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Abstract— There has been significant progress recently in More recently, many research results have demonstratéd tha
object recognition research, but many of the current approacles  ysing 3D scene information such as surface orientation and
stlll_fall for_obJe_ct p!asses with few dls_tlnctlve featu_res, and in scale [8], [9], [10], [11], [12], [13] can be useful in object
settings with significant clutter and viewpoint variance. One 3 . .
such setting is visual search in mobile robotics, where tasks such fec‘?g,“'“‘)”- In the case Wher_e.the objects in a_ scene lack
as finding a mug or stapler require robust recognition. The focus ~ Sufficient resolution, or are difficult to detect with curten
of this paper is on integrating stereo vision with appearance recognition methods, scene context can play a large role.
based recognition to increase accuracy and efficiency. We  The focus in this paper is on fusing 2D image information
propose a model that utilizes a chamfer-type silhouette classifier and depth information from stereo images into one model

which is weighted by a prior on scale, which is robust to for | lizati ticularly in th f ¢ beh
missing stereo depth information. Our approach is validated or localization, particularly In the case of contour-base

on a set of challenging indoor scenes containing mugs and Objects. A primary motivation for our work stems from
shoes, where we find that priors remove a significant number our recent experiences in designing a vision system for our

of false positives, improving the average precision by 0.2 on rohot Curious George [14], an entrant in the Semantic Robot
each_dataset. We additionally experiment with an addltlon:ell Vision Challenge (SRVC). This contest is a visual scavenger
classifer by Felzenszwallet al.[1] to demonstrate the approach’s
robustness. hunt, where a robot explores a room and returns a set of
images corresponding to a list of objects it was tasked to
|. INTRODUCTION find. Despite winning the competition in 2007 and 2008,

was apparent that recognition of generic objects from

it

Object classification and recognition has progressegiirary viewpoints is still very much an open challenge.
rapidly in recent years due to advances in machine learningyit, stereo vision, we can use a prior on object size, which
more sophisticated feature extraction techniques, aneM&ie ., pe as simple as a mean and variance of an object's real
greater availability of image datasets. Despite the recefj, iy size. We show that this reduces false positives, and
success, there is still significant progress required Befog,, increase computational efficiency, which is partidiytar
we have robots assisting the elderly, cleaning our homeg, ,qrtant with a mobile robot. In conjunction with the prior
or fetching household items. A particular challenge fojye experiment with methods to utilize surface variation
mobile robots in an indoor environment is that most of thgit, 4 contour-based classifier. The primary contributién o
objects to be manipulated occupy small portions of clutereihis naper is a model formulation that is robust to missing

scenes. However, much of the success thus far in Obj&formation from stereo. We validate our approach on a
recognition/localization has been achieved with largecigj challenging set of scenes containing shoes and mugs.
that are often assumed to occupy a significant portion of

the image, such as pedestrians, vehicles, and animals [2]. Related Work

Many smaller objects found within cluttered indoor scenes There are a variety of recent approaches that make use
are left relatively unaccounted for, such as mugs, staplei§s 4 opject's real world scale as a prior for the scale in
shoes, etc. Due to large variations in appearance, thees typ,o image. One of the pioneering works in this regard, and
of object categories are difficult to recognize with patchhe most similar to our formulation, is that of Hoiegt
based methods, which generally require significant reismiut al.[8]. Using only an image, the approach jointly infers 3D
and distinctive features that are internal to the object anghiact |ocations and scene information, such as 3D surface
therefore not disturbed by background clutter. _ orientation, ground plane, and horizon. Assumptions using
There is an increasing body of work suggesting thahe estimated horizon and a prior on an object's real scale ar
using scene context can improve the efficiency and accuragyjized to provide a prior on the expected scale in the image
of localization. Scene cues such as the gist of a SCEAfis prior modulates the response from an appearance-based
were successfully used by Torralba [3] to predict the likelypiect detector, showing marked improvement in pedestrian
location and scale of objects. It has also been shown thahq vehicle localization. A primary distinction betweerr ou
local context, such as surrounding image texture can iMyork and theirs is that our scale prior uses stereo rather tha
prove object classification and segmentation [4]. Obje€t Cneir horizon assumptions, which are not applicable insioor
occurrence and co-location have also been shown by manyanother approach that is similar in spirit to our own is

researchers to be valuable in object detection [5], [6], [7khe pedestrian detection work of Gavrila and Munder [15].
) ) N . Here, they utilize sparse stereo and ground plane contstrain
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Fig. 1. A stereo camera and monocular camera produce an edge image aptharmhp. Missing depth information is shown in white.
A contour-based classifier evaluates bounding boxes in the edge iflagescale prior weights these scores depending on whether the
depth and scale of the bounding box agree, thereby reducing the afcfadee positives to a much greater degree than true positives.

to our own work, they also make use of a chamfer distanaavaluated to determine a score as to whether they contain
metric. One of the primary distinctions between our workhe object of interest. We achieve this by using a probabilit
and their's is that our approach does not require grourfdnction p(o,0|I,,I,,), where o = {obj, background}.
plane constraints, and is possibly more robust to missiriginally, the scores from the sub windows are combined using
stereo information. Moreover, our approach follows a cleanon-maximum suppression to determine likely detections.
probablistic framework, where as their approach involves

numerous parameters and thresholds that requires ex@ensiv . . .

training to set. Other recent approaches using object scalelhere are two directions from which we can improve
in recognition are those of Goulet al{10], and Quigleyet object localization: redgcmg fa}lse positives, e}nd insieg
al.[13]. They utilize a mobile robot to acquire high-accuracyn€ SCores for true positives. Given that depth images eferiv
depth maps using a laser scanner, which requires 2-3 secoff@&n Stereo data are noisy and that the objects are small
per scan. From this data, their object detector utilized bof€lative to the depths involved, we cannot place much hope
surface variation, 3D shape, and appearance to find Objeg?sclas&ﬂcatlon based solely on the depth data. Instead, we

such as mugs, cups, staplers, etc. Their system achie&@gqs_' our efforts on utilizing the depth data to reduce false
impressive results, but their use of a laser scanner to mquP©Sitives, and to help make the most use of the appearance

data is unrealistic for many applications. Our approachtformation.
utilizes stereo which is faster, cheaper, and less invdsite

also requires additional robustness to uncertainty. To achieve this we separate information about the appear-

In regards to object detection, most successful approachgsce the scale of a scene elemenyj ©or background), and
have utilized patch based techniques that decompose recggs surface variation. We first assume that the appearance,
nition into recognizing parts of _the object. The_se rangenfro I,,, and depth informationl,, are conditionally independent
bag-of-word approaches that discard 2D spatial relatipssh yiven o, This is not technically true since depth using stereo
entirely, to approaches that model the spatial relation bgs gerived from appearance information, the effect of this
tween features. However, for classes that are visually eéfin dependence is minimal for recognition. Next, the bounding
by their 3D shape, the signal from the identifying contouggy g implies a centre, scalgy, and aspect ratio (which
on a patch is sometimes overwhelmed by the noise of forgje assume is fixed), and we denofg(d) as the depth
ground texture and background clutter. There are numeroygiyes withing. If we assume that a scene element’s presence
recent localization approaches, however, that make use gfq appearance are independent of where it is in the scene,
contours and chamfer matching, including [16], [17], [18]then the nature of the element’s surface is independent of
[19], [20]. We also experiment with extensions to chamfeyhere it is in the scene. So, if we have a scalar function
matching that utilize depth information. fo(I.) that measures where the surface of the element is
in the scene, then we can move that surface to the model
coordinate systend,,(¢) = I.(0)— fo(I.). We discussp (1)

The task we are concerned with is localizing an objecfurther in Section II-A. As stated, no®f(I.),1,(0), I, }
obj, in an intensity imagd,,,, while also leveraging a noisy are statistically independent. So, at a particular boundin
depth imagel.. To achieve this we adopt and adapt a multibox, {fs(1.), I,(6)} become our features that describe the
scale sliding window classifier, a widely used approach tdepths in that bounding box. We define our score as the
localization. Here, a subset df windows, {0;},—1..v, are probability,

Il. METHOD
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Now, in practice we do not know the true values f,
Sw, Or d, SO we use instead the random variahtess, d.
For a particular pointr, d, = d + £, where&, is noise
due to discretization and the stereo algorithm. We can use
the relationships in equation 4 to show,

-

Fig. 2. Scene Geometry
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2o We assume the error$¢, }.co, are zero mean and inde-
= p(olLm, 1,(0), O)p(fo(L:)l0, O)p(0, Lo (6), Im) pendent, and by the central limit theorem the second term
Pz, Im) 5 in denominator becomes 0, allowing the approximation in
@ equation 6. Using this, we defin@(I,) as the average depth
o< p(0|lm, 1, (8),0)p(fo(1:)]o0, 0) (3) inan area within our bounding box, $9(1.) ~ z.s/sg. The

average depth is taken over a bounding box thattimes the

where Equation 2 follows 1 by independence and an appl;,e of the original bounding bak but centered at the same

cation of Bgyes _rulg. The final e_quatpn follows because Wﬁoint in the image, as in Figure 2, a technique also adopted

assume un|form_|ty |r_1 ter_m_s nofc mvo!v_lng. . by [13]. The reason for this is that depth values around the
This formulation is similar in spirit to that of Hoilem gqqes o will be more likely to fall on the background. In

et al[8], and likewise is general and not dependent upog,, experiments we use = 0.8. Formally, if we denote.,

our choice of classifier and priors. The first term is theg this inner bounding box df, and missing depth values
object classifier which we describe in Section II-B. However,s o then

note that the classifier can depend on both surface data in

I,(9) and the intensity imagé,,, which allows for a more

powerful classifier based upon both shape and texture. The fo(I) = mean({I.(x)|x € 0.,z # ©}) @)
second term is related to our prior on the scale of a scene
element With both these terms, we are primarily concernetgIi
with detecting the object of interesthj, so we only search
through ourp(o,0|1,, I,,), for wheno = obj. It's necessary
to include o in the formulation so that we can utilize the
object classifiep(o|I,, I, (0), ).

The prior for the object's scale can take any form. In
s paper we assume that the scale of the object class
is Gaussian, with parametefg.,os}. This implies that
fo(I.), ie.p(fe(1.)|o, 6), is also a Gaussian with parameters
{zclts/ 80, 2c05/50}. It should be noted that if we simply
tried to use the depth value at the centre of the bounding
box, versus an average, the classifier barely outperfortreed t
base classifier, in part because stereo often gives no leeliab
The scale prior of the object is captured in the distributioalues at the centre of a textureless object.
p(fe(I:)|o,0), which should also capture the uncertainty Up until this point we have treated the object as pla-
in depth measurements. The scale of an object class coydr. This assumption can be relaxed if the object scales
be arbitrarily complex, as could the mechanism that igometrically and we know the aspect ratio of the object’s
responsible for errors in depth measurements. In thisaectidimensions. Here, the distance between the object’s centre
we first. formulate the p_rior generically, and then descriee t plane,z,, and the frontal plane;;, will be proportional to
approximations made in our approach. the scale for the object, i.ez, — z; = Bs,,. This amounts
The geometry of a scene is illustrated in Figure 2. Foro little more than addingsu, to the mean forfy(I.). In
mally, z,, is the distance of the object’s centre to the camerajractice, this can be ignored for smaller objects.
origin, s¢ is the scale (i.e., height or width) in the image ) -
plane, ands,, is the scale of the object in the fronto-paralle|B- Object Classifier
plane atz,. For the moment we will restrict the object In this section we describe our object classifier, which pro-
to being represented as a plane parallel to the camera. Wides p(o|l,,,, I,,(8),0) for equation 3. The object classifier
denote the focal length of the camera, and the baseline is based upon the insight that for many manufactured objects
distance between stereo cameras.a$he disparityd, on there are often no distinctive textural features. As a tesul
the image plane for any point € 6 is d (since the object is we instead base our object classifier upon the silhouette of
a plane), and the number of points in the bounding box ithe object since this captures succinctly the shape of the
N. Using perspective projection and epipolar geometry, thebject. The measure that we utilize to determine how close
following relationships hold the imagel,,, () is to the object class is based upon an altered

A. Object Scale from Depth



For a bounding bo¥ = {sy, £.}, we scale the edgels in the
template bys = s¢/s,,,, wheres,, is the model scale.

Using the chamfer score:? ¥ (x), in a logistic function,
our base classifier becomes

p(oll) = [1 + exp(a, — ale;Ie (xe)]_l (11)

Fig. 3-E$imbi|arit3/ betW?hen the n;(%geldsfiflhouetté and the edge  This classifier does not make use of the shape information

gﬂg%ﬁ:t '_sx"’"Tf folﬂpgggel‘: Slggl o aédeiﬁgﬁaﬁﬁﬁesfbgﬁ;%ﬂﬁes that is available in the depth variancgg6). We did imple-

z. € E. ment a variation on the score in equation 10, where we added
an additional term that penalized deviations in depthstier t
matching edgels. The intuition here is that sinG€d) has

version of chamfer distance. Although this is not a state ofnean 0, we expect the variation from zero to be small relative

the-art classifier, it is surprisingly effective for cldgsig to the object's size. We discuss results with this enhanced
the canonical viewpoints of some contour-based classes. Tversion of the classifier in the results section as well.
classifier we initially describe here does not utilize theysh There are a number of relevant parameters of the object
information contained i, (9), we discuss an altered versionclassifier that need to be set or learngdwhich modulates
that does near the end of the section. the influence of orientation differences on the distances wa
The chamfer distance was first introduced by [21] as aet to 0.25. The parameterwas set to 0.15. Both of these
means of measuring the distance between two curves. In fiarameters are similar to values used by Sho#bal[16],
most basic form, it is the total distance from all the point@nd were set by cross-validation on an independent dataset.
in a template point sef” to the closest points from point The object silhouette we utilized was acquired taking an
set E. A thresholdr is used to account for missing edgels.image of a prototypical object on an uncluttered background

Relative to some translatiax applied toT, the thresholded From this, we extracted the silhouette by using only the

chamfer distance is defined as, contours on the exterior of the object. The parametgrand
«y of the logistic classifer can be learned using maximum

1 likelihood on training data. For the class of mugs, we used
df;;fmJ(X) =7 Z min(7, argmin [|(x; + x) —xc|2)  Graz 17 [22], and for the shoes we collected a set of training
7 x:€T xe€E ®) images from the internet.

This measure however is inherently biased towards clu¢. Sampling for Detection
tered images [18], where a high density of edgels is likely to
have a small chamfer distance despite the fact that therpattgm
of edgels looks nothing like templafE. To overcome this,
we take an approach similar to Shotteinal[16], who added
the difference in orientations between matching edgelbeo t
chamfer distance. Explicitly, if we denote“t™ to be the
X. € F closest tox; + x, then we can define two disjoint

Our object detector is based upon determining local max-
a in the probability functiom(o, 6|1, I,,,), which amounts

to finding the bounding boxes with high scores. In a multi-
scale sliding window setting, this can be computationally
expensive depending upon : 1) the computation required
to evaluate a single bounding box, and 2) the sensitivity
— ax of the classifier to minor changes in scale and location.
Sjts’T/ and T, whereT" = {x|[|xZ" — 2|2 < 7} anq Computation of a single bounding box is relatively efficient

T = {xs|l[xz*™ — x[]2 > 7}. These sets denote nothing\ye se integral images to compute the scale prior and use the

more than splittingl” into those edgels with a match lessyigiance transform so that chamfer matchingig:) where
thanr and those that are too far away. If we letd#@x) be | is the number of edgels in our silhouette.
the orientation of an edgel module, then the orientation In general, the less sensitive to scale and location a

penalty is defined as, classifier is, the more sparsely we can samyte 0|1, I,,,)

and still hope to find all detections. For location, a large
2 = o tx ortion of the image can be sampled sparsely since the scale
Aot s 7 (%) (IT1+ Y 1o0xe) —o(x))) (@) P J plee opasey

orient,T 7| T € prior and chamfer matching both vary somewhat smoothly.
x: €T . . . . .
Scale sampling is more tricky, since there can be consitierab
and the total oriented chamfer score is, performance degradation if too few scales are evaluated.
For chamfer matching, without scale priors, we found that
dTP (x) = (1 = Ndeham,r + Mdorient.r (10) results were stable when sampling every 1/8 octave in scale

space, i.e., rescaling b§2?/8|i € 1, -16 < i < 16}. This
where)\ weights the contribution of the orientation differencecan be reduced to a sampling rate of 1/4 octave and only
to the chamfer score. The Figure 3 sheds some light on tsampling at a greater frequency in regions where the chamfer
oriented chamfer distance. This description thus far hds ndistance is small. However, with a full detector that uéz
touched upon the issue of scale. Again, we follow Shottothe scale prior, the number of samples can be greatly reduced
et al[16] who scale the template rather than edge imagé&or example, for shoe detection at a particular location, we



could use depth to infer at what scales to sample, allowingf the union of the two bounding boxes, which is standard
a reduction of samples by up to 80 percent. for object detection [2]. The primary metric we utilize for
comparison is the average precision (AP). For the shoe
dataset, the base classifier achieved an AP of 0.51, and an
To validate our approach we collected a dataset of sterédd® of 0.71 with the scale prior. For the mug dataset, the base
and still images for a variety of scenes containing mugslassifier achieved an AP of 0.48 and an AP of 0.72 with the
and shoes, examples of which can be found in Figure Scale prior. Also, as we can see in the recall precision surve
Using these images, we then compare the performance iof Figure 4, there is a significant difference in performance
our chamfer-distance object detector versus the perfazenanin these two classifiers.
when this base detector is augmented with a prior on scale.We also experimented with an additional classifer, the
deformable parts model (DPM) developed by Felzenswalb
et al[1], which has source code available on the net. In this
The intent of our data collection was to produce a set afase, we only trained the classifier for mugs since it also
images that would be challenging for an appearance basesincided with our work for SRVC. Using the output from
classifier due to the significant amount of clutter and tettur this classifier forp(o||Z,,,), we also found that the results
variation on the object itself. With this in mind, the object improved with the use of the scale prior on the mugs data
were placed at a variety of depths (1 to 7.5 m), with varyinget. This can be seen in Figure 4(a), for the DPM models.
amounts of background clutter. In addition, the shapes arithis demonstrates that the approach is usefull for more than
texture of the objects themselves varied. Due to the réstric the classifier we outlined earlier. The improvement is not as
range of viewpoints covered by our shape model, the objeatisastic since the DPM is more sophisticated and trained on
were placed parallel to the image plane, although the objeatlarge set of training data.
could be left or right facing. For the mug dataset we collécte There are two types of errors made by the object classifier,
20 images from different indoor scenes, with 15 differenfalse negatives and false positives. As can be seen by the
mugs, with about 3 mugs per scene. For the shoe dataset sl@pe of the recall-precision curves and from the examples,
also collected 20 images of different scenes, with 8 differe most of the improvement is a result of fewer false positives.
shoes, with about 3 shoes per scene. In both object classes, there were a number of instances of
The camera setup consisted of a Canon G7, usirfglse negatives that were due to the failure of the object
1216x912 images, and a Bumblebee 2 stereo camera, ustigssifier, irregardless of the scale prior. These failuvese
1024x768 images, with the Canon camera on top of the Burdue partially to failure in edge detection, but also due ® th
blebee as in Figure 1. The stereo algorithm used was Pofiaict that a simple silhouette does not capture object class
Grey’s stereo algorithm provided with the camera, whiclvariation particularly well.
provides fast, accurate depth maps for textured regions,We also performed a number of experiments to determine
and annotates ambigous regions as missing informatiothe sensitivity of the approach to other parameters. The firs
The motivation for the two camera approach is that theet of experiments were conducted in regards to the interpla
quality of the edge images from the Bumblebee cameizetween the parameter settings for the object classifiar, vi
were poor in comparison to those of the Canon camera, and«;, and scale prior2. The parameters in the final
However, this introduces an additional complication sithee  results were set by optimizing for the's on a separate
3D point cloud derived from the Bumblebee and its softwardataset, and simply setting the varianeg, to an approxima-
are in the Bumblebee’s coordinate system. To overcont®n of the real scale variance of the objects. In subsequent
this we find a set of point correspondences between om&periments we noticed that the results were fairly roboist t
Bumblebee image and the Canon image using SIFT featuraerations in these parameters. For example, if we doubled
and geometric constraints [23]. Using the 3D points fronw,, the difference in AP were not significant. This suggests
the Bumblebee, we fit a projection matiX using the Gold that the scale prior is primarily removing egregious false
standard algorithm [24], that maps all 3D points from thepositives, not assisting in modeling fine distinctions ew
Bumblebee to the Canon. Although this introduces additionaetections that have a scale that agrees roughly with depth.
errors into the depth imagé,, in practice this produced We also experimented with utilizing the surface variance,
considerable improvements in both the base classifier and th,(6), i.e., the residuals after the mean in the region was
classifier that utilized scale as a prior. In the case of shossibtracted off, to improve detection. In general, for small
for example, the average precision for the base detector objects we do not expect a great deal of surface variation, so
Canon images was 0.49, whereas for the Bumblebee imagéiscontinuities or cases where the template contour ishmatc
average precision was 0.35. ing a background segment can be detected u$jfi@). In
one experiment we embeddéd(f) into chamfer matching
as mentioned in Section II-B. In another experiment we used
In order to evaluate our approach, we perform detectioa uniform prior on the variation of, (), with a range of
over a set of scenes, where any bounding box returned Byto object scale. This has the effect of disallowing large
the system is considered a true positive only if it's overlagliscontinuities in depth with the region. In both casess¢he
with the true bounding box is at least 50 percent the aregpproaches did improves results by about 0.025 in AP for

I1l. EVALUATION

A. Experimental Setup

B. Results and Analysis
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both datasets. Again this slight improvement is due to the fa [4]
that the scale prior removed a majority of false positives.

C. Conclusion and Future Work [5]

In this paper we have presented an approach that fuses
appearance-based recognition using contours with depth
information acquired from stereo. Although previous ap-
proaches have made use of depth information for recognitiors]
it has yet to be demonstrated that it is feasible with realist
stereo data in an environment not dependent upon grou
plane assumptions, in which noise and missing values cau)
be significant. As our results indicate, a prior on scale can
be utilized to increase the accuracy, efficiency, and rolasst
of object localization on the types of objects expected to he1]
manipulated by mobile robots in indoor environments.

In addition, the approach we presented is general 2!
that any object classifier can be used. The limitations of
a classifier based upon an entire silhouette are significafi3]
including sensitivity to viewpoint, clutter edgels, andra:
class variation in the shape of the object. Future work will
focus on utilizing a more sophisticated object classifiar. [[14]
the context of a mobile robot, such as a setting like the
SRVC, more sophisticated object class models require more
computation, making the use of scale as prior that much mol¥]
important in focusing attention on _relevant regic_)ns._ [16]

Moreover, for shape based objects, the primarily chal-
lenges are in disambiguating foreground contours frori7]
clutter and modelling variation. Using a scale prior tha[18
is independent of the detector can help in reducing false
positives, as shown by our results, but provides little hell
in reducing the noise introduced by clutter edges. Futur[go]
work will also investigate utilizing depth information tath
improve edge detection and assist in reducing the effect &
clutter edges on measuring the distance between two curves.

REFERENCES [22]

[1] P. F. Felzenszwalb and D. A. M. andDeva Ramanan, “A discrami
tively trained, multiscale, deformable part model,”@VPR 2008.

[2] M. Everingham, L. Van Gool, C. K. I. Wiliams, J. Winn,

and A. Zisserman, “The PASCAL Visual Object Classes

Challenge 2008 (VOC2008) Results,” http://www.pascal-

network.org/challenges/VOC/voc2008/workshop/inderih

[3] A. Torralba, “Contextual priming for object detectionlJCV, vol.
53(2), pp. 169-191, 2003.

(23]

[24]

—— Chamfer w/ Scale Prior
- - Chamfer

%80 01 02 03 04 05
Recall

0.6

(b) Shoes

sion Curves

J. Shotton, J. Winn, C. Rother, and A. Criminisi, “Textaust:
Joint appearance, shape and context modeling for multi-dbjsct
recognition,” inECCV, 2006.

A. Torralba, K. Murphy, and W. Freeman., “Contextual madér
object detection using boosted random fields,NiiPS 2005.

D. Parikh, L. Zitnick, and T. Chen., “From appearancedotext-based
recognition: Dense labeling in small images,”@YPR 2008.

S. Kumar and M. Hebert, “A hierarchical field framework fomified
context-based classification,” I€CV, 2005.

D. Hoiem, A. Efros, and M. Heber, “Putting objects in pezsfive,”
in CVPR 2006.

] B. Leibe, N. Cornelis, K. Cornelis, and L. Gool, “Dynamid 3cene

analysis from a moving vehicle,” iICVPR 2007.

S. Gould, P. Baumstarck, M. Quigley, , A. Y. Ng, and D. kull
“Integrating visual and range data for robotic object diétec’ in
ECCV Workshop on Multi-camera and Multi-modal Sensor Rusio
Algorithms and Applications (M2SFA22008.

G. J. Brostow, J. Shotton, J. Fauqueur, , and R. Ciptlagmentation
and recognition using structure from motion cues,EECV, 2008.

E. B. Sudderth, A. Torralba, W. T. Freeman, and A. S. WjllsDepth
from familiar objects: A hierarchical model for 3d scenes, NPR
2006.

M. Quigley, S. Batra, S. Gould, E. Klingbeil, Q. Le, A. Waan,
and A. Y. Ng, “High-accuracy 3d sensing for mobile manipulatio
Improving object detection and door opening,”litternational Con-
ference on Robotics and Automatj&009.

D. Meger, P.-E. For€s, K. Lai, S. Helmer, S. McCann, T. Southey,
M. A. Baumann, J. J. Little, and D. G. Lowe, “Curious george: An
attentive semantic robotRobotics and Autonomous Systend. 56,
no. 6, pp. 503-511, 2008.

S. M. Dariu M. Gauvrila, “Multi-cue pedestrian deteati@nd tracking
from a moving vehicle,1JCV, vol. 73 (1), pp. 41-59, 2007.

J. Shotton and R. Blake, A.and Cipolla, “Multi-scalgegorical object
recognition using contour fragment$AMI, 2007.

A. Opelt, A. Pinz, and A. Zisserman, “A boundary fragmentdab
for object detection,” irECCV, 2006.

D. M. Gavrila, “A bayesian, exemplar-based approachiesdnchical
shape matching,PAMI, vol. 29 (8), pp. 1408-1421, 2007.

M. P. Kumar, P. Torr, and A. Zisserman, “Extending picabstructures
for object recognition,” inBMVC, 2004.

B. Leibe, E. Seeman, and B. Schiele, “Pedestrian deteati crowded
scenes,” iINCVPR 2005.

H. Barrow, J. Tenenbaum, R. Bolles, and H. Wolf., “Paraiet
correspondence and chamfer matching: Two new techniqueségd
matching,” inlJCAI, 1977.

A. Opelt, A. Pinz, and A. Zisserman, “Incremental leamiof object
detectors using a visual shape alphabet,CMPR 2006.

D. G. Lowe, “Distinctive image features from scale-ineat key-
points,” IJCV, vol. 60(2), pp. 91-110, 2004.

R. I. Hartley and A. Zissermamultiple View Geometry in Computer
Vision, 2nd ed. Cambridge University Press, ISBN: 0521540518,
2004.



TR

:QHI.P uﬁ:\[i gty ’UJ gl
LT

Some examples of mug detections

B e = g B e . S s

Some examples of shoe detections

Fig. 5. Examples of object detections. Examples in the left column are from tbe dassifier at a recall rate at 0.7. Examples in the
middle and right columns are from the classifier with the scale prior at tine sacall rate. Green signifies true positives and red signifies
false positives. As can be seen, the number of false positives is segificeduced with a scale prior.



