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Abstract

State-of-the-art methods have recently achieved impressive performance for recognising the objects present in large databases of
pre-collected images. There has been much less focus on building embodied systems that recognise objects present in the real world.
This paper describes an intelligent system that attempts to perform robust object recognition in a realistic scenario, where a mobile
robot moving through an environment must use the images collected from its camera directly to recognise objects. To perform
successful recognition in this scenario, we have chosen a combination of techniques including a peripheral-foveal vision system, an
attention system combining bottom-up visual saliency with structure from stereo, and a localisation and mapping technique. The
result is a highly capable object recognition system that can be easily trained to locate the objects of interest in an environment,
and subsequently build a spatial-semantic map of the region. This capability has been demonstrated during the Semantic Robot
Vision Challenge, and is further illustrated with a demonstration of semantic mapping. We also empirically verify that the attention

system outperforms an undirected approach even with a significantly lower number of foveations.
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1. Introduction

A driving motivation behind much of cognitive robotics
research today is the notion of a personal robot companion
capable of aiding people in their daily activities. Special
cases of this are systems to care for the elderly, robotic home
and office assistants, and interactive robot toys for chil-
dren. For each of these applications, the human and robot
involved must perceive and represent the world in a similar
fashion, so that they can collaborate effectively. In partic-
ular, a robot with the ability to visually identify objects of
interest will have much of the information necessary for suc-
cessful operation. A human-like visual system would help a
robot with both obstacle avoidance (e.g., noticing everyday
objects it might bump into, and also spotting black-yellow
warning sticker tape), and for more natural human—-robot
interaction (e.g., “Robot, fetch me my coffee mug!”).
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Many of the competences required for a completely vi-
sual home assistant are beyond the boundaries of current
state-of-the-art research. In particular, recognising visual
objects based on their semantic meaning, often referred to
as object category recognition, has recently received exten-
sive attention from computer vision researchers [1-5]. The
focus of much of this research has been on learning appear-
ance from large databases of static images or on indexing
images from the web based on their meaning. This scenario
is significantly different from the one faced by a robot in an
ever-changing home environment where recognition, nav-
igation, planning (both for robot motion and the robot’s
view), and interaction must all occur simultaneously. One
example of a robotic system capable of object recognition
in realistic settings is [6], which is similar in spirit to our
system. Robotics researchers have also recently considered
producing semantic maps based on the locations of objects
(for example [7]), but there are still many remaining chal-
lenges related to learning visual representations of objects
and integrating these semantic concepts with other robot
behaviours. This paper presents an integrated solution to
many of these challenges and describes a system that is ca-
pable of performing real-world object recognition in realis-
tic scenarios.
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Fig. 1. The “Curious George” robot platform.

Our efforts have been motivated and directed by the Se-
mantic Robot Vision Challenge (SRVC) [8], held at the
Association for the Advancement of Artificial Intelligence
(AAAI) conference in 2007. This challenge is divided into
three phases. During the training phase, robots are required
to build visual representations of a previously unknown list
of objects in a short time frame, using only images col-
lected from the World Wide Web. In the exploration phase,
the robots examine a contest environment, which is con-
structed in a semi-realistic fashion, and contains the objects
listed, as well as other distracting objects. The final phase
is recognition, where objects must be identified with se-
mantic labels by matching images obtained in the first two
phases. Performance is evaluated by comparing the robotic
system’s classification output with a human’s labeling of
the objects.

The physical system described in this paper finished first
in the robot-league of the 2007 SRVC. Many of the de-
sign choices and physical specifications have been made
somewhat specific to that scenario, and should be changed
for a more general-purpose application. Specifically, the
SRVC separated the recognition problem into three phases,
whereas running all components in parallel during the op-
erational lifetime would be desirable for a robot compan-
ion. Also, the strict time requirement meant that mapping
needed to occur as quickly as possible, and that highly ac-
curate sensors were desirable. For this reason, the mapping
procedure described in section 4 uses a laser range finder.
Visual mapping, such as the method of Sim et al. [9], would
be preferable in terms of cost and safety. Since it would
provide the ability to sense obstacles outside the plane of
the range finder.

The focus of this paper is a description of the behaviour
used during environment exploration phase of the SRVC.
The goal during this phase was to collect numerous, high-
quality views of each of the objects. Due to the time con-
straints of the contest, these views had to be collected with-
out performing object recognition, but instead by quickly
identifying promising objects and regions, which we will re-
fer to as potential objects. This pre-semantic identification

of interesting regions was inspired by the model of human
visual attention proposed by Rensink [10], where proto-
objects are detected subconsciously in the visual periphery,
and attention shifts between these to allow more detailed
consideration. Our potential object detection method can
be considered a simplified version of object discovery, such
as the method described by Southey et al. [11], which at-
tempts to faithfully segment meaningful objects using nu-
merous cues. In comparison, we produce a less precise seg-
mentation with less computation and rely on subsequent
recognition to refine the result.

The remainder of this paper will provide a detailed de-
scription for each component of our method. Section 2 de-
scribes the hardware system. Section 3 describes the po-
tential object selection method, which serves to direct the
attention for our system. This is followed by a description
of the navigation, mapping and coverage algorithm in sec-
tion 4 and then by a brief description of the visual object
recognition approach in section 5. Section 6 presents re-
sults obtained during the SRVC as well as during further
testing conducted in our lab, which provide validation of
our approach. Finally, future work and perspectives will be
discussed.

2. Hardware

Hardware design is an important consideration when
constructing a robot that is targeted at operating in a man-
made environment. Many extant robot platforms are lim-
ited by height, navigation ability and fixed direction sen-
sor platforms so that interesting objects are inaccessible.
For example, objects located on desks or bookshelves in
an office are often too high to be seen by a robot’s cam-
eras. Our robot platform, “Curious George”, was designed
to have roughly similar dimensions and flexibility to a hu-
man, so that relevant regions of the environment could
be easily viewed and categorised. Our robot is an Active-
Media PowerBot, equipped with a SICK LMS 200 planar
range finder. The robot’s cameras are raised by a tower
with height approximately 1.5 m. The cameras are mounted
on a PTU-D46-17.5 pan-tilt unit from Directed Perception
which provides an effective 360° gaze range. See figure 1.

We employ a peripheral-foveal vision system in order
to obtain the high resolution required to recognise objects
while simultaneously perceiving a large portion of the sur-
rounding region. This choice has again been modelled after
the human perceptual system, and was also inspired by de-
sign choices made in [12]. For peripheral vision, the robot
has a Bumblebee colour stereo camera from PointGrey Re-
search, with 1024 x 768 resolution, and a 60° field-of-view
which provides a low resolution survey of the environment.
For foveal vision, the robot has a Canon PowerShot G7
still image camera, with 10.0 megapixel resolution, and 6x
optical zoom which allows for high resolution imaging of
tightly focused regions.



3. Attention System

The attention system identifies potential objects using
the peripheral vision system, and focuses on these objects
to collect detailed images using the foveal system, so that
these images can be further processed for object recogni-
tion. Identifying potential objects correctly is a non-trivial
problem, due to the presence of confusing backgrounds and
the vast appearance and size variations amongst the items
that we refer to as a objects. Our system makes use of
multiple cues to solve this problem. Specifically, we ob-
tain depth from stereo to determine structures that stand
out from floor or background, and we process visual infor-
mation directly with a saliency measure to detect regions
with distinctive appearance. This section will describe the
stereo and saliency approaches in detail, and will describe
the subsequent collection of foveal images.

3.1. Stereo

The Bumblebee stereo camera is bundled with software
for computing depth from stereo. We use the output dis-
parity maps to detect obstacles and objects of interest, by
detecting regions with above-floor elevations, see figure 2.
This algorithm makes use of camera tilt (variable) and ele-
vation (static) to transform the disparities to elevation val-
ues. The elevations are then thresholded at 10 cm, and the
resultant binary map is cleaned up by a series of morpho-
logical operations. This helps to remove small disparity re-
gions, which are likely to be erroneous, and also fills in small
gaps in objects. The resultant obstacle map is used both to
avoid bumping into objects and tables, and in combination
with saliency to determine likely locations of objects.

3.2. Saliency

To detect potential objects we make use of the spectral
residual saliency measure defined in [13]. We extend the
measure to colour in a manner similar to [14]. That is, we
compute the spectral residual on three channels: intensity,
red-green, and yellow-blue. The results are then combined
by summing them to form a single saliency map. Regions
of multiple sizes are then detected in the saliency map us-
ing the Mazimally Stable Extremal Region (MSER) detec-
tor [15]. This detector is useful since it does not enforce a
partitioning of the scene. Instead, nested regions can be de-
tected, if they are deemed to be stable. Typically, MSERs
are regions that are either darker or brighter than their
surroundings, but, since bright in the saliency map corre-
sponds to high saliency, we know that only bright regions
are relevant here, and consequently we only need to run
half the MSER detector. Bright MSERs are shown in red
and green in figure 3. Regions are required to have their
smallest saliency value above a threshold proportional to
the average image intensity (which is justified since spec-
tral saliency scales linearly with intensity changes). This

Fig. 2. Stereo computation. Top to bottom: Left and right input
images, disparity map, and obstacle map superimposed on right
input image.

gives us automatic adaptation to global illumination and
contrast changes. The regions are further required to be
more than 20% smaller than the next larger nested region,
to remove regions that are nearly identical. To ensure that
the salient regions are not part of the floor, they are also re-
quired intersect the obstacle map (see section 3.1) by 20%.
Regions which pass these restrictions are shown in green in
figure 3.

Compared to [14], which can be considered state-of-the-
art in saliency detection, the above described detector offers
three advantages:

(i) The use of spectral saliency and the MSER detector

makes the algorithm an order of magnitude faster.
(0.1 instead of 3.0 seconds in our system).

(ii) The use of the MSER detector allows us to capture
both objects and parts of objects, whenever they
constitute stable configurations. This fits well with
bottom-up object detection, since objects typically
consist of smaller objects (object parts), and we
would not want to commit to a specific scale before
we have analysed the images further. The multiple
sizes also map naturally to different zoom settings
on the still image camera.

(iii) The use of an average intensity-related threshold al-
lows us to adapt the number of salient regions re-
ported, depending on the image structure. In particu-
lar, this thresholding technique will report that there
are no salient regions when analysing a highly uni-



Fig. 3. Saliency computation. Top to bottom: Input image, colour
opponency channels (int,R-G,Y-B), spectral saliency map, detected
MSERs, and MSERs superimposed on input image. Figure best
viewed in colour.

form image such as a wall or floor. This is in contrast
to the Walther toolbox [14], which, due to its built-
in normalisation, only can order salient regions, but
never decide that there is nothing interesting in the
scene.

Note that the potential objects are not necessarily what
one would normally call objects. They are equally likely
to be distracting background features such as intersecting
lines on the floor, or box corners. The purpose of saliency
is merely to restrict the total number of possible gazes to a
smaller set that still contains the objects we want to find.
This means that it is absolutely essential that the attended
potential objects are further analysed in order to reject, or
verify their status as objects.

3.3. Gaze control

In order to actually centre a potential object in the still
image camera, we employ the saccadic gaze control algo-
rithm described in [16]. This algorithm learns to centre a
stereo correspondence in the stereo camera. To instead cen-
tre an object in the still image camera, we centre the stereo
correspondence on the epipoles (the projections of camera’s
optical centre) of the still image camera in the stereo cam-
era.

In order to select an appropriate zoom level, we have cal-
ibrated the scale change between the stereo camera and the
still image camera for a fixed number of zoom settings. This
allows us to simulate the effect of the zoom, by applying
the scale change to a detected MSER. The tightest zoom
at which the MSER fits entirely inside the image is chosen.

4. Spatial Representation

An embodied recognition system must do more than sim-
ply recognising semantically meaningful objects which are
directly in its field of view at a single moment in time.
It must additionally move safely through its environment,
record the locations of detected objects, and plan its mo-
tions to discover new objects. That is, it must be able to
represent spatial-semantic information. Our system accom-
plishes this by: 1) building a geometric map representation
of the space it has so far encountered; 2) using this map
to guide further planning and exploration; 3) covering the
space with the visual attention system to search for objects;
4) annotating objects in the map when they are first discov-
ered; and 5) updating the object locations and properties
over time by looking back from different viewpoints. This
section will describe each of these components in detail.

4.1. Geometric Mapping

Our system performs mapping with FastSLAM, a Rao-
Blackwellized Particle Filter implementation [17], which
builds a probabilistic occupancy grid [18] based on the laser
range finder readings and the robot’s odometry, and tracks
the robot’s position within the map. An occupancy grid
is well suited to guide navigation and planning tasks for a
mobile robot moving on a flat surface since it mirrors the
inherently 2D nature of this environment. We have imple-
mented a layered planning architecture where goals pro-
posed by one of the high level behaviours described below
are achieved by following a lower level path produced by
A*-search through the occupancy grid. Finally, the Vector-
Field Histogram local planner described by Borenstein et
al. [19] is used for local obstacle avoidance and to adapt to
dynamic changes in the environment.



Fig. 4. Paths are planned to achieve numerous goals. (a) Path towards frontier of unexplored space (indicated by blue dots) allow for
exploration. (b) A path to another clear view of an object (indicated by a yellow dot) can be used to obtain multiple views. Legend: + start

of path. e end of path.

4.2. Exploration Planning

We employ the frontier based exploration technique de-
scribed by Yamauchi et al. [20] to quickly cover the environ-
ment with the laser scanner and produce an initial map. As
is illustrated in figure 4(a), a frontier is defined as the border
between explored and unexplored space. For our system,
these frontiers will be the locations just beyond the range
of the laser scans, and in the laser shadows created behind
objects or around corners. The frontier planning technique
identifies candidate locations where laser scans would be
most likely to uncover new regions to explore. First, one of
these promising locations is chosen, then the robot moves
to this location, and the map is updated. This process is
iterated, until all regions have been explored.

4.3. Cowverage Planning

Each time a region of the environment is observed with
the peripheral camera, the attention system has the oppor-
tunity to detect potential objects within that area. In or-
der to maximise these opportunities, the camera should be
pointed in directions that cover as much new territory as
possible. We use an iterated greedy search based on visible
area weighted by the number of previous observations to
select favourable directions. This approach causes the cam-
era to cover the environment roughly uniformly and give an
equal chance of detecting potential objects in any location.

4.4. Object Permanence

The set of available object poses in visual training data
collected from the Web is often incomplete. One tends
to get the characteristic views [21] (e.g., a shoe is nor-
mally photographed from the side, and hardly ever from the
front), rather than a uniform sampling of views. In order
to perform successful recognition using such limited train-

ing data, we attempt to collect numerous views of each po-
tential object by looking back to the same locations as the
robot moves. This requires awareness of an object’s loca-
tion even when it is not in the visual field, an ability known
as object permanence. The behaviour of looking back from
many views increases the likelihood that one of the collected
images is taken from a similar view to that of the training
data. To allow collection of highly distinctive viewpoints,
the previous views of an object vote for nearby angles into
a histogram with values in the range [0, 27], and histogram
bins with low scores are selected. That is, views from a
completely new direction are favoured over those from sim-
ilar angles. We again employ greedy search over histogram
values and iterate the procedure to obtain roughly uniform
coverage of viewing angles. Once a direction is selected, the
hierarchical planning method moves the robot to the de-
sired viewing position and a foveal image is collected. Fig-
ure 4(b) shows an example of a path produced during this
behaviour.

5. Object Recognition

While the focus of this article is robot exploration and
image collection, our system also includes a method for sub-
sequently recognising objects in the images. This section
will outline our approach for training object classifiers and
for evaluating these on the images collected by our robot.
Our system collects its training data by submitting text-
based queries to internet image search engines and storing
the collections of images returned. The results of a typi-
cal query include numerous images containing the desired
object, as well as some mislabelled images, cartoon repre-
sentations of the object, and extensive clutter. It is a sig-
nificant challenge to construct an object appearance model
from such unstructured data, particularly when coupled
with the time constraints of the competition. We address
this challenge by heuristic re-ranking of the images to focus
time and attention on more useful training images and also



Fig. 5. Combining the spatial awareness provided by SLAM with object recognition, meaningful object labels can be assigned to locations in
the map. (a) Training data for object “robosapien”. (b) Overview photo of the room the robot is exploring. (c¢) The map with three objects,
and the locations from which they were observed. Legend: (3~ robot poses where objects were first seen, O object “basketball”, & object

“recycling bin”, V object “robosapien”.

by employing a simple and robust local feature matching
approach for recognition. Each of these components will be
discussed in detail in the following sections.

5.1. Image Re-ranking

We re-rank the input training imagery using a number
of intuitively useful cues. First, we analyse the information
within single images, using colour histogram analysis to
demote images with few colours, which are likely to be an
artist’s renderings and colour image segmentation to pro-
mote uncluttered images with homogeneous backgrounds.
Next, we search for consistency across multiple images by
computing pairwise similarity between each training image
and searching for large cliques in the induced graph. Since
the images in such cliques strongly agree upon a common
visual appearance for the category, they are unlikely to be
noise, and thus are ranked highly.

5.2. Local Feature Matching

Even after re-ranking, numerous distracting and clut-
tered images remain. Recognition approaches that seek to
build a generic category appearance model such as Zhang
et al. [5] were found to be ineffective in the face of such
data. Instead, direct image matching based on local feature
patches, as described by Lowe [22], proved more success-
ful. In particular, our training phase consists of computing
SIFT features for each training example from the Web. The
classification procedure extracts the same type of features
from the images collected by the robot and matches features
between each training and test image. Feature matches be-
tween a pair of images are verified with a geometric con-
sistency check. That is, each match suggests a 2D similar-

ity transform between images and two matches that agree
upon a transformation increase the likelihood that the ob-
ject is present in the image. The number of these consis-
tent feature matches provides a measure of confidence in
the detection. If multiple images are labelled as containing
a particular object, the system outputs the one with the
highest confidence. The locations of matched features in
the robot’s images are used to determine the likely position
and extent of the object and produce a bounding box.

6. Experimental Results
6.1. Semantic Mapping

The combination of techniques described in the previ-
ous sections endow a mobile agent with the ability to ex-
plore its environment and to recognise the objects it dis-
covers. This behaviour can be easily extended to spatial-
semantic mapping by back-projecting the recognised ob-
jects into the robot’s map representation of the world. In
our case, the probabilistic occupancy grid constructed from
laser range scans fed through the FastSLAM algorithm can
be augmented with the locations of visual objects. For ex-
ample, figures 5(b) and 5(c) illustrate the locations of ob-
jects matching the labels “robosapien”, “basketball”, and
“recycling bin”. The object recognition subsystem was pro-
vided with between 2 and 4 example views of each object,
see figure 5(a) for an example. Each object shown was iden-
tified by the attention system and observed from various
locations, giving several pieces of information about its po-
sition, and allowing for collection of numerous views for
recognition or future matching. We envision that the types
of maps illustrated here could be easily used in a human-
robot interaction system where the human operator would



be able to relay commands to the robot in semantically
meaningful terms.

6.2. Comparison of Attention Approaches

To validate the effectiveness of the saliency and structure
based attention systems described in section 3, we com-
pared its performance against two other methods for select-
ing foveal views which will be described shortly. In order
to ensure a fair comparison, the remaining components of
our system were held constant. This suggests the following
decomposition of our system into three parts:

(i) (Identical for each method) Robot motion to a loca-
tion that allows coverage of the environment and col-
lection of a peripheral image of a large region at low
resolution.

(ii) (Three different methods compared) Selection of a
number of sub-regions and collection of foveal images.

(iii) (Identical for each method) Classification of the col-
lected foveal images by the object recognition system.

The three attention methods evaluated were the visual
saliency and structure approach described in section 3 and
two comparative methods:

(i) Peripheral view only. This method took only one im-
age at each robot pose, simulating the lack of a foveal
vision system. The image covered the entire periph-
eral region at a wide zoom setting. Recognition re-
sults from this approach should be viewed as a base-
line for any more selective attention system.

(ii) Random view selection. This method sampled from
sub-regions of the peripheral view by randomly se-
lecting n pan-tilt and zoom values from the view-cone
visible in the peripheral camera, where n is a tuneable
parameter. The space of possible images collected by
this method is the same space in which the guided at-
tention system searches. As such, there is some likeli-
hood that these samples are identical to the interest-
ing views obtained by the guided attention system,
or are even better views. So, the recognition results
from this approach can be used to evaluate whether
or not our guided system is better than chance at se-
lecting interesting views.

To additionally enforce fairness of comparison, we ran
each of the three attention methods from identical robot
locations. That is, once the robot had moved to a point,
each one of the three attention methods was executed in
sequence. The pan-tilt unit and zoom settings were reset
to their defaults between each method, and the robot base
was kept stationary during the process.

Figure 6(a) displays the evolution of recognition perfor-
mance over time for each of the 3 approaches. In all trials
attempted, the approach based on visual saliency was able
to recognize more objects by the end of the trial, even when
the view sampling approach took many more images. In
this particular plot, the random approach uses 8 images at
each location, whereas the attention method uses 3 on av-

erage. We additionally varied the parameter n for the ran-
dom view selection strategy, to observe its effect on recog-
nition performance. Figure 6(b) demonstrates that for all
of 2,4, and 8 views per pose, the collection of more data
generally increases performance. However, even with twice
as many view samples, the random approach does not per-
form as well as our guided attention measure. This is strong
evidence that the visual saliency method is indeed guiding
the robot to obtain promising views of objects, and that it
is performing well in realistic scenarios.

6.3. SRVC Contest Performance

As mentioned earlier, the 2007 SRVC contest was com-
posed of three phases: Web search, exploration, and clas-
sification. The abilities of the intelligent system described
in this paper were demonstrated in the SRVC, where our
system was the winning entry in the robot league. Figure 7
demonstrates several of the objects correctly classified by
our system during the final round of the contest, along with
several of the misclassifications. As can be seen by the im-
ages, the contest environment was not completely realistic,
but it was sufficiently complicated to present a significant
challenge for current state-of-the-art recognition systems.
It was impossible to view all candidate objects from any
single location, so robot motion and collection of multiple
views of each object was essential. Also, many of the ob-
jects were placed in highly cluttered locations such as ta-
ble tops, which would cause confusion for saliency methods
that do not take into account that parts of objects may
also themselves be objects. The navigation and attention
systems described in sections 3 and 4 were sufficiently suc-
cessful at exploring and determining the locations of inter-
esting objects to deal with these challenges.

7. Conclusions

We have described an intelligent system capable of
building a detailed semantic representation of its envi-
ronment. Through careful integration of components, this
system demonstrates reasonably successful and accurate
object recognition in a quasi-realistic scenario. Significant
work is still needed to produce a system which will operate
successfully in more general environments such as homes,
offices, and nursing homes, where personal companion
robots are intended to operate. In such environments,
challenges include the level of clutter, number of distinct
objects, non-planar navigation, dynamic environments,
and need to operate in real time, among many others.
While the current implementation of our system is not
sufficiently sophisticated to be successful in these environ-
ments, we believe there are several additional components
which would bring this closer to reality.

The current object permanence ability has proven useful
to establish the identity of objects which cannot be recog-
nised from a particular view, but it could be extended to
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Demonstrates that for the random view selection approach, recognition performance increases with sampling density. Each result is averaged

over 3 separate runs of the robot.

further leverage the available information. For example, the
results of object recognition on the current set of collected
views should impact the number of additional views and
the locations from which these are taken. Once the system
is nearly certain of the identity of a particular object, it
would be better served by moving on to objects that it is
less confident about. In the future we hope to implement an
integrated decision making system which would be able to
capture this intuition, perhaps by extending an approach
similar to [23].

Online and life-long learning will both be essential for a
truly useful home companion which is able to enter a per-
son’s dwelling and continue to succeed there for a long pe-
riod. It is, in many cases, an easier visual task to recognise
objects when trained in the particular circumstances and
on the particular objects which will be required during op-
eration. Active training data acquisition as facilitated by
object permanence is needed to extend the crude models
obtained from the web, and to adapt to changing object
appearances, (e.g., due to wear and tear). We believe many
components in our method are well suited to such a sce-
nario.

Context is a currently untapped source of information
which can be used to aid the spatial-semantic recognition
task. Contextual information such as the type of room be-
ing examined would help to prioritise recognition effort to-
wards those objects likely to be present. Spatial context
allows for preferential search based on the height and posi-
tion at which an object is normally found. Some interesting
attempts to incorporate context using the gist descriptor
[24] are given in [23].

We believe that the prospect of a useful mobile robot
companion is a realistic medium term goal and that many
of the components discussed in this paper will be essential
to the realization of such a system. It will continue to be
important to evaluate approaches that extract semantic

meaning from visual scenes in realistic scenarios, and also to
integrate such systems with active, mobile systems, in order
to achieve robustness and generality. The system described
here is one step along this path.
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