8] Scharr [11] gradient detector.

2) Small magnitude gradients are then removed by thresh-
olding (we used a threshold of 200) and then the
gradients are discretized into one of 8 directions ig-
noring direction of contrast (dark-light and light-dark
are equivalent) since objects boundaries might be dark
to light or light to dark depending on the background
the robot observes them against.

3) To remove spurious gradients, a 3x3 filter is next run
that eliminates binarized gradient directions that only
appear once in a given 3x3 region.

4) We next compute a gradient "Summary Image” where
in each n x n block (typically 7x7) we OR the
gradients together to provide some generalization to
exact alignment and pose.

5) In the training phase, the above summary gradients are
recorded as a gradient template for each view of the
object’. We used a template of 32x32 in the summary
image. In test, the gradient templates are compared,
one by one in a sliding window over the image
scene. Matching is done by taking the logical AND
of each memorized template with a given window of
the summary image. Results are normalized between
0 and 1 by dividing the match result by the total
number of non-zero gradients in the template. Results

SMore intuitive training view coverage may be done by mechanically or
perspectively OR’ing together gradients at each view over a solid angular
part of the view sphere.

are then reported out (optionally with the 6DOF pose
memorized with the matched view) and thresholded to
declare recognition (thresholds from 0.7 to 0.85 work
well).

6) Finally, the learned templates are stored in a database

or on disk.

Training BiGG is often done by presetting a threshold
level, say 0.82, learning an initial view and only learning a
new view when none of the set of existing templates for that
object is above the threshold.

Some of the advantages of BiGG are that it can be trained
at frame-rate. We use a precise pan-tilt turn table to learn
views of the object together with a ground truth object
pose (see Figure 6). About 350 views of the object are
learned in a 15 second sweep of the object covering a half
view sphere of the object. Since BiGG uses just grayscale
gradients without regard to direction of contrast, it is very
tolerant of lighting conditions. The summary image collects
all gradients in each patch (here 7x7), and while testing we
can sample every 7th pixel in each direction for a 49 times
speedup without loss of accuracy. Because BiGG captures
gradients in their context, it can take advantage of the interior
texture where it can find it but can also recognize textureless
and even transparent objects just from their outer contour.
Finally, if cleanly written, BiGG can be quite fast and can
take advantage of SSE or CUDA instructions to parallelize
matching via parallel AND’ing of the summary image patch
with the template.

The disadvantages of BiGG are: BiGG uses only logical
matches of gradients in its template (zeros do not count)
so highly textured scenes will cause many false positives.
Although BiGG is quite fast, it still scales linearly with the
number of objects learned and this will become a limiting
factor for an autonomous robot.

In order to retain the advantages and minimize the dis-
advantages, we developed a pyramid form of BiGG, termed
”BiGGPy”. Figure 8 gives a flow chart of the change in
moving from BiGG to BiGGPy. Instead of computing the
summary image, we start with the full resolution binary
gradient image at the bottom of the pyramid and go up
the pyramid in each stage by logically OR’ing 2x2 gradient
cells from the lower level together forming a pyramid level
of half the size in each dimension. Typically we use a 4
level pyramid which forms our data structure to train and
test against.

Training BiGGPy then goes from top to bottom of the
pyramid. Templates at the top levels of the pyramid are
typically associated with many objects, and those at the
bottom level with one or a few objects. At the top level, we
have a very blurred, non-discriminative, gradient summary
image so we set a high threshold in order to break up the
learned objects into many different subtrees, threshold that
we decay as we descent the pyramid levels and the templates
get more discriminative.

We learn a new top template every time no preexisting
template matches the object. After the top level, learning
proceeds recursively down the best matching template sub-

Input Image

\
- -

Discretize
Gradients

Filter Noisy
Gradients

o G

Compute Summary
Image

Sliding Window
Matching

[Compute Gradient Image }/v{

BiGG

Discretized Orientation

Orientation

Fig. 7.

Template Detections

database

BiGG (Binarized Gradient Grids) detector architecture. Starting from the left, gradients and their magnitudes of an image are computed. Small

magnitude gradients are removed and the rest are binarized into 8 directions ignoring direction of contrast. Next, singleton (noisy) gradients are removed
and a gradient summary image is creating by OR’ing gradients together over a local patch. Finally, in recognition mode, a sliding window search is used

to find object in the scene.

Input image

Compute Gradient Image

Discretize Gradients
Filter Noisy Gradients

Compute Summary Image
Sliding Window Matching

Detections

Input image

Compute Gradient Image

Discretize Gradients
Filter Noisy Gradients

Compute Image Pyramid
Pyramid Matching

Detections

Fig. 8. BiGGPy: Moving from BiGG at left to Pyramid of BiGG (BiGGPy)
on the right.

tree. If no existing template is found, another is learned
and so on until the bottom of the tree. At the bottom,
we record the object class, segmentation mask, (given by
using depth cues plus GrabCut [12]), bounding box from the
segmentation mask and object pose from the pan-tilt table.
In this way, we learn a tree of BiGG masks whose search
time is (on average) logarithmic in the number of objects
learned.

In test mode for BiGGPy, we compute a pyramid summary
image as above. At top we do a sliding window search over
the smallest summary image. This produces candidate detec-
tion locations. In each candidate location, we descend to the
next level of the pyramid and search with lowered threshold
that vicinity (plus and minus a pixel in order to avoid misses
due to slight misalignments). The search proceeds recursively
until the bottom layer where recognitions are reported or until
no template matches. Figure 10 depicts this process.

Note that, unlike BiGGPy’s logarithmically growing
recognition search time with each new object, the memory
requirements of BiGGPy grow linearly with new objects.
Memory is however much less of an issue than search
time. We need the robot to remain rapidly responsive even
as it learns a large numbers of objects. But in any given
situation, such as clearing a kitchen table for example, we
only need to load in the BiGGPy templates that we need.
When object recognition search requires templates that are
not in memory, the templates can be pulled in from disk.
The initial recognition time may be slower but the robot will
quickly come up to speed in that given context. Old templates
or template trees that have gone stale can similarly be pruned
from memory. Thus, memory requirements are much less of
a problem than search times.

BiGGPy not only allows recognition to scale to many
objects, but the more detailed gradients at the bottom levels
of the pyramid are less likely to produce false positives.
Although there are a fair number of parameters in BiGGPy
such as pyramid levels, pyramid blur, gradient magnitudes
etc., in practice we use the default values mentioned above
which have performed well and mainly just tune the top
threshold value and how fast it decays through lower pyramid
levels.

B. VFH

VFH was already presented in our previous work [2]
as a standalone 3D meta-local descriptor that is extremely
efficient for object class recognition and pose estimation at
high speeds. The meta locality of the descriptor comes from
the fact that it is usually applied to a cluster of 3D points that
contains the object to be recognized with a high probability.
In our previous work, we assumed that the objects of interest
are supported by horizontal planes, and used segmentation
and clustering techniques to extract individual objects as

B0l

Detection
candidate

Detection
candidate

Fig. 9. BiGGPy Tree. The top level coarse templates index many objects,
lower levels are more discriminative and index fewer and fewer objects.
Thresholds start high at top and decrease as we go lower so that we still
get recognitions if slightly misaligned at the more discriminative levels.

Fig. 10. Object recognition in BiGGPy. At the top of the gradient summary
pyramid, a window based search is done using very generic BiGG templates.
Where objects are found, that local region is searched at higher resolution
by increasingly discriminant detectors. This is done recursively down the
pyramid until at the highest resolution the templates are associated with
recognized objects.

separate clusters. Another assumption that was made was that
the objects are in light clutter (i.e., they can be segmented in
a 3D Euclidean sense), as our main application was grasping
with the PR2 robot.

Herein we relax these assumptions and use BiGG detectors
to obtain segmentation bounds (i.e., masks) in the image
space as proposers. This means that we no longer need the
objects to be separable, as we use VFH to build signatures of
the extracted 3D point clusters, and compare against trained
models directly.

For the sake of completeness we re-iterate the main steps
of the VFH descriptor computation as used in this paper:

o given an image mask, the corresponding 3D points are
first extracted as P (e.g., see Figure 11 top left);

« for each point p, € P, a surface normal 77; is estimated
as explained in [13] (e.g., see Figure 11 top right);

o the first component of the VFH signature is extracted
as an extended FPFH descriptor from the centroid p; of
‘P to each point p, € P [2], [14] (e.g., see Figure 11

bottom):
o =V- TLj

(bzu-(pj;pi) (1)

§ = arctan(w - n;,u-n;)

e given a ray 7; to each point p, € P, the second
components of the VFH signature is extracted as the
dot product between each normal n; and 7;:

-
i

2)

Fig. 11. Top left: point cloud cluster obtained from the BiGG mask; top
right: estimated surface normals; bottom: its corresponding VFH signature.

To compare VFH signatures, we construct a kd-tree [15]
in a x? space using the following distance:

2 (pi — @)’
X (p,q) Z o 3)
After the tree is built, a new cluster P can be queried and
its closest k-nearest neighbors in y? space can be extracted.
Each neighbor has a corresponding distance ¢;, which allows
easy filtering either through thresholding or statistics.
Figure 12 presents the closest 9 nearest neighbors for a
query cluster representing a glass with a stem (located on
the bottom left part of the image). The neighbors are sorted
in ascending order from bottom left to top right (row wise),
and their distances from the query cluster are shown in green.
Please note that in this example, the query cluster was part
of the “training” data — which consisted of 2720 datasets
representing different objects in various poses — meaning that
the distance from the query to itself should be 0. The distance
threshold was set to 50 for the purpose of this example.

IV. VALIDATION AND EXPERIMENTAL RESULTS

We have evaluated the detection architecture presented
above on a set of household objects, some examples of which
can be seen in Figures 1 and 13. We used the pan-tilt table
shown in Figure 6 to obtain the different object views and
provide ground truth for the experiments. For each object we
collected about 350 views on the viewing hemisphere.

Some recognition results are shown in Figure 13. The first
and third row present views of the different objects used,

49.7793

47.4193

32114 37.6594

Fig. 12. Example query for a cluster (bottom left) in a x? kd-tree.
The closest 9 nearest neighbors are sorted according to their distance in
ascending order from bottom left to top right, row-wise. Candidates crossed
with a diagonal line are rejected for having their distances larger than tj,.

while the second and fourth row present the precision/recall
curves for testing for those objects. In each case the combina-
tion of BiGGPy with VFH works much better than BiGGPy
alone.

The benefit of combining two objects detectors in a
cascading manner in our architecture is also well illustrated
by figure 14 showing the combined precision/recall curve
for all the objects from figure 13. The first object detector
(BiGG) is configured with low detection thresholds to obtain
high recall at the cost of many false positive detections (see
figure 15), detections which are then filtered by the second
object detector (VFH). Using this combination we get nearly
perfect precision out to about 85% recall on our test objects.
Although the two methods presented above don’t obtain
perfect recognition (with recall being less than 90%), it is
obvious that combining them results in much better perfor-
mance than using them individually. Since Reln allows for
the detectors to be used together in a seamless and efficient
manner, it is plausible to think that the precision/recall curve
in figure 14 can be further improved by including additional
object detectors in the system.

To evaluate the effectiveness of the Reln data passing
architecture, we built a simple attention operator that receives
a 3D point cloud from the stereo camera at full 640x480, and
returns the entire image as a ROI/mask. The point cloud was
loaded once and sent in a loop to the operator in order to
evaluate how fast we can process the data. By instantiat-
ing two copies of the same attention operator as standard
processes, we achieved approximately 30Hz (this includes
the serialization, memory copy, and deserialization of the
data). Using Reln, the two operator instances are sharing the
same process as nodelets, thus obtaining a processing rate of
approximatively 4400Hz. This numbers are just illustrating
the effectiveness of the shared pointer passing architecture,
which avoids copying and (de-)serializing the data.

Precision/recall curve for "All objects"

1.0 SEEELEEERL
0.8f
5
3 06f
(5}
o
o
0.4
0.2+
— BIiGG
— BiIGG+VFH
0'%.0 0‘.2 0‘.4 0‘.6 0‘.8 1‘.0

recall

Fig. 14. Precision-recall curve for all the objects.

Fig. 15. Example where BiGGPy detects many false positives at left which
are filtered out by VFH at right.

V. CONCLUSIONS AND FUTURE WORK

This paper has introduced ReIn and demonstrated its
use for a particular recognition task: tabletop objects. Our
preliminary results are encouraging — not just for the high
recognition rates on our combination of BiGGPy and VFH,
but on the flexibility of Reln to allow rapid reconfiguration
and tuning of combinations of classifiers for a specific task.
Reln allows us to flexibly solve this task without a noticeable
run time performance penalty. Our use of Reln is expanding,
currently we have wrapped several other algorithms: LARK
[16], Latent-SVM [17] and HoG [9]. In the near future we
will add feature detector-descriptor techniques for textured
objects where a bag of words technique is used to propose
objects and geometric RANSAC with a 3D feature point
model is used to verify ("dispose”) the proposed recognition
while computing the 6DOF object pose similar to the work
described in [7] which we call "TOD” for Textured Object
Detector.

We are making Reln available together with the BiGGPy
and VFH detectors as a BSD-licensed, open source package
in ROS. We encourage other researchers to download and
evaluate Reln in their own work.

As future plans, we are currently working on object
picking tasks, with a goal to scale to 1000 objects or more.
We plan to extend and use Reln as our main recogni-
tion framework, this time using a cross-validated voting of

Fig.

precision
precision
—

curve for *409" for "all*

)

curve for "chocolate_box" for “green_tea”

s .

g

precision

precision

“I_L

precision

precision

— BIGG — BIGG

— BIGG+VFH| — BIGG+VFH|
b7 07 4 3 [75 Lr) 0z o
recall

Precisionirecall curve for “organics"

for “blue_people”

— 1

H |

T

b7

— BIGG
— BIGG+VFH|
4

— BIGG ﬁ
— BIGG+VFH| -
[75 L) 0z o7

0z 3
recall

Precision/recall curve for "lkea_963.111.00"

Precisionirecall curve for "coffee_mat"

=

b | u

L |]

—\1

precision

precision
L

!

i i

',

— BIGG — BIGG
— BIGG+VFH| — BIGG+VFH|
b7 0z 4 [75 Lr) 0z o

3 05
recall recall

13.

b7

Notice how the combination of BiGGPy with VFH boosts the recognition result.

classifiers to handle this span of textured, transparent and

unt

[1]

[2]

[3]

[4]
[51

[6]

[71

[8]

extured items.

REFERENCES

PASCAL2, “Pascal visual object class challenge workshop,” in
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2010/workshop/

index.html, 2010.

R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3D Recognition
and Pose Using the Viewpoint Feature Histogram,” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2010.

C. Corp., “Visionpro tool library.” [Online].
Available: http://www.cognex.com/ProductsServices/VisionSoftware/
VisionTools.aspx?id=2406

E. Robotics, “Vipr.” [Online]. Available: http://www.evolution.com/
core/ViPR/

P. Fitzpatrick, “From first contact to close encounters: a developmen-
tally deep perceptual system for a humanoid robot,” in PhD thesis and
technical report AITR-2003-008, MIT EECS, 2003.

S. Gould, O. Russakovsky, I. Goodfellow, P. Baumstarck, A. Ng, and
D. Koller, “The stair vision library (v2.4),” 2010. [Online]. Available:
http://ai.stanford.edu/~sgould/svl

A. Collet, D. Berenson, S. Srinivasa, and D. Ferguson, “Object
recognition and full pose registration from a single image for robotic
manipulation,” in /CRA, 2009.

G. Bradski and A. Kaehler, “Learning opencv, computer vision with
the open source computer vision library,” in O’Reilly Press, 2008.
[Online]. Available: http://opencv.willowgarage.com

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

— BIGG
— BIGG+VFH|
)

1
’L‘\H — BIGG

— — BIGG+VFH e

08 1.0 0.0 02 04 08 1.0

0z

3 05
recall recall

The top rows (1 and 3) show some detection results while the bottom rows (2 and 4) shows associated precision-recall graphs for these objects.

N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in In CVPR, 2005, pp. 886-893.

S. Hinterstoisser, V. Lepetit, S. Ilic, P. Fua, and N. Navab, “Dominant
orientation templates for real-time detection of texture-less objects,” in
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2010.

B. Jahne, H. Scharr, and S. Korke, “Principles of filter design,” in
Handbook of Computer Vision and Applications, Academic Press,
1999.

C. Rother, V. Kolmogorov, and A. Blake, “Grabcut: Interactive fore-
ground extraction using iterated graph cuts,” ACM Transactions on
Graphics, vol. 23, pp. 309-314, 2004.

R. B. Rusu, Z. C. Marton, N. Blodow, and M. Beetz, ‘“Learning
Informative Point Classes for the Acquisition of Object Model Maps,”
in In Proceedings of the 10th International Conference on Control,
Automation, Robotics and Vision (ICARCV), December 17-20 2008.
R. B. Rusu, N. Blodow, and M. Beetz, “Fast Point Feature Histograms
(FPFH) for 3D Registration,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), May 12-17 2009.
M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration,” VISAPP, 2009.

H. Seo and P. Milanfar, “Training-free, generic object detection using
locally adaptive regression kernels,” vol. 32, no. 9, pp. 1688-1704,
2010.

P. Felzenszwalb, D. Mcallester, and D. Ramanan, “A discriminatively
trained, multiscale, deformable part model,” in In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR-2008, 2008.

